1
|
Kang M, Farrell JJ, Zhu C, Park H, Kang S, Seo EH, Choi KY, Jun GR, Won S, Gim J, Lee KH, Farrer LA. Whole-genome sequencing study in Koreans identifies novel loci for Alzheimer's disease. Alzheimers Dement 2024. [PMID: 39428694 DOI: 10.1002/alz.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION The genetic basis of Alzheimer's disease (AD) in Koreans is poorly understood. METHODS We performed an AD genome-wide association study using whole-genome sequence data from 3540 Koreans (1583 AD cases, 1957 controls) and single-nucleotide polymorphism array data from 2978 Japanese (1336 AD cases, 1642 controls). Significant findings were evaluated by pathway enrichment and differential gene expression analysis in brain tissue from controls and AD cases with and without dementia prior to death. RESULTS We identified genome-wide significant associations with APOE in the total sample and ROCK2 (rs76484417, p = 2.71×10-8) among APOE ε4 non-carriers. A study-wide significant association was found with aggregated rare variants in MICALL1 (MICAL like 1) (p = 9.04×10-7). Several novel AD-associated genes, including ROCK2 and MICALL1, were differentially expressed in AD cases compared to controls (p < 3.33×10-3). ROCK2 was also differentially expressed between AD cases with and without dementia (p = 1.34×10-4). DISCUSSION Our results provide insight into genetic mechanisms leading to AD and cognitive resilience in East Asians. HIGHLIGHTS Novel genome-wide significant associations for AD identified with ROCK2 and MICALL1. ROCK2 and MICALL1 are differentially expressed between AD cases and controls in the brain. This is the largest whole-genome-sequence study of AD in an East Asian population.
Collapse
Affiliation(s)
- Moonil Kang
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Hyeonseul Park
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
| | - Sarang Kang
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Eun Hyun Seo
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Premedical Science, College of Medicine, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Kolab Inc., Dong-gu, Gwangju, Republic of Korea
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- RexSoft Corps, Gwanak-gu, Seoul, Republic of Korea
| | - Jungsoo Gim
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Well-ageing Medicare Institute, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Kun Ho Lee
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Korea Brain Research Institute, Dong-gu, Daegu, Republic of Korea
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Mahbub NU, Islam MM, Hong ST, Chung HJ. Dysbiosis of the gut microbiota and its effect on α-synuclein and prion protein misfolding: consequences for neurodegeneration. Front Cell Infect Microbiol 2024; 14:1348279. [PMID: 38435303 PMCID: PMC10904658 DOI: 10.3389/fcimb.2024.1348279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Abnormal behavior of α-synuclein and prion proteins is the hallmark of Parkinson's disease (PD) and prion illnesses, respectively, being complex neurological disorders. A primary cause of protein aggregation, brain injury, and cognitive loss in prion illnesses is the misfolding of normal cellular prion proteins (PrPC) into an infectious form (PrPSc). Aggregation of α-synuclein causes disruptions in cellular processes in Parkinson's disease (PD), leading to loss of dopamine-producing neurons and motor symptoms. Alteration in the composition or activity of gut microbes may weaken the intestinal barrier and make it possible for prions to go from the gut to the brain. The gut-brain axis is linked to neuroinflammation; the metabolites produced by the gut microbiota affect the aggregation of α-synuclein, regulate inflammation and immunological responses, and may influence the course of the disease and neurotoxicity of proteins, even if their primary targets are distinct proteins. This thorough analysis explores the complex interactions that exist between the gut microbiota and neurodegenerative illnesses, particularly Parkinson's disease (PD) and prion disorders. The involvement of the gut microbiota, a complex collection of bacteria, archaea, fungi, viruses etc., in various neurological illnesses is becoming increasingly recognized. The gut microbiome influences neuroinflammation, neurotransmitter synthesis, mitochondrial function, and intestinal barrier integrity through the gut-brain axis, which contributes to the development and progression of disease. The review delves into the molecular mechanisms that underlie these relationships, emphasizing the effects of microbial metabolites such as bacterial lipopolysaccharides (LPS), and short-chain fatty acids (SCFAs) in regulating brain functioning. Additionally, it looks at how environmental influences and dietary decisions affect the gut microbiome and whether they could be risk factors for neurodegenerative illnesses. This study concludes by highlighting the critical role that the gut microbiota plays in the development of Parkinson's disease (PD) and prion disease. It also provides a promising direction for future research and possible treatment approaches. People afflicted by these difficult ailments may find hope in new preventive and therapeutic approaches if the role of the gut microbiota in these diseases is better understood.
