1
|
Semitela A, Marques PAAP, Completo A. Strategies to engineer articular cartilage with biomimetic zonal features: a review. Biomater Sci 2024. [PMID: 39463257 DOI: 10.1039/d4bm00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Articular cartilage (AC) is a highly specialized tissue with restricted ability for self-regeneration, given its avascular and acellular nature. Although a considerable number of surgical treatments is available for the repair, reconstruction, and regeneration of AC defects, most of them do not prioritize the development of engineered cartilage with zonal stratification derived from biomimetic biochemical, biomechanical and topographic cues. In the absence of these zonal elements, engineered cartilage will exhibit increased susceptibility to failure and will neither be able to withstand the mechanical loading to which AC is subjected nor will it integrate well with the surrounding tissue. In this regard, new breakthroughs in the development of hierarchical stratified engineered cartilage are highly sought after. Initially, this review provides a comprehensive analysis of the composition and zonal organization of AC, aiming to enhance our understanding of the significance of the structure of AC for its function. Next, we direct our attention towards the existing in vitro and in vivo studies that introduce zonal elements in engineered cartilage to elicit appropriate AC regeneration by employing tissue engineering strategies. Finally, the advantages, challenges, and future perspectives of these approaches are presented.
Collapse
Affiliation(s)
- Angela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paula A A P Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Wen ZH, Tang CC, Lin YY, Yao ZK, Hsieh SP, Gar-Hwa-Lai, Chen WF, Jean YH. Effects of Etanercept on Experimental Osteoarthritis in Rats: Role of Histone Deacetylases. Cartilage 2024:19476035241264012. [PMID: 39057748 DOI: 10.1177/19476035241264012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE Mounting evidence suggests that histone deacetylases (HDAC) inhibitors reduce cartilage destruction in animal models of osteoarthritis (OA). Tumor necrosis factor (TNF)-α-blocking treatment for OA may provide effective joint protection by slowing joint damage. To investigate the effects of intraperitoneal administration of etanercept (a TNF-α inhibitor) on OA development in rats and changes in the nociceptive behavior of rats and expression of HDACs, RUNX2, and MMP13 in cartilage. METHODS Induction of OA in Wistar rats was accomplished through anterior cruciate ligament transection (ACLT). One or five milligrams (mg) of etanercept was administered intraperitoneally for 5 consecutive weeks after ACLT to the ACLT + etanercept (1 and 5 mg/kg) groups. Nociceptive behavior and changes in knee joint width were analyzed. Cartilage was evaluated histologically and immunohistochemically. RESULTS ACLT + etanercept significantly improved mechanical allodynia and weight-bearing distribution compared to ACLT alone. In OA rats treated with etanercept, cartilage degeneration and synovitis were significantly less pronounced than those in ACLT rats. OA-affected cartilage also showed reduced expression of HDAC 6, 7, RUNX-2, and MMP-13 in response to etanercept but increased expression of HDAC4. CONCLUSION Our study demonstrated that etanercept therapy (1) attenuated the development of OA and synovitis in rats, (2) reduced nociception, and (3) regulated chondrocyte metabolism, possibly by inhibiting cell HDAC6 and HDAC7, RUNX2, and MMP13 and increasing HDAC4 expression. Based on new evidence, etanercept may have therapeutic potential in OA.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chi-Chieh Tang
- Department of Early Childhood Education, National Pintung University, Pingtung, Taiwan
| | - Yen-You Lin
- Department of Sports Medicine, China Medical University, Taichung, Taiwan
| | - Zhi-Kang Yao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shih-Peng Hsieh
- Section of Pathology, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Gar-Hwa-Lai
- Section of Orthopedic Surgery, Pingtung Veterans General Hospital, Pingtung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Neurosurgery, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan
| | - Yen-Hsuan Jean
- Section of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan
| |
Collapse
|
3
|
