1
|
Kim JE, Park SG, Ka DB, Kim EK, Cho SM, Kim HR, Lee MN, Choi KC, Yoon WK, Nam KH. Phf7 has impacts on the body growth and bone remodeling by regulating testicular hormones in male mice. Biochem Biophys Res Commun 2024; 704:149596. [PMID: 38430697 DOI: 10.1016/j.bbrc.2024.149596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/05/2024]
Abstract
PHD finger protein 7 (Phf7) is a member of the PHF family proteins, which plays important roles in spermiogenesis. Phf7 is expressed in the adult testes and its deficiency causes male infertility. In this study, we tried to find the causal relationship between Phf7 deficiency and reduced growth retardation which were found in null knock-out (Phf7-/-) mice. Phf7-/- mice were born normally in the Mendelian ratio. However, the Phf7-/- males showed decreased body weight gain, bone mineral density, and bone mineral content compared to those in wild-type (WT) mice. Histological analysis for tibia revealed increased number of osteoclast cells in Phf7-/- mice compared with that in WT mice. When we analyzed the expressions for marker genes for the initial stage of osteoclastogenesis, such as receptor activator of nuclear factor kappa B (Rank) in tibia, there was no difference in the mRNA levels between Phf7-/- and WT mice. However, the expression of tartrate-resistant acid phosphatase (Trap), a mature stage marker gene, was significantly higher in Phf7-/- mice than in WT mice. In addition, the levels of testosterone and dihydrotestosterone (DHT), more potent and active form of testosterone, were significantly reduced in the testes of Phf7-/- mice compared to those in WT mice. Furthermore, testicular mRNA levels for steroidogenesis marker genes, namely Star, Cyp11a1, Cyp17a1 and 17β-hsd, were significantly lower in Phf7-/- mice than in WT mice. In conclusion, these results suggest that Phf7 deficiency reduces the production of male sex hormones and thereby impairs associated bone remodeling.
Collapse
Affiliation(s)
- Ji Eun Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seul Gi Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Dan Bi Ka
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Eun-Kyoung Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hae-Rim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Mi Ni Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Kyung-Chul Choi
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Won Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
2
|
Li J, Xiang L, Jiang X, Teng B, Sun Y, Chen G, Chen J, Zhang JV, Ren PG. Investigation of bioeffects of G protein-coupled receptor 1 on bone turnover in male mice. J Orthop Translat 2017; 10:42-51. [PMID: 29662759 PMCID: PMC5822970 DOI: 10.1016/j.jot.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
Maintenance of healthy bone quality and quantity requires a well-coordinated balance between bone formation by osteoblasts and bone resorption by osteoclasts. Chemerin is a novel adipokine with known functions such as regulating immunity and energy homeostasis through activation of chemokine-like receptor 1 (CMKLR1). G protein-coupled receptor 1 (GPR1) is the second mammalian chemerin receptor with similar binding affinity as CMKLR1. In male GPR1-/- mice, a phenotype with significantly low bone mineral density was observed. We hypothesise that GPR1 might participate the process of bone remodelling. In this study, we investigated the role of GPR1 in regulating bone mass maintenance in male mice, and for the first time, revealed that GPR1-/- male mice manifested seriously trabecular bone loss and lower serum testosterone levels compared to the wild type animals. Accordingly, the mRNA expression of biomarkers related to both osteoblast [collagen type I alpha 2 (Col1A2), osteocalcin (OCN)] and osteoclast [tartrate-resistant acid phosphatase (TRAP), Cathepsin K, NFATc1] were significantly decreased or increased in GPR1-/- mice relative to the wild type, respectively. However, other osteogenic markers, Osterix and ALP levels, were increased. Microcomputed tomography scanning and histological analyses proved that there was a myriad of trabecular bone loss in GPR1-/- mice. In the meantime, GPR1-/- mice presented a significant decrease in serum testosterone level. Taken together, these findings suggested that chemerin-GPR1 signalling might be directly or indirectly communicated with testosterone synthesis on bone turnover regulation. Further detailed studies are required to unveil how chemerin-GPR1 participates in bone metabolism. The translational potential of this article: More studies and knowledge about GPR1 regulating function in bone turnover might supply a novel therapeutic target for osteoporosis in the future.