Collapse
Affiliation(s)
- Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Sundram S, Dhiman N, Malviya R, Awasthi R. Non-coding RNAs in Regulation of Protein Aggregation and Clearance Pathways: Current Perspectives Towards Alzheimer's Research and Therapy. Curr Gene Ther 2024; 24:8-16. [PMID: 37519207 DOI: 10.2174/1566523223666230731093030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/07/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, affecting approximately 45.0 million people worldwide and ranking as the fifth leading cause of mortality. AD is identified by neurofibrillary tangles (NFTs), which include abnormally phosphorylated tau-protein and amyloid protein (amyloid plaques). Peptide dysregulation is caused by an imbalance between the production and clearance of the amyloid-beta (Aβ) and NFT. AD begins to develop when these peptides are not cleared from the body. As a result, understanding the processes that control both normal and pathological protein recycling in neuronal cells is critical. Insufficient Aβ and NFT clearance are important factors in the development of AD. Autophagy, lysosomal dysfunction, and ubiquitin-proteasome dysfunction have potential roles in the pathogenesis of many neurodegenerative disorders, particularly in AD. Modulation of these pathways may provide a novel treatment strategy for AD. Non-coding RNAs (ncRNAs) have recently emerged as important biological regulators, with particular relevance to the emergence and development of neurodegenerative disorders such as AD. ncRNAs can be used as potential therapeutic targets and diagnostic biomarkers due to their critical regulatory functions in several biological processes involved in disease development, such as the aggregation and accumulation of Aβ and NFT. It is evident that ncRNAs play a role in the pathophysiology of AD. In this communication, we explored the link between ncRNAs and AD and their regulatory mechanisms that may help in finding new therapeutic targets and AD medications.
Collapse
Affiliation(s)
- Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, India
| |
Collapse
|
4
|
Brunner J, Schvartz D, Gouiller A, Hainard A, Borchard G. Impact of peptide permeation enhancer on tight junctions opening cellular mechanisms. Biochem Biophys Rep 2022; 32:101375. [PMID: 36324528 PMCID: PMC9618981 DOI: 10.1016/j.bbrep.2022.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
The myristoylated pentapeptide, L-R5, contains an amino acid sequence of the zeta inhibitory peptide (ZIP) portion (pseudosubstrate) of protein kinase C zeta (PKC ζ). As PKC ζ is involved in the modulation of epithelial tight junctions (TJs) through the phosphorylation of TJ proteins, L-R5 was suggested to interact with the enzyme resulting in the enhancement of paracellular permeability. This study shows that L-R5 does not bind to the enzyme but interacts directly with TJ proteins. We show here that the binding of PKC ζ to occludin and its successive phosphorylation is prevented by L-R5, which leads to TJ disruption and enhanced epithelial permeability. Although L-R5 did not show any in vitro cytotoxicity, a proteomics study revealed that L-R5 interferes with other regulatory pathways, e.g., apoptosis and immune response. We suggest that structural modification of the peptide may increase the specificity TJ protein-peptide interaction. Microscale thermophoresis (MST) showed robust results for protein bindings. The competitivity of L-R5 peptide for the binding of occludin-PKC zeta was shown. Tight junctions proteins expression was decreased due to L-R5 peptide. Multiple other mechanisms can be explored to use L-R5 for other therapies.
Collapse
Affiliation(s)
- Joël Brunner
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Domitille Schvartz
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Gouiller
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Alexandre Hainard
- Proteomics Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland,Corresponding author.
| |
Collapse
|
5
|
Wahl D, Moreno JA, Santangelo KS, Zhang Q, Afzali MF, Walsh MA, Musci RV, Cavalier AN, Hamilton KL, LaRocca TJ. Nontransgenic Guinea Pig Strains Exhibit Hallmarks of Human Brain Aging and Alzheimer's Disease. J Gerontol A Biol Sci Med Sci 2022; 77:1766-1774. [PMID: 35323931 PMCID: PMC9434446 DOI: 10.1093/gerona/glac073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Older age is the primary risk factor for most chronic diseases, including Alzheimer's disease (AD). Current preclinical models to study brain aging and AD are mainly transgenic and harbor mutations intended to mirror brain pathologies associated with human brain aging/AD (eg, by increasing production of the amyloid precursor protein, amyloid beta [Aβ], and/or phosphorylated tau, all of which are key pathological mediators of AD). Although these models may provide insight on pathophysiological processes in AD, none completely recapitulate the disease and its strong age-dependence, and there has been limited success in translating preclinical results and treatments to humans. Here, we describe 2 nontransgenic guinea pig (GP) models, a standard PigmEnTed (PET) strain, and lesser-studied Dunkin-Hartley (DH) strain, that may naturally mimic key features of brain aging and AD in humans. We show that brain aging in PET GP is transcriptomically similar to human brain aging, whereas older DH brains are transcriptomically more similar to human AD. Both strains/models also exhibit increased neurofilament light chain (NFL, a marker of neuronal damage) with aging, and DH animals display greater S100 calcium-binding protein B (S100β), ionized calcium-binding adapter molecule 1 (Iba1), and Aβ and phosphorylated tau-which are all important markers of neuroinflammation-associated AD. Collectively, our results suggest that both the PET and DH GP may be useful, nontransgenic models to study brain aging and AD, respectively.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, USA
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kelly S Santangelo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Maryam F Afzali
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Maureen A Walsh
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Alyssa N Cavalier
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, USA
| | - Thomas J LaRocca
- Address correspondence to: Thomas J. LaRocca, PhD, Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University, 1582 Campus Delivery, Fort Collins, CO 80523-1582, USA. E-mail:
| |
Collapse
|
6
|
