1
|
James J, Chen Y, Hernandez CM, Forster F, Dagnell M, Cheng Q, Saei AA, Gharibi H, Lahore GF, Åstrand A, Malhotra R, Malissen B, Zubarev RA, Arnér ESJ, Holmdahl R. Redox regulation of PTPN22 affects the severity of T-cell-dependent autoimmune inflammation. eLife 2022; 11:74549. [PMID: 35587260 PMCID: PMC9119677 DOI: 10.7554/elife.74549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic autoimmune diseases are associated with mutations in PTPN22, a modifier of T cell receptor (TCR) signaling. As with all protein tyrosine phosphatases, the activity of PTPN22 is redox regulated, but if or how such regulation can modulate inflammatory pathways in vivo is not known. To determine this, we created a mouse with a cysteine-to-serine mutation at position 129 in PTPN22 (C129S), a residue proposed to alter the redox regulatory properties of PTPN22 by forming a disulfide with the catalytic C227 residue. The C129S mutant mouse showed a stronger T-cell-dependent inflammatory response and development of T-cell-dependent autoimmune arthritis due to enhanced TCR signaling and activation of T cells, an effect neutralized by a mutation in Ncf1, a component of the NOX2 complex. Activity assays with purified proteins suggest that the functional results can be explained by an increased sensitivity to oxidation of the C129S mutated PTPN22 protein. We also observed that the disulfide of native PTPN22 can be directly reduced by the thioredoxin system, while the C129S mutant lacking this disulfide was less amenable to reductive reactivation. In conclusion, we show that PTPN22 functionally interacts with Ncf1 and is regulated by oxidation via the noncatalytic C129 residue and oxidation-prone PTPN22 leads to increased severity in the development of T-cell-dependent autoimmunity.
Collapse
Affiliation(s)
- Jaime James
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yifei Chen
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Clara M Hernandez
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Florian Forster
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Markus Dagnell
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Amir A Saei
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden
| | - Gonzalo Fernandez Lahore
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Annika Åstrand
- Project Leader Department, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rajneesh Malhotra
- Translational Science and Experimental Medicine, Research and Early Development Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bernard Malissen
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, Marseille, France
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Dept. of Medical Biochemistry and Biophysics Karolinska Institute, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elias S J Arnér
- Division of Biochemistry, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat Commun 2018; 9:353. [PMID: 29367624 PMCID: PMC5783942 DOI: 10.1038/s41467-017-02763-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022] Open
Abstract
Establishing effective central tolerance requires the promiscuous expression of tissue-restricted antigens by medullary thymic epithelial cells. However, whether central tolerance also extends to post-translationally modified proteins is not clear. Here we show a mouse model of autoimmunity in which disease development is dependent on post-translational modification (PTM) of the tissue-restricted self-antigen collagen type II. T cells specific for the non-modified antigen undergo efficient central tolerance. By contrast, PTM-reactive T cells escape thymic selection, though the PTM variant constitutes the dominant form in the periphery. This finding implies that the PTM protein is absent in the thymus, or present at concentrations insufficient to induce negative selection of developing thymocytes and explains the lower level of tolerance induction against the PTM antigen. As the majority of self-antigens are post-translationally modified, these data raise the possibility that T cells specific for other self-antigens naturally subjected to PTM may escape central tolerance induction by a similar mechanism. Post-translational modifications are associated with autoimmune diseases but definitive evidence of their contribution to escape from central tolerance mechanisms is needed. Here, the authors show that T cells specific for post-translational modifications of type II collagen escape intrathymic tolerance induction in a mouse model of rheumatoid arthritis.
Collapse
|
3
|
Sehnert B, Burkhardt H, Finzel S, Dübel S, Voll RE. The sneaking ligand approach for cell type-specific modulation of intracellular signalling pathways. Clin Immunol 2017; 186:14-20. [PMID: 28867254 DOI: 10.1016/j.clim.2017.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/30/2022]
Abstract
Small molecules interfering with intracellular signalling pathways are used in the treatment of multiple diseases including RA. However, small molecules usually affect signalling in most cell types, not only in those which need to be targeted. This general inhibition of signalling pathways causes often adverse effects, which could be avoided by cell type-specific inhibitors. For cell-type specific modulation of signal transduction, we developed the sneaking ligand fusion proteins (SLFPs). SLFPs contain three domains: (1) the binding domain mediating cell type-specific targeting and endocytosis; (2) the endosomal release sequence releasing the effector domain into the cytoplasm; (3) the effector domain modulating signalling. Using our SLFP NF-kappaB inhibitor termed SLC1 we demonstrated that cell-type-specific modulation of intracellular signalling pathways is feasible, that endothelial NF-kappaB activation is critical for arthritis and peritonitis and that SLFPs help to identify disease-relevant pathways in defined cell types. Hence, SLFPs may improve risk-benefit ratios of therapeutic interventions.