Collapse
Affiliation(s)
- Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Liang Xiang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xiaotong Jiang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Bin Teng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yutao Sun
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Guanlian Chen
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jie Chen
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jian V Zhang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Pei-Gen Ren
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| |
Collapse
|
3
|
Seo BK, Ryu HK, Park YC, Huh JE, Baek YH. Dual effect of WIN-34B on osteogenesis and osteoclastogenesis in cytokine-induced mesenchymal stem cells and bone marrow cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:227-236. [PMID: 27401292 DOI: 10.1016/j.jep.2016.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As an n-butanol fractionated extracted mixture of Lonicera japonica Thunb, dried flowers and Anemarrhena asphodeloides Bunge, root, WIN-34B has been reported the analgesic, anti-inflammatory, cartilage-repairing and protective effects in previous studies. AIM OF THE STUDY To investigate the effect of WIN-34B on osteogenesis and osteoclastogenesis in cytokine-induced mesenchymal stem cells and bone marrow cells. MATERIALS AND METHODS To examine the effect of WIN-34B on osteogenic differentiation, human mesenchymal stem cells (hMSCs) were treated with WIN-34B (1μg/mL and 10μg/mL). Alkaline phosphatase (ALP) activity was evaluated and Von Kossa staining was conducted. Mice bone marrow macrophages (BMMs) were obtained and treated with receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony stimulating factor (m-CSF) to induce osteoclastogenesis. To investigate osteoclast differentiation, tartrate-resistant acid phosphatase (TRAP) staining was conducted after treatment with WIN-34B. Osteoclastogenic conditions were induced by stimulating the cells with interleukin (IL)-1α, IL-17, and tumor necrosis factor (TNF-α) in hMSCs and BMMs co-culture systems. The expression levels of osteoprotegerin (OPG), RANKL, runt-related transcription factor 2 (RUNX2), IL-17, c-Fos, TNF-α, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were measured by reverse transcription polymerase chain reaction (RT-PCR). The expression levels of nuclear factor-kappaB (NF-κB), inhibitory kappa B-α (IκBα), phospho-NF-κB, phospho-IκBα, β-actin, p38 MAPK, phospho-c-Jun N-terminal kinase (JNK), phospho-extracellular-signal regulated kinase (ERK), phospho-p38 mitogen-activated protein kinase (MAPK), phospho-JNK, and phospho-ERK were measured by western blot analysis. RESULTS WIN-34B promoted ALP activity and mineralization of hMSCs. In TRAP-stained BMMs, the number of multinucleated cells decreased after WIN-34B treatment. WIN-34B increased the OPG/RANKL ratio and the expression of RUNX2, and suppressed the expression of IL-17, c-Fos, and TNF-α. It also suppressed the activation of NF-κB, IκBα, p38 MAPK, and JNK in a dose-dependent manner. CONCLUSIONS These results demonstrated that WIN-34B increased osteogenesis and decreased osteoclastogenesis in cytokine-induced mesenchymal stem cells and bone marrow cells via inhibition of the NF-κB, JNK, and p38 MAPK pathways.
Collapse
Affiliation(s)
- Byung-Kwan Seo
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hee-Kyoung Ryu
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yeon-Cheol Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jeong-Eun Huh
- Oriental Medicine Research Center for Bone & Joint Disease, East-West Bone & Joint Research Institute, Kyung Hee University, 892, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Yong-Hyeon Baek
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Wang X, Schröder HC, Feng Q, Draenert F, Müller WEG. The deep-sea natural products, biogenic polyphosphate (Bio-PolyP) and biogenic silica (Bio-Silica), as biomimetic scaffolds for bone tissue engineering: fabrication of a morphogenetically-active polymer. Mar Drugs 2013; 11:718-46. [PMID: 23528950 PMCID: PMC3705367 DOI: 10.3390/md11030718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/12/2022] Open
Abstract
Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s) of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation). In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; E-Mail:
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Dajie, 100037 Beijing, China
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; E-Mail:
| | - Qingling Feng
- Department of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China; E-Mail:
| | - Florian Draenert
- Department and Clinic for Oral and Maxillofacial Surgery, Baldingerstraße, D-35033 Marburg, Germany; E-Mail:
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany; E-Mail:
| |
Collapse
|
5
|
Inorganic polyphosphates: biologically active biopolymers for biomedical applications. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2013; 54:261-94. [PMID: 24420717 DOI: 10.1007/978-3-642-41004-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inorganic polyphosphate (polyP) is a widely occurring but only rarely investigated biopolymer which exists in both prokaryotic and eukaryotic organisms. Only in the last few years, this polymer has been identified to cause morphogenetic activity on cells involved in human bone formation. The calcium complex of polyP was found to display a dual effect on bone-forming osteoblasts and bone-resorbing osteoclasts. Exposure of these cells to polyP (Ca(2+) complex) elicits the expression of cytokines that promote the mineralization process by osteoblasts and suppress the differentiation of osteoclast precursor cells to the functionally active mature osteoclasts dissolving bone minerals. The effect of polyP on bone formation is associated with an increased release of the bone morphogenetic protein 2 (BMP-2), a key mediator that activates the anabolic processes leading to bone formation. In addition, polyP has been shown to act as a hemostatic regulator that displays various effects on blood coagulation and fibrinolysis and might play an important role in platelet-dependent proinflammatory and procoagulant disorders.