Zhao M, Qiu D, Miao X, Yang W, Li S, Cheng X, Tang J, Chen H, Ruan H, Liu Y, Wei C, Xiao J. Melatonin Delays Arthritis Inflammation and Reduces Cartilage Matrix Degradation through the SIRT1-Mediated NF-κB/Nrf2/TGF-β/BMPs Pathway. Int J Mol Sci 2024; 25:6202. [PMID: 38892389 PMCID: PMC11172638 DOI: 10.3390/ijms25116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Cartilage, a flexible and smooth connective tissue that envelops the surfaces of synovial joints, relies on chondrocytes for extracellular matrix (ECM) production and the maintenance of its structural and functional integrity. Melatonin (MT), renowned for its anti-inflammatory and antioxidant properties, holds the potential to modulate cartilage regeneration and degradation. Therefore, the present study was devoted to elucidating the mechanism of MT on chondrocytes. The in vivo experiment consisted of three groups: Sham (only the skin tissue was incised), Model (using the anterior cruciate ligament transection (ACLT) method), and MT (30 mg/kg), with sample extraction following 12 weeks of administration. Pathological alterations in articular cartilage, synovium, and subchondral bone were evaluated using Safranin O-fast green staining. Immunohistochemistry (ICH) analysis was employed to assess the expression of matrix degradation-related markers. The levels of serum cytokines were quantified via Enzyme-linked immunosorbent assay (ELISA) assays. In in vitro experiments, primary chondrocytes were divided into Control, Model, MT, negative control, and inhibitor groups. Western blotting (WB) and Quantitative RT-PCR (q-PCR) were used to detect Silent information regulator transcript-1 (SIRT1)/Nuclear factor kappa-B (NF-κB)/Nuclear factor erythroid-2-related factor 2 (Nrf2)/Transforming growth factor-beta (TGF-β)/Bone morphogenetic proteins (BMPs)-related indicators. Immunofluorescence (IF) analysis was employed to examine the status of type II collagen (COL2A1), SIRT1, phosphorylated NF-κB p65 (p-p65), and phosphorylated mothers against decapentaplegic homolog 2 (p-Smad2). In vivo results revealed that the MT group exhibited a relatively smooth cartilage surface, modest chondrocyte loss, mild synovial hyperplasia, and increased subchondral bone thickness. ICH results showed that MT downregulated the expression of components related to matrix degradation. ELISA results showed that MT reduced serum inflammatory cytokine levels. In vitro experiments confirmed that MT upregulated the expression of SIRT1/Nrf2/TGF-β/BMPs while inhibiting the NF-κB pathway and matrix degradation-related components. The introduction of the SIRT1 inhibitor Selisistat (EX527) reversed the effects of MT. Together, these findings suggest that MT has the potential to ameliorate inflammation, inhibit the release of matrix-degrading enzymes, and improve the cartilage condition. This study provides a new theoretical basis for understanding the role of MT in decelerating cartilage degradation and promoting chondrocyte repair in in vivo and in vitro cultured chondrocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jianhua Xiao
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (M.Z.); (D.Q.); (X.M.); (W.Y.); (S.L.); (X.C.); (J.T.); (H.C.); (H.R.); (Y.L.); (C.W.)
| |
Collapse
|
4
|
Reyes Alcaraz V, Pattappa G, Miura S, Angele P, Blunk T, Rudert M, Hiraki Y, Shukunami C, Docheva D. A Narrative Review of the Roles of Chondromodulin-I (Cnmd) in Adult Cartilage Tissue. Int J Mol Sci 2024; 25:5839. [PMID: 38892027 PMCID: PMC11173128 DOI: 10.3390/ijms25115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Articular cartilage is crucial for joint function but its avascularity limits intrinsic repair, leading to conditions like osteoarthritis (OA). Chondromodulin-I (Cnmd) has emerged as a key molecule in cartilage biology, with potential implications for OA therapy. Cnmd is primarily expressed in cartilage and plays an important role in chondrocyte proliferation, cartilage homeostasis, and the blocking of angiogenesis. In vivo and in vitro studies on Cnmd, also suggest an involvement in bone repair and in delaying OA progression. Its downregulation correlates with OA severity, indicating its potential as a therapeutic target. Further research is needed to fully understand the mode of action of Cnmd and its beneficial implications for managing OA. This comprehensive review aims to elucidate the molecular characteristics of Cnmd, from its expression pattern, role in cartilage maintenance, callus formation during bone repair and association with OA.