Dong J, Duchesne A, Bayne AN, Mohamed NV, Yi W, Mathur M, Chen CXQ, You Z, Abdian N, Taylor L, Fon EA, Durcan TM, Trempe JF. An Approach to Measuring Protein Turnover in Human Induced Pluripotent Stem Cell Organoids by Mass Spectrometry. Methods 2022; 203:17-27. [PMID: 35331912 DOI: 10.1016/j.ymeth.2022.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Patient-derived organoids from induced pluripotent stem cells have emerged as a model for studying human diseases beyond conventional two-dimensional (2D) cell culture. Briefly, these three-dimensional organoids are highly complex, capable of self-organizing, recapitulate cellular architecture, and have the potential to model diseases in complex organs, such as the brain. For example, the hallmark of Parkinson's disease (PD) - proteostatic dysfunction leading to the selective death of neurons in the substantia nigra - present a subtle distinction in cell type specificity that is lost in 2D cell culture models. As such, the development of robust methods to study global proteostasis and protein turnover in organoids will remain essential as organoid models evolve. To solve this problem, we have designed a workflow to reproducibly extract proteins from brain organoids, measure global turnover using mass spectrometry, and statistically investigate turnover differences between genotypes. We also provide robust methodology for data filtering and statistical treatment of turnover data. Using human midbrain organoids (hMO) as a model system, our method accurately characterized the half-lives of 773 midbrain proteins. We compared these half-lives both to Parkin knockout hMOs and to previously reported data from primary cell cultures and in vivo models. Overall, this method will facilitate the study of proteostasis in organoid models of human disease and will provide an analytical and statistical framework to measure protein turnover in organoids of all cell types.
Collapse
Affiliation(s)
- Jing Dong
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Anthony Duchesne
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Andrew N Bayne
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Nguyen-Vi Mohamed
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Wei Yi
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Meghna Mathur
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Carol X Q Chen
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Zhipeng You
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Narges Abdian
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Lorne Taylor
- Proteomics Platform, Centre for Translational Biology, Research Institute of the McGill University Health Centre, 1001 Bd Décarie, Montréal, Quebec, H4A 3J1, Canada
| | - Edward A Fon
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, Quebec, H3A 2B4, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada; Proteomics Platform, Centre for Translational Biology, Research Institute of the McGill University Health Centre, 1001 Bd Décarie, Montréal, Quebec, H4A 3J1, Canada; Brain Repair and Integrative Neuroscience (BRaIN) Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, 1001 Bd Décarie, Montréal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
7
|
Chinnathambi S, Gorantla NV. Implications of Valosin-containing Protein in Promoting Autophagy to Prevent Tau Aggregation. Neuroscience 2021; 476:125-134. [PMID: 34509548 DOI: 10.1016/j.neuroscience.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Chaperones and cellular degradative mechanisms modulate Tau aggregation. During aging and neurodegenerative disorders, the cellular proteostasis is disturbed due to impaired protective mechanisms. This results in accumulation of aberrant Tau aggregates in the neuron that leads to microtubule destabilization and neuronal degeneration. The intricate mechanisms to prevent Tau aggregation involve chaperones, autophagy, and proteasomal system have gained main focus about concerning to therapeutic intervention. However, the thorough understanding of other key proteins, such as Valosin-containing protein (VCP), is limited. In various neurodegenerative diseases, the chaperone-like activity of VCP is involved in preventing protein aggregation and mediating the degradation of aberrant proteins by proteasome and autophagy. In the case of Tau aggregation associated with Alzheimer's disease, the importance of VCP is poorly understood. VCP is known to co-localize with Tau, and alterations in VCP cause aberrant accumulation of Tau. Nevertheless, the direct mechanism of VCP in altering Tau aggregation is not known. Hence, we speculate that VCP might be one of the key modulators in preventing Tau aggregation and can disintegrate Tau aggregates by directing its clearance by autophagy.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Nalini Vijay Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Aimaiti M, Wumaier A, Aisa Y, Zhang Y, Xirepu X, Aibaidula Y, Lei X, Chen Q, Feng X, Mi N. Acteoside exerts neuroprotection effects in the model of Parkinson's disease via inducing autophagy: Network pharmacology and experimental study. Eur J Pharmacol 2021; 903:174136. [PMID: 33940032 DOI: 10.1016/j.ejphar.2021.174136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. At present, the incidence rate of PD is increasing worldwide, there is no effective cure available so far, and currently using drugs are still limited in efficacy due to serious side effects. Acteoside (ACT) is an active ingredient of many valuable medicinal plants, possesses potential therapeutic effects on many pathological conditions. In this study, we dissected the neuroprotection effects of ACT on PD and its potential molecular mechanism in our PD model pathology based on network pharmacology prediction and experimental assays. Network pharmacology and bioinformatics analysis demonstrated that ACT has 381 potential targets; among them 78 putative targets associated with PD were closely related to cellular autophagy and apoptotic processes. Our experimental results showed that ACT exerted significant neuroprotection effects on Rotenone (ROT) -induced injury of neuronal cells and Drosophila melanogaster (D. melanogaster). Meanwhile, ACT treatment induced autophagy in both neuronal cell lines and fat bodies of D. melanogaster. Furthermore, ACT treatment decreased ROT induced apoptotic rate and reactive oxygen species production, increased mitochondrial membrane potentials in neuronal cells, and promoted clearance of α-synuclein (SNCA) aggregations in SNCA overexpressed cell model through the autophagy-lysosome pathway. Interestingly, ACT treatment significantly enhanced mitophagy and protected cell injury in neuronal cells. Taken together, ACT may represent a potent stimulator of mitophagy pathway, thereby exerts preventive and therapeutic effects against neurodegenerative diseases such as PD by clearing pathogenic proteins and impaired cellular organelles like damaged mitochondria in neurons.