Collapse
|
6
|
Inorganic Polymers: Morphogenic Inorganic Biopolymers for Rapid Prototyping Chain. BIOMEDICAL INORGANIC POLYMERS 2013; 54:235-59. [DOI: 10.1007/978-3-642-41004-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol 2012; 23:570-8. [PMID: 22366413 DOI: 10.1016/j.copbio.2012.01.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 01/18/2012] [Accepted: 01/31/2012] [Indexed: 12/31/2022]
Abstract
Bio-silica represents the main mineral component of the sponge skeletal elements (siliceous spicules), while bio-polyphosphate (bio-polyP), a multifunctional polymer existing in microorganisms and animals acts, among others, as reinforcement for pores in cell membranes. These natural inorganic bio-polymers, which can be readily prepared, either by recombinant enzymes (bio-silica and bio-polyP) or chemically (polyP), are promising materials/substances for the amelioration and/or treatment of human bone diseases and dysfunctions. It has been demonstrated that bio-silica causes in vitro a differential effect on the expression of the genes OPG and RANKL, encoding two mediators that control the tuned interaction of the anabolic (osteoblasts) and catabolic (osteoclasts) pathways in human bone cells. Since bio-silica and bio-polyP also induce the expression of the key mediator BMP2 which directs the differentiation of bone-forming progenitor cells to mature osteoblasts and in parallel inhibits the function of osteoclasts, they are promising candidates for treatment of osteoporosis.
Collapse
|
8
|
Gra OA, Moskalenko MV, Filimonova NA, Baranova IA, Glotov AS, Surzhikov SA, Koroleva OV, Goldenkova-Pavlova IV, Nasedkina TV. Association of polymorphisms of xenobiotic-metabolizing genes with glucocorticoid-induced osteoporosis in patients with bronchial asthma. Mol Biol 2012. [DOI: 10.1134/s0026893312010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Bernardini G, Braconi D, Spreafico A, Santucci A. Post-genomics of bone metabolic dysfunctions and neoplasias. Proteomics 2012; 12:708-21. [PMID: 22246652 DOI: 10.1002/pmic.201100358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 12/14/2022]
Abstract
Post-genomic research on osteoblastic and osteoclastic cells, in contrast to that on many other cell types, has only been undertaken recently. Nevertheless, important information has been gained from these investigations on the mechanisms involved in osteoblast differentiation and on markers relevant for tissue regeneration and therapeutic validation of drugs, hormones and growth factors. These protein indicators may also have a diagnostic and prognostic value for bone dysfunctions and tumors. Some reviews have already focused on the application of transcriptomics and/or proteomics for exploring skeletal biology and related disorders. The main goal of the present review is to systematically summarize the most relevant post-genomic studies on various metabolic bone diseases (osteoporosis, Paget's disease and osteonecrosis), neoplasias (osteosarcoma) and metabolic conditions that indirectly affect bone tissue, such as alkaptonuria.