Collapse
Affiliation(s)
- Viviana Reyes Alcaraz
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (V.R.A.); (G.P.)
| | - Girish Pattappa
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (V.R.A.); (G.P.)
| | - Shigenori Miura
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (S.M.); (C.S.)
| | - Peter Angele
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Maximilian Rudert
- Department of Orthopaedics, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany;
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8501, Japan;
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (S.M.); (C.S.)
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (V.R.A.); (G.P.)
| |
Collapse
|
5
|
Vyawahare A, Ansari MM, Kumar A, Ahmad A, Mishra RK, Jori C, Nadeem A, Siddiqui N, Raza SS, Khan R. Enzyme targeted delivery of sivelestat loaded nanomicelle inhibits arthritic severity in experimental arthritis. Life Sci 2023; 334:122206. [PMID: 37879159 DOI: 10.1016/j.lfs.2023.122206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
AIMS Rheumatoid arthritis (RA) is chronic inflammatory disorder mainly affects the lining of articular cartilage of synovial joints characterized by severe inflammation and joint damage. The expression of proteolytic enzymes like MMP-2 and Neutrophil Elastase (NE) worsens the RA condition. To address this concern, we have synthesized dual enzyme targeted chlorotoxin conjugated nanomicelles loaded with sivelestat as broad spectrum treatment for RA. MATERIALS AND METHODS Conjugation of the chlorotoxin over nanomicelle and incorporation of sivelestat in nanomicelle provide it dual targeting potential. The sivelestat loaded nanomicelle (SLM) evaluated for the drug release and in-vitro cytocompatibility. Further, investigated its in-vivo anti-arthritic potential on collagen-induced arthritis in wistar rats. KEY FINDINGS The microscopic observation of SLM showed spherical ball like appearance with size ranging from 190 to 230 nm. SLM showed good drug loading and encapsulation efficiency along with no cytotoxicity against healthy cell lines. In-vivo therapeutic assessment on collagen induced arthritis rat model showed potential chondroprotection. The microscopic visualization of articular cartilage by staining showed that it restores the cartilage integrity and lowers the expression of pro-inflammatory enzymes showed by Immunohistochemistry and Immunofluorescence. We observed that, it restrain the mediators of synovial inflammation by simultaneous inhibition of the proteolytic enzymes involved in swelling, cartilage destruction and joint damage which provides strong chondroprotection. SIGNIFICANCE We report that significant alleviation of inflammation and inhibition of proteolytic enzymes together might provide enhanced potential for the treatment and management of RA.