Collapse
Affiliation(s)
- Mutalifu Aimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China; Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China; Central Laboratory, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Ainiwaer Wumaier
- Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Yiliyasi Aisa
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China; Department of Pharmacology, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Yu Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China; Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Xirenayi Xirepu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China; Department of Teaching and Research of Crude Drugs, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Yilizire Aibaidula
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China; Department of Pharmaceutical Analysis, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - XiuYing Lei
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China; Department of Biochemistry, College of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Qian Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China; Department of Biochemistry, College of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - XueZhao Feng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China; Department of Biochemistry, College of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Na Mi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
9
|
Wu JJ, Cai A, Greenslade JE, Higgins NR, Fan C, Le NTT, Tatman M, Whiteley AM, Prado MA, Dieriks BV, Curtis MA, Shaw CE, Siddique T, Faull RLM, Scotter EL, Finley D, Monteiro MJ. ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proc Natl Acad Sci U S A 2020; 117:15230-15241. [PMID: 32513711 PMCID: PMC7334651 DOI: 10.1073/pnas.1917371117] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in UBQLN2 cause amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neurodegenerations. However, the mechanism by which the UBQLN2 mutations cause disease remains unclear. Alterations in proteins involved in autophagy are prominent in neuronal tissue of human ALS UBQLN2 patients and in a transgenic P497S UBQLN2 mouse model of ALS/FTD, suggesting a pathogenic link. Here, we show UBQLN2 functions in autophagy and that ALS/FTD mutant proteins compromise this function. Inactivation of UBQLN2 expression in HeLa cells reduced autophagic flux and autophagosome acidification. The defect in acidification was rescued by reexpression of wild type (WT) UBQLN2 but not by any of the five different UBQLN2 ALS/FTD mutants tested. Proteomic analysis and immunoblot studies revealed P497S mutant mice and UBQLN2 knockout HeLa and NSC34 cells have reduced expression of ATP6v1g1, a critical subunit of the vacuolar ATPase (V-ATPase) pump. Knockout of UBQLN2 expression in HeLa cells decreased turnover of ATP6v1g1, while overexpression of WT UBQLN2 increased biogenesis of ATP6v1g1 compared with P497S mutant UBQLN2 protein. In vitro interaction studies showed that ATP6v1g1 binds more strongly to WT UBQLN2 than to ALS/FTD mutant UBQLN2 proteins. Intriguingly, overexpression of ATP6v1g1 in UBQLN2 knockout HeLa cells increased autophagosome acidification, suggesting a therapeutic approach to overcome the acidification defect. Taken together, our findings suggest that UBQLN2 mutations drive pathogenesis through a dominant-negative loss-of-function mechanism in autophagy and that UBQLN2 functions as an important regulator of the expression and stability of ATP6v1g1. These findings may have important implications for devising therapies to treat UBQLN2-linked ALS/FTD.
Collapse
Affiliation(s)
- Josephine J Wu
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ashley Cai
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jessie E Greenslade
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Nicole R Higgins
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cong Fan
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Nhat T T Le
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Micaela Tatman
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Birger V Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, 1010 Auckland, New Zealand
- Centre for Brain Research, University of Auckland, 1010 Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, University of Auckland, 1010 Auckland, New Zealand
- Centre for Brain Research, University of Auckland, 1010 Auckland, New Zealand
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute, King's College London, WC2R 2LS London, United Kingdom
- Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RT London, United Kingdom
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, WC2R 2LS London, United Kingdom
| | - Teepu Siddique
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, University of Auckland, 1010 Auckland, New Zealand
- Centre for Brain Research, University of Auckland, 1010 Auckland, New Zealand
| | - Emma L Scotter
- Centre for Brain Research, University of Auckland, 1010 Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, 1010 Auckland, New Zealand
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Mervyn J Monteiro
- Center for Biomedical Engineering and Technology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
10
|
Kaul Z, Mookherjee D, Das S, Chatterjee D, Chakrabarti S, Chakrabarti O. Loss of tumor susceptibility gene 101 (TSG101) perturbs endoplasmic reticulum structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118741. [PMID: 32422153 DOI: 10.1016/j.bbamcr.2020.118741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.