Collapse
Affiliation(s)
- Giulia Bernardini
- Dipartimento di Biotecnologie, Università degli Studi di Siena, Siena, Italy
| | | | | | | |
Collapse
|
10
|
Wang X, Schröder HC, Wiens M, Schloßmacher U, Müller WEG. Biosilica: Molecular Biology, Biochemistry and Function in Demosponges as well as its Applied Aspects for Tissue Engineering. ADVANCES IN MARINE BIOLOGY 2012; 62:231-271. [PMID: 22664124 DOI: 10.1016/b978-0-12-394283-8.00005-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biomineralization, biosilicification in particular (i.e. the formation of biogenic silica, SiO(2)), has become an exciting source of inspiration for the development of novel bionic approaches following 'nature as model'. Siliceous sponges are unique among silica-forming organisms in their ability to catalyze silica formation using a specific enzyme termed silicatein. In this study, we review the present state of knowledge on silicatein-mediated 'biosilica' formation in marine demosponges, the involvement of further molecules in silica metabolism and their potential applications in nano-biotechnology and bio-medicine. While most forms of multicellular life have developed a calcium-based skeleton, a few specialized organisms complement their body plan with silica. Only sponges (phylum Porifera) are able to polymerize silica enzymatically mediated in order to generate massive siliceous skeletal elements (spicules) during a unique reaction, at ambient temperature and pressure. During this biomineralization process (i.e. biosilicification), hydrated, amorphous silica is deposited within highly specialized sponge cells, ultimately resulting in structures that range in size from micrometres to metres. This peculiar phenomenon has been comprehensively studied in recent years, and in several approaches, the molecular background was explored to create tools that might be employed for novel bioinspired biotechnological and biomedical applications. Thus, it was discovered that spiculogenesis is mediated by the enzyme silicatein and starts intracellularly. The resulting silica nanoparticles fuse and subsequently form concentric lamellar layers around a central protein filament, consisting of silicatein and the scaffold protein silintaphin-1. Once the growing spicule is extruded into the extracellular space, it obtains final size and shape. Again, this process is mediated by silicatein and silintaphin-1/silintaphin-1, in combination with other molecules such as galectin and collagen. The molecular toolbox generated so far allows the fabrication of novel micro- and nano-structured composites, contributing to the economical and sustainable synthesis of biomaterials with unique characteristics. In this context, first bioinspired approaches implement recombinant silicatein and silintaphin-1 for applications in the field of biomedicine (biosilica-mediated regeneration of tooth and bone defects) with promising results.
Collapse
Affiliation(s)
- Xiaohong Wang
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, China; ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
11
|
Brewer L, Williams D, Moore A. Current and future treatment options in osteoporosis. Eur J Clin Pharmacol 2011; 67:321-331. [DOI: 10.1007/s00228-011-0999-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/12/2011] [Indexed: 12/17/2022]
|
12
|
Schröder HC, Wiens M, Wang X, Schloßmacher U, Müller WEG. Biosilica-based strategies for treatment of osteoporosis and other bone diseases. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:283-312. [PMID: 21877270 DOI: 10.1007/978-3-642-21230-7_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a common disease in later life, which has become a growing public health problem. This degenerative bone disease primarily affects postmenopausal women, but also men may suffer from reduced bone mineral density. The development of prophylactic treatments and medications of osteoporosis has become an urgent issue due to the increasing proportion of the elderly in the population. Apart from medical/hormonal treatments, current strategies for prophylaxis of osteoporosis are primarily based on calcium supplementation as a main constituent of bone hydroxyapatite mineral. Despite previous reports suggesting an essential role in skeletal growth and development, the significance of the trace element silicon in human bone formation has attracted major scientific interest only rather recently. The interest in silicon has been further increased by the latest discoveries in the field of biosilicification, the formation of the inorganic silica skeleton of the oldest still extant animals on Earth, the sponges, which revealed new insights in the biological function of this element. Sponges make use of silicon to build up their inorganic skeleton which consists of biogenously formed polymeric silica (biosilica). The formation of biosilica is mediated by specific enzymes, silicateins, which have been isolated, characterized, and expressed in a recombinant way. Epidemiological studies revealed that dietary silicon reduces the risk of osteoporosis and other bone diseases. Recent results allowed for the first time to understand the molecular mechanism underlying the protective effect of silicic acid/biosilica against osteoporosis. Biosilica was shown to modulate the ratio of expression of two cytokines involved in bone formation-RANKL and osteoprotegerin. Hence, biosilica has been proposed to have a potential in prophylaxis and therapy of osteoporosis and related bone diseases.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Grant Research Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128, Mainz, Germany,
| | | | | | | | | |
Collapse
|
13
|
Wiens M, Wang X, Schröder HC, Kolb U, Schloßmacher U, Ushijima H, Müller WE. The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials 2010; 31:7716-25. [DOI: 10.1016/j.biomaterials.2010.07.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/01/2010] [Indexed: 11/24/2022]
|