Collapse
Affiliation(s)
- Akshay Vyawahare
- Department of Chemical Biology, Institute of Nano Science and Technology, Sector 81, Knowledge city, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Ajay Kumar
- Department of Chemical Biology, Institute of Nano Science and Technology, Sector 81, Knowledge city, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Rakesh Kumar Mishra
- Department of Chemical Biology, Institute of Nano Science and Technology, Sector 81, Knowledge city, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Chandrashekhar Jori
- Department of Chemical Biology, Institute of Nano Science and Technology, Sector 81, Knowledge city, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida 201303, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow 226003, Uttar Pradesh, India
| | - Rehan Khan
- Department of Chemical Biology, Institute of Nano Science and Technology, Sector 81, Knowledge city, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
6
|
Alcaide-Ruggiero L, Cugat R, Domínguez JM. Proteoglycans in Articular Cartilage and Their Contribution to Chondral Injury and Repair Mechanisms. Int J Mol Sci 2023; 24:10824. [PMID: 37446002 DOI: 10.3390/ijms241310824] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Proteoglycans are vital components of the extracellular matrix in articular cartilage, providing biomechanical properties crucial for its proper functioning. They are key players in chondral diseases, specifically in the degradation of the extracellular matrix. Evaluating proteoglycan molecules can serve as a biomarker for joint degradation in osteoarthritis patients, as well as assessing the quality of repaired tissue following different treatment strategies for chondral injuries. Despite ongoing research, understanding osteoarthritis and cartilage repair remains unclear, making the identification of key molecules essential for early diagnosis and effective treatment. This review offers an overview of proteoglycans as primary molecules in articular cartilage. It describes the various types of proteoglycans present in both healthy and damaged cartilage, highlighting their roles. Additionally, the review emphasizes the importance of assessing proteoglycans to evaluate the quality of repaired articular tissue. It concludes by providing a visual and narrative description of aggrecan distribution and presence in healthy cartilage. Proteoglycans, such as aggrecan, biglycan, decorin, perlecan, and versican, significantly contribute to maintaining the health of articular cartilage and the cartilage repair process. Therefore, studying these proteoglycans is vital for early diagnosis, evaluating the quality of repaired cartilage, and assessing treatment effectiveness.
Collapse
Affiliation(s)
- Lourdes Alcaide-Ruggiero
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| | - Ramón Cugat
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
- Instituto Cugat y Mutualidad de Futbolistas Españoles, Delegación Catalana, 08023 Barcelona, Spain
| | - Juan Manuel Domínguez
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba, Hospital Clínico Veterinario, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014 Córdoba, Spain
- Fundación García-Cugat, Plaza Alfonso Comín 5-7, 08023 Barcelona, Spain
| |
Collapse
|
7
|
Kothari P, Dhaniya G, Sardar A, Sinha S, Girme A, Rai D, Chutani K, Hingorani L, Trivedi R. A glucuronated flavone TMMG spatially targets chondrocytes to alleviate cartilage degeneration through negative regulation of IL-1β. Biomed Pharmacother 2023; 163:114809. [PMID: 37167724 DOI: 10.1016/j.biopha.2023.114809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023] Open
Abstract
Chondrocytes are the only resident cell types that form the extracellular matrix of cartilage. Inflammation alters the anabolic and catabolic regulation of chondrocytes, resulting in the progression of osteoarthritis (OA). The potential of TMMG, a glucuronated flavone, was explored against the pathophysiology of OA in both in vitro and in vivo models. The effects of TMMG were evaluated on chondrocytes and the ATDC5 cell line treated with IL-1β in an established in vitro inflammatory OA model. An anterior cruciate ligament transection (ACLT) model was used to simulate post-traumatic injury in vivo. Micro-CT and histological examination were employed to examine the micro-architectural status and cartilage alteration. Further, serum biomarkers were measured using ELISA to assess OA progression. In-vitro, TMMG reduced excessive ROS generation and inhibited pro-inflammatory IL-1β secretion by mouse chondrocytes and macrophages, which contributes to OA progression. This expression pattern closely mirrored osteoclastogenesis prevention. In-vivo results show that TMMG prevented chondrocyte apoptosis and degradation of articular cartilage thickness, subchondral parameters, and elevated serum COMP, CTX-II, and IL-1β which were significantly restored in 5 and 10 mg.kg-1day-1 treated animals and comparable to the positive control Indomethacin. In addition, TMMG also improved cartilage integrity and decreased the OARSI score by maintaining chondrocyte numbers and delaying ECM degradation. These findings suggest that TMMG may be a prospective disease-modifying agent that can mitigate OA progression.