Collapse
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA..
| | - Debdatto Mookherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Debmita Chatterjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, CN 6, Sector V, Salt Lake, Kolkata 700091, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| |
Collapse
|
11
|
Zhao Y, Long Z, Ding Y, Jiang T, Liu J, Li Y, Liu Y, Peng X, Wang K, Feng M, He G. Dihydroartemisinin Ameliorates Learning and Memory in Alzheimer's Disease Through Promoting Autophagosome-Lysosome Fusion and Autolysosomal Degradation for Aβ Clearance. Front Aging Neurosci 2020; 12:47. [PMID: 32210783 PMCID: PMC7067048 DOI: 10.3389/fnagi.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
Dihydroartemisinin (DHA) is an active metabolite of sesquiterpene trioxane lactone extracted from Artemisia annua, which is used to treat malaria worldwide. DHA can activate autophagy, which is the main mechanism to remove the damaged cell components and recover the harmful or useless substances from eukaryotic cells and maintain cell viability through the autophagy lysosomal degradation system. Autophagy activation and autophagy flux correction are playing an important neuroprotective role in the central nervous system, as they accelerate the removal of toxic protein aggregates intracellularly and extracellularly to prevent neurodegenerative processes, such as Alzheimer's disease (AD). In this study, we explored whether this mechanism can mediate the neuroprotective effect of DHA on the AD model in vitro and in vivo. Three months of DHA treatment improved the memory and cognitive impairment, reduced the deposition of amyloid β plaque, reduced the levels of Aβ40 and Aβ42, and ameliorated excessive neuron apoptosis in APP/PS1 mice brain. In addition, DHA treatment increased the level of LC3 II/I and decreased the expression of p62. After Bafilomycin A1 and Chloroquine (CQ) blocked the fusion of autophagy and lysosome, as well as the degradation of autolysosomes (ALs), DHA treatment increased the level of LC3 II/I and decreased the expression of p62. These results suggest that DHA treatment can correct autophagic flux, improve autophagy dysfunction, inhibit abnormal death of neurons, promote the clearance of amyloid-β peptide (Aβ) fibrils, and have a multi-target effect on the neuropathological process, memory and cognitive deficits of AD.
Collapse
Affiliation(s)
- Yueyang Zhao
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Zhimin Long
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Ya Ding
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Tingting Jiang
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Jiajun Liu
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Yimin Li
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Yuanjie Liu
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Xuehua Peng
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kejian Wang
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Min Feng
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China.,Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Gali CC, Fanaee-Danesh E, Zandl-Lang M, Albrecher NM, Tam-Amersdorfer C, Stracke A, Sachdev V, Reichmann F, Sun Y, Avdili A, Reiter M, Kratky D, Holzer P, Lass A, Kandimalla KK, Panzenboeck U. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Mol Cell Neurosci 2019; 99:103390. [PMID: 31276749 PMCID: PMC6897558 DOI: 10.1016/j.mcn.2019.103390] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023] Open
Abstract
Aberrant insulin signaling constitutes an early change in Alzheimer's disease (AD). Insulin receptors (IR) and low-density lipoprotein receptor-related protein-1 (LRP-1) are expressed in brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB). There, insulin may regulate the function of LRP-1 in Aβ clearance from the brain. Changes in IR-β and LRP-1 and insulin signaling at the BBB in AD are not well understood. Herein, we identified a reduction in cerebral and cerebrovascular IR-β levels in 9-month-old male and female 3XTg-AD (PS1M146V, APPSwe, and tauP301L) as compared to NTg mice, which is important in insulin mediated signaling responses. Reduced cerebral IR-β levels corresponded to impaired insulin signaling and LRP-1 levels in brain. Reduced cerebral and cerebrovascular IR-β and LRP-1 levels in 3XTg-AD mice correlated with elevated levels of autophagy marker LC3B. In both genotypes, high-fat diet (HFD) feeding decreased cerebral and hepatic LRP-1 expression and elevated cerebral Aβ burden without affecting cerebrovascular LRP-1 and IR-β levels. In vitro studies using primary porcine (p)BCEC revealed that Aβ peptides 1–40 or 1–42 (240 nM) reduced cellular levels and interaction of LRP-1 and IR-β thereby perturbing insulin-mediated signaling. Further mechanistic investigation revealed that Aβ treatment accelerated the autophagy-lysosomal degradation of IR-β and LRP-1 in pBCEC. LRP-1 silencing in pBCEC decreased IR-β levels through post-translational pathways further deteriorating insulin-mediated responses at the BBB. Our findings indicate that LRP-1 proves important for insulin signaling at the BBB. Cerebral Aβ burden in AD may accelerate LRP-1 and IR-β degradation in BCEC thereby contributing to impaired cerebral and cerebromicrovascular insulin effects.