Collapse
Affiliation(s)
- Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Harald Burkhardt
- Division of Rheumatology, Department of Internal Medicine II, Fraunhofer IME-Project-Group Translational Medicine and Pharmacology, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technical University Braunschweig, Braunschweig, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Liu X, Jiao Y, Cao Y, Deng N, Ma Y, Hasty KA, Kang A, Chen H, Stuart JM, Gu W. Decreased expression levels of Ifi genes is associated to the increased resistance to spontaneous arthritis disease in mice deficiency of IL-1RA. BMC Immunol 2016; 17:25. [PMID: 27480124 PMCID: PMC4970213 DOI: 10.1186/s12865-016-0163-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 01/21/2023] Open
Abstract
Background The mouse strain BALB/c deficient in IL-1 receptor antagonist protein (Il-1ra) develops spontaneous arthritis disease (SAD) while the strain DBA/1 IL1rn-/- with the same deficiency does not. Previously, we mapped a QTL on chromosome 1 for SAD and then developed a congenic mouse strain BALB.D1-1-/- that contains the QTL genomic fragment associated with resistance from DBA/1-/- on a BALB/c-/- background. The congenic strain was relatively resistant to spontaneous arthritis and had delayed onset and reduced severity of disease. We obtained whole genome expression profiles from the spleen of the congenic strain BALB.D1-1-/- and four other strains, the wild type BALB/c, DBA/1 and the deficient DBA/1 IL1rn-/- and the BALB/c IL1rn-/-. We then compared the similarities and differences between the congenic strain and the four parental strains. Here we report the selected potential causal genes based on differential expression levels as well as function of genes. Results There is a considerable number of genes that are differentially expressed between the congenic strain and the three parental strains, BALB/c, DBA/1, and DBA/1-/-. However there only a few differentially expressed genes were identified by comparing the congenic strain and the BALB/c-/-strain. These differentially expressed genes are mainly from T-cell receptor beta chain (Tcrb) and interferon-activatable protein (Ifi) genes. These genes are also differentially expressed between congenic strain and BALB/c strains. However, their expression levels in the congenic strain are similar to that in DBA/1 and DBA/1-/-. The expression level of Tcrb-j gene is positively associated with two genes of Ifi gene 200 cluster. Conclusions Decreased expression levels of Ifi genes is associated to the increased resistance to spontaneous arthritis disease and with down regulation of expressions of Tcrb genes in the mouse congenic strain. Ifi genes may play an important role in the susceptibility to SAD in mice. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0163-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Mudanjiang Medical College, Mudanjiang, HeilongJiang, 157001, People's Republic of China.,Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Yan Jiao
- Mudanjiang Medical College, Mudanjiang, HeilongJiang, 157001, People's Republic of China. .,Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA.
| | - Yanhong Cao
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA.,Institute of Kaschin-beck Disease, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China.,Key Laboratory of Etiologic Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618104), Harbin, 150081, China
| | - Nan Deng
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yonghui Ma
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Karen A Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA.,Research Service, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA
| | - Andrew Kang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Hong Chen
- Center of integrative research, The first Hospital of Qiqihaer City, 30 Gongyuan Road, Longsha District, Qiqihaer, Heilongjiang, 161005, People's Republic of China
| | - John M Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Research Service, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA
| | - Weikuan Gu
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA. .,Research Service, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA.
| |
Collapse
|
5
|
Ling S, Liu Y, Fu J, Colletta A, Gilon C, Holoshitz J. Shared epitope-antagonistic ligands: a new therapeutic strategy in mice with erosive arthritis. Arthritis Rheumatol 2015; 67:2061-70. [PMID: 25892196 DOI: 10.1002/art.39158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/09/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The mechanisms underlying bone damage in rheumatoid arthritis (RA) are incompletely understood. We recently identified the shared epitope (SE), an HLA-DRB1-coded 5-amino acid sequence motif carried by the majority of RA patients as a signal transduction ligand that interacts with cell surface calreticulin and accelerates osteoclast (OC)-mediated bone damage in collagen-induced arthritis (CIA). Given the role of the SE/calreticulin pathway in arthritis-associated bone damage, we sought to determine the therapeutic targetability of calreticulin. METHODS A library of backbone-cyclized peptidomimetic compounds, all carrying an identical core DKCLA sequence, was synthesized. The ability of these compounds to inhibit SE-activated signaling and OC differentiation was tested in vitro. The effect on disease severity and OC-mediated bone damage was studied by weekly intraperitoneal administration of the compounds to DBA/1 mice with CIA. RESULTS Two members of the peptidomimetics library were found to have SE-antagonistic effects and antiosteoclast differentiation effects at picomolar concentrations in vitro. The lead mimetic compound, designated HS(4-4)c Trp, potently ameliorated arthritis and bone damage in vivo when administered in picogram doses to mice with CIA. Another mimetic analog, designated HS(3-4)c Trp, was found to lack activity, both in vitro and in vivo. The differential activity of the 2 analogs depended on minor differences in their respective ring sizes and correlated with distinctive geometry when computationally docked to the SE binding site on calreticulin. CONCLUSION These findings identify calreticulin as a novel therapeutic target in erosive arthritis and provide sound rationale and early structure/activity relationships for future drug design.
Collapse
Affiliation(s)
- Song Ling
- University of Michigan School of Medicine, Ann Arbor
| | - Ying Liu
- University of Michigan School of Medicine, Ann Arbor
| | - Jiaqi Fu
- University of Michigan School of Medicine, Ann Arbor
| | | | - Chaim Gilon
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|