Collapse
Affiliation(s)
- Priyanka Kothari
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Geeta Dhaniya
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anirban Sardar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shradha Sinha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aboli Girme
- Pharmanza Herbal Pvt Ltd. Anand, Gujarat 388435, India
| | - Divya Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kunal Chutani
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt Ltd. Anand, Gujarat 388435, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Chen MF, Hu CC, Hsu YH, Chiu YT, Chen KL, Ueng SWN, Chang Y. Characterization and Advancement of an Evaluation Method for the Treatment of Spontaneous Osteoarthritis in STR/ort Mice: GRGDS Peptides as a Potential Treatment for Osteoarthritis. Biomedicines 2023; 11:biomedicines11041111. [PMID: 37189729 DOI: 10.3390/biomedicines11041111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
STR/ort mice spontaneously exhibit the typical osteoarthritis (OA) phenotype. However, studies describing the relationship between cartilage histology, epiphyseal trabecular bone, and age are lacking. We aimed to evaluate the typical OA markers and quantify the subchondral bone trabecular parameters in STR/ort male mice at different weeks of age. We then developed an evaluation model for OA treatment. We graded the knee cartilage damage using the Osteoarthritis Research Society International (OARSI) score in STR/ort male mice with or without GRGDS treatment. We measured the levels of typical OA markers, including aggrecan fragments, matrix metallopeptidase-13 (MMP-13), collagen type X alpha 1 chain (COL10A1), and SRY-box transcription factor 9 (Sox9), and quantified epiphyseal trabecular parameters. Compared to the young age group, elderly mice showed an increased OARSI score, decreased chondrocyte columns of the growth plate, elevated expression of OA markers (aggrecan fragments, MMP13, and COL10A1), and decreased expression of Sox9 at the articular cartilage region in elderly STR/ort mice. Aging also significantly enhanced the subchondral bone remodeling and microstructure change in the tibial plateau. Moreover, GRGDS treatment mitigated these subchondral abnormalities. Our study presents suitable evaluation methods to characterize and measure the efficacy of cartilage damage treatments in STR/ort mice with spontaneous OA.
Collapse
Affiliation(s)
- Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Tien Chiu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kai-Lin Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Steve W N Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
9
|
Minasov TB, Lila AM, Nazarenko AG, Sarvilina IV, Zagorodniy NV. Morphological reflection of highly purified chondroitin sulfate action in patients with decompensated form of knee osteoarthritis. MODERN RHEUMATOLOGY JOURNAL 2022. [DOI: 10.14412/1996-7012-2022-6-55-63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: to study the morphological reflection of the parenteral form of highly purified chondroitin sulfate (CS) action in patients with osteoarthritis (OA) of the knee joints (KJ) during total knee arthroplasty (TA).Patients and methods. An open, prospective, controlled, randomized study included 67 patients (24 men and 43 women aged 41—73 years) with stage III knee OA and grade 2 functional insufficiency. The 1st (control) group included 35 patients, the 2nd (main) group included 32 patients. At baseline of the study, all patients were taking non-steroidal anti-inflammatory drugs (NSAIDs) at a standard daily dose. Patients of the 2nd group 2 months before the TA of KJ, additionally received a parenteral form of CS (Honrogard®), intramuscularly every other day: the first 3 injections at a dose of 100 mg/day; and if tolerability was good starting from the 4th injection, at a dose of200 mg / day (course — 25 injections). The intensity of pain was assessed according to the visual analog scale, WOMAC index, functional status according to the KOOS (Knee and Osteoarthritis Outcome Score) scale and the Lequesne index, standard radiography and magnetic resonance imaging of the knee joint were performed with an assessment of the T2 relaxation time. TA KJ was carried out according to C. Ranawat method.Results and discussion. In contrast to patients who took only NSAIDs, in patients who received CS during 50 days within 2 months before surgery, there were signs of adaptive restructuring in all layers of the preserved volume of hyaline cartilage and a decrease in the synovial membrane inflammation at the time of TA of KJ.Conclusion. The obtained results allow us to recommend the use of the parenteral form of CS (Honrogard®) according to the described scheme within 2 months before the TA of KJ in order to improve the morphological characteristics of cartilage and synovial tissue in the joints of the contralateral lower limb, taking into account the increase in the load on it in the postoperative period.