Collapse
Affiliation(s)
- Chaitanya Chakravarthi Gali
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Elham Fanaee-Danesh
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Martina Zandl-Lang
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Nicole Maria Albrecher
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Vinay Sachdev
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Yidan Sun
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Afrim Avdili
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Marielies Reiter
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Peter Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Karunya K Kandimalla
- College of Pharmacy, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ute Panzenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
13
|
Woodman S, Trousdale C, Conover J, Kim K. Yeast membrane lipid imbalance leads to trafficking defects toward the Golgi. Cell Biol Int 2018; 42:890-902. [PMID: 29500884 DOI: 10.1002/cbin.10956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/24/2018] [Indexed: 12/19/2022]
Abstract
Protein recycling is an essential cellular process involving endocytosis, intracellular trafficking, and exocytosis. In mammalian systems membrane lipids, including cholesterol, sphingolipids, and phospholipids, play a pivotal role in protein recycling. To address this role in budding yeast, Saccharomyces cerevisiae, we utilized GFP-Snc1, a v-SNARE protein serving as a fluorescent marker for faithfully reporting the recycling pathway. Here we demonstrate results that display moderate to significant GFP-Snc1 recycling defects upon overexpression or inactivation of phospholipid, ergosterol, and sphingolipid biosynthesis enzymes, indicating that the homeostasis of membrane lipid levels is prerequisite for proper protein recycling. By using a truncated version of GFP-Snc1 that cannot be recycled from the plasma membrane, we determined that abnormalities in Snc1 localization in membrane lipid overexpression or underexpression mutants are not due to defects in the synthetic/secretory pathway, but rather in the intracellular trafficking pathway. We found that membrane lipid imbalance resulted in an accumulation of the late endosome marker Vps10-GFP, indicating trafficking from the endosomes to the Golgi may be being hindered, preventing recycling to the plasma membrane. To elucidate the possible mechanism for this trafficking hindrance, we stained the actin cytoskeleton, then quantified the percentage of cells with visible actin cables. Compared to wild-type cells, membrane lipid mutant cells exhibited lower levels of actin cables, indicating the actin cytoskeleton is disrupted upon membrane lipid imbalance. Taken together, our results show that impairment of proper recycling may be due to disruption of the actin cytoskeleton, which causes trafficking hindrance between the endosomes and Golgi.
Collapse
Affiliation(s)
- Sara Woodman
- Missouri State University, 901 S National Ave., Springfield, Missouri
| | - Christopher Trousdale
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Washington University in St. Louis, 1 Brookings Dr., St. Louis, Missouri
| | - Justin Conover
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| | - Kyoungtae Kim
- Missouri State University, 901 S National Ave., Springfield, Missouri.,Iowa State University, Ames, Iowa
| |
Collapse
|
14
|
Kaul Z, Chakrabarti O. Endosomal sorting complexes required for ESCRTing cells toward death during neurogenesis, neurodevelopment and neurodegeneration. Traffic 2018; 19:485-495. [DOI: 10.1111/tra.12569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zenia Kaul
- Biophysics & Structural Genomics Division; Saha Institute of Nuclear Physics; Kolkata India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division; Saha Institute of Nuclear Physics; Kolkata India
- Homi Bhabha National Institute; Mumbai India
| |
Collapse
|
15
|
Penke B, Bogár F, Crul T, Sántha M, Tóth ME, Vígh L. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions. Int J Mol Sci 2018; 19:E325. [PMID: 29361800 PMCID: PMC5796267 DOI: 10.3390/ijms19010325] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| |
Collapse
|
16
|
Küry S, Besnard T, Ebstein F, Khan TN, Gambin T, Douglas J, Bacino CA, Craigen WJ, Sanders SJ, Lehmann A, Latypova X, Khan K, Pacault M, Sacharow S, Glaser K, Bieth E, Perrin-Sabourin L, Jacquemont ML, Cho MT, Roeder E, Denommé-Pichon AS, Monaghan KG, Yuan B, Xia F, Simon S, Bonneau D, Parent P, Gilbert-Dussardier B, Odent S, Toutain A, Pasquier L, Barbouth D, Shaw CA, Patel A, Smith JL, Bi W, Schmitt S, Deb W, Nizon M, Mercier S, Vincent M, Rooryck C, Malan V, Briceño I, Gómez A, Nugent KM, Gibson JB, Cogné B, Lupski JR, Stessman HA, Eichler EE, Retterer K, Yang Y, Redon R, Katsanis N, Rosenfeld JA, Kloetzel PM, Golzio C, Bézieau S, Stankiewicz P, Isidor B. De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet 2017; 100:352-363. [PMID: 28132691 DOI: 10.1016/j.ajhg.2017.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/04/2017] [Indexed: 10/25/2022] Open
Abstract
Degradation of proteins by the ubiquitin-proteasome system (UPS) is an essential biological process in the development of eukaryotic organisms. Dysregulation of this mechanism leads to numerous human neurodegenerative or neurodevelopmental disorders. Through a multi-center collaboration, we identified six de novo genomic deletions and four de novo point mutations involving PSMD12, encoding the non-ATPase subunit PSMD12 (aka RPN5) of the 19S regulator of 26S proteasome complex, in unrelated individuals with intellectual disability, congenital malformations, ophthalmologic anomalies, feeding difficulties, deafness, and subtle dysmorphic facial features. We observed reduced PSMD12 levels and an accumulation of ubiquitinated proteins without any impairment of proteasome catalytic activity. Our PSMD12 loss-of-function zebrafish CRISPR/Cas9 model exhibited microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology. Our data support the biological importance of PSMD12 as a scaffolding subunit in proteasome function during development and neurogenesis in particular; they enable the definition of a neurodevelopmental disorder due to PSMD12 variants, expanding the phenotypic spectrum of UPS-dependent disorders.