Collapse
Affiliation(s)
- T. B. Minasov
- Bashkir State Medical University, Ministry of Health of Russia
| | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia
| | - A. G. Nazarenko
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics
| | | | - N. V. Zagorodniy
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics; RUDN University
| |
Collapse
|
10
|
Vyawahare A, Prakash R, Jori C, Ali A, Raza SS, Khan R. Caffeic Acid Modified Nanomicelles Inhibit Articular Cartilage Deterioration and Reduce Disease Severity in Experimental Inflammatory Arthritis. ACS NANO 2022; 16:18579-18591. [PMID: 36222569 DOI: 10.1021/acsnano.2c07027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inflammation plays an important role in the development of rheumatoid arthritis (RA). NR4A1 is an anti-inflammatory orphan nuclear receptor involved in protection from inflammatory stimuli in RA. In this study we have explored the anti-inflammatory potential of the FDA-approved drug 9-aminoacridine (9AA) and the natural compound caffeic acid (CA) conjugated to nanomicelles for the treatment of RA. We have synthesized methoxy polyethylene glycol polycaprolactone block copolymer (mPEG-b-PCL) by ring opening polymerization of ε-caprolactone. Then, we conjugated the hydrophilic caffeic acid (CA) with mPEG-b-PCL micelles via Steglich esterification and incorporated the 9AA drug. These nanomicelles were formulated by the solvent evaporation method with a size distribution around 190 nm and showed maximum drug loading capacity along with sustained drug release behavior. Furthermore, we tested the therapeutic potential of the formulated 9AA-encapsulated CA-conjugated nanomicelles (9AA-NMs) against an experimental RA model. We observed promising results which showed alleviation of arthritic symptoms by reducing inflammation, joint damage, bone erosion, and swelling. Further, collagen destruction was significantly reduced in articular cartilage, as shown by safranin-O and toluidine blue staining. The protective mechanism might be due to the simultaneous inhibition of NF-κB by 9AA and CA, whereas the activation of NR4A1 by 9AA leads to the suppression of HIF-1α. This combined therapeutic effect of 9AA and CA has enhanced the therapeutic efficacy of 9AA-NM and markedly reduced the severity of inflammatory arthritis. Unlike existing drugs for pain management and with limited efficacy, 9AA-NM exerted a disease-relevant activation/blockade that alleviated inflammation and exhibited marked therapeutic efficacy against RA.
Collapse
Affiliation(s)
- Akshay Vyawahare
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali, Punjab140306, India
| | - Ravi Prakash
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow, Uttar Pradesh226003, India
| | - Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali, Punjab140306, India
| | - Aneesh Ali
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali, Punjab140306, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Sarfarazganj, Lucknow, Uttar Pradesh226003, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar, Mohali, Punjab140306, India
| |
Collapse
|
11
|
Cheng J, Li M, Bai R. The Wnt signaling cascade in the pathogenesis of osteoarthritis and related promising treatment strategies. Front Physiol 2022; 13:954454. [PMID: 36117702 PMCID: PMC9479192 DOI: 10.3389/fphys.2022.954454] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease, characterized by the degradation of articular cartilage, synovial inflammation, and changes in periarticular and subchondral bone. Recent studies have reported that Wnt signaling cascades play an important role in the development, growth, and homeostasis of joints. The Wnt signaling cascade should be tightly regulated to maintain the homeostasis of cartilage in either the over-activation or the suppression of Wnt/β-catenin, as this could lead to OA. This review summarizes the role and mechanism of canonical Wnt cascade and noncanonical Wnt cascade experiments in vivo and in vitro. The Wnt cascade is controlled by several agonists and antagonists in the extracellular medium and the cytoplasm. These antagonists and agonists serve as key molecules in drug intervention into the Wnt pathway and may provide potential approaches for the treatment of OA. However, the complexity of the Wnt signaling cascade and the pharmaceutical effects on its mechanism are still not fully understood, which forces us to conduct further research and develop efficient therapeutic approaches to treat OA.
Collapse
Affiliation(s)
- Jinchao Cheng
- Department of Orthopaedics