Collapse
|
17
|
Alves-Cruzeiro JMDC, Mendonça L, Pereira de Almeida L, Nóbrega C. Motor Dysfunctions and Neuropathology in Mouse Models of Spinocerebellar Ataxia Type 2: A Comprehensive Review. Front Neurosci 2016; 10:572. [PMID: 28018166 PMCID: PMC5156697 DOI: 10.3389/fnins.2016.00572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant ataxia caused by an expansion of CAG repeats in the exon 1 of the gene ATXN2, conferring a gain of toxic function that triggers the appearance of the disease phenotype. SCA2 is characterized by several symptoms including progressive gait ataxia and dysarthria, slow saccadic eye movements, sleep disturbances, cognitive impairments, and psychological dysfunctions such as insomnia and depression, among others. The available treatments rely on palliative care, which mitigate some of the major symptoms but ultimately fail to block the disease progression. This persistent lack of effective therapies led to the development of several models in yeast, C. elegans, D. melanogaster, and mice to serve as platforms for testing new therapeutic strategies and to accelerate the research on the complex disease mechanisms. In this work, we review 4 transgenic and 1 knock-in mouse that exhibit a SCA2-related phenotype and discuss their usefulness in addressing different scientific problems. The knock-in mice are extremely faithful to the human disease, with late onset of symptoms and physiological levels of mutant ataxin-2, while the other transgenic possess robust and well-characterized motor impairments and neuropathological features. Furthermore, a new BAC model of SCA2 shows promise to study the recently explored role of non-coding RNAs as a major pathogenic mechanism in this devastating disorder. Focusing on specific aspects of the behavior and neuropathology, as well as technical aspects, we provide a highly practical description and comparison of all the models with the purpose of creating a useful resource for SCA2 researchers worldwide.
Collapse
Affiliation(s)
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Clévio Nóbrega
- Department of Biomedical Sciences and Medicine and Center for Biomedical Research, University of Algarve Faro, Portugal
| |
Collapse
|
18
|
Cecarini V, Bonfili L, Cuccioloni M, Mozzicafreddo M, Angeletti M, Keller JN, Eleuteri AM. The fine-tuning of proteolytic pathways in Alzheimer's disease. Cell Mol Life Sci 2016; 73:3433-51. [PMID: 27120560 PMCID: PMC11108445 DOI: 10.1007/s00018-016-2238-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
Several integrated proteolytic systems contribute to the maintenance of cellular homeostasis through the continuous removal of misfolded, aggregated or oxidized proteins and damaged organelles. Among these systems, the proteasome and autophagy play the major role in protein quality control, which is a fundamental issue in non-proliferative cells such as neurons. Disturbances in the functionality of these two pathways are frequently observed in neurodegenerative diseases, like Alzheimer's disease, and reflect the accumulation of protease-resistant, deleterious protein aggregates. In this review, we explored the sophisticated crosstalk between the ubiquitin-proteasome system and autophagy in the removal of the harmful structures that characterize Alzheimer's disease neurons. We also dissected the role of the numerous shuttle factors and chaperones that, directly or indirectly interacting with ubiquitin and LC3, are used for cargo selection and delivery to one pathway or the other.
Collapse
Affiliation(s)
- Valentina Cecarini
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy.
| | - Laura Bonfili
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Massimiliano Cuccioloni
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Matteo Mozzicafreddo
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Mauro Angeletti
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| | - Jeffrey N Keller
- Pennington Biomedical Research Centre, Louisiana State University System, Baton Rouge, LA, 70808, USA
| | - Anna Maria Eleuteri
- Department of Biosciences and Veterinary Medicine, School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, Italy
| |
Collapse
|
19
|
George AA, Hayden S, Stanton GR, Brockerhoff SE. Arf6 and the 5'phosphatase of synaptojanin 1 regulate autophagy in cone photoreceptors. Bioessays 2016; 38 Suppl 1:S119-35. [DOI: 10.1002/bies.201670913] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Ashley A. George
- Department of Biochemistry; University of Washington; Seattle WA USA
| | - Sara Hayden
- Department of Biochemistry; University of Washington; Seattle WA USA
| | - Gail R. Stanton
- Department of Biochemistry; University of Washington; Seattle WA USA
| | | |
Collapse
|
20
|
Vernay A, Therreau L, Blot B, Risson V, Dirrig-Grosch S, Waegaert R, Lequeu T, Sellal F, Schaeffer L, Sadoul R, Loeffler JP, René F. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet 2016; 25:3341-3360. [PMID: 27329763 DOI: 10.1093/hmg/ddw182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Mutations in the charged multivesicular body protein 2B (CHMP2B) are associated with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), and with a mixed ALS-FTD syndrome. To model this syndrome, we generated a transgenic mouse line expressing the human CHMP2Bintron5 mutant in a neuron-specific manner. These mice developed a dose-dependent disease phenotype. A longitudinal study revealed progressive gait abnormalities, reduced muscle strength and decreased motor coordination. CHMP2Bintron5 mice died due to generalized paralysis. When paralyzed, signs of denervation were present as attested by altered electromyographic profiles, by decreased number of fully innervated neuromuscular junctions, by reduction in size of motor endplates and by a decrease of sciatic nerve axons area. However, spinal motor neurons cell bodies were preserved until death. In addition to the motor dysfunctions, CHMP2Bintron5 mice progressively developed FTD-relevant behavioural modifications such as disinhibition, stereotypies, decrease in social interactions, compulsivity and change in dietary preferences. Furthermore, neurons in the affected spinal cord and brain regions showed accumulation of p62-positive cytoplasmic inclusions associated or not with ubiquitin and CHMP2Bintron5 As observed in FTD3 patients, these inclusions were negative for TDP-43 and FUS. Moreover, astrogliosis and microgliosis developed with age. Altogether, these data indicate that the neuronal expression of human CHMP2Bintron5 in areas involved in motor and cognitive functions induces progressive motor alterations associated with dementia symptoms and with histopathological hallmarks reminiscent of both ALS and FTD.
Collapse
Affiliation(s)
- Aurélia Vernay
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - Ludivine Therreau
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - Béatrice Blot
- INSERM U836, Grenoble Institut des Neurosciences, Université Joseph Fourier, F-38700 La Tronche, France
| | - Valérie Risson
- Laboratoire de Biologie Moléculaire de la Cellule, UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole normale supérieure de Lyon, F-69364 Lyon Cedex 07, France
| | - Sylvie Dirrig-Grosch
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - Robin Waegaert
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - Thiebault Lequeu
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - François Sellal
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Neurology department, Hôpitaux civils and CMRR, F-68000 Colmar, France
| | - Laurent Schaeffer
- Laboratoire de Biologie Moléculaire de la Cellule, UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole normale supérieure de Lyon, F-69364 Lyon Cedex 07, France
| | - Rémy Sadoul
- INSERM U836, Grenoble Institut des Neurosciences, Université Joseph Fourier, F-38700 La Tronche, France
| | - Jean-Philippe Loeffler
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France.,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| | - Frédérique René
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, F-67000 Strasbourg, France .,Université de Strasbourg, UMRS1118, Faculté de Médecine, Fédération de Médecine Translationelle de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
21
|
George AA, Hayden S, Stanton GR, Brockerhoff SE. Arf6 and the 5'phosphatase of Synaptojanin 1 regulate autophagy in cone photoreceptors. ACTA ACUST UNITED AC 2016; 1:117-133. [PMID: 27123470 DOI: 10.1002/icl3.1044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abnormalities in the ability of cells to properly degrade proteins have been identified in many neurodegenerative diseases. Recent work has implicated Synaptojanin 1 (SynJ1) in Alzheimer's disease and Parkinson's disease, although the role of this polyphosphoinositide phosphatase in protein degradation has not been thoroughly described. Here we dissected in vivo the role of SynJ1 in endolysosomal trafficking in zebrafish cone photoreceptors using a SynJ1-deficient zebrafish mutant, nrca14 . We found that loss of SynJ1 leads to specific accumulation of late endosomes and autophagosomes early in photoreceptor development. An analysis of autophagic flux revealed that autophagosomes accumulate due to a defect in maturation. In addition we found an increase in vesicles that are highly enriched for PI(3)P, but negative for an early endosome marker in nrca14 cones. A mutational analysis of SynJ1 enzymatic domains found that activity of the 5' phosphatase, but not the Sac1 domain, is required to rescue both aberrant late endosomes and autophagosomes. Finally, modulating activity of the PI(4,5)P2 regulator, Arf6, rescued the disrupted trafficking pathways in nrca14 cones. Our study describes a specific role for SynJ1 in autophagosomal and endosomal trafficking and provides evidence that PI(4,5)P2 participates in autophagy in a neuronal cell type.
Collapse
Affiliation(s)
- Ashley A George
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Sara Hayden
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Gail R Stanton
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| |
Collapse
|
22
|
Lin CL, Cheng YS, Li HH, Chiu PY, Chang YT, Ho YJ, Lai TJ. Amyloid-β suppresses AMP-activated protein kinase (AMPK) signaling and contributes to α-synuclein-induced cytotoxicity. Exp Neurol 2016; 275 Pt 1:84-98. [DOI: 10.1016/j.expneurol.2015.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/11/2015] [Accepted: 10/24/2015] [Indexed: 12/01/2022]
|
23
|
Bowling H, Klann E. Shaping dendritic spines in autism spectrum disorder: mTORC1-dependent macroautophagy. Neuron 2014; 83:994-6. [PMID: 25189205 DOI: 10.1016/j.neuron.2014.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this issue of Neuron, Tang et al. (2014) explore the relationship between developmental dendritic pruning, elevated mTORC1 signaling, macroautophagy, and autism spectrum disorder. The study provides valuable new insight into mTORC1-dependent cellular dysfunction and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Heather Bowling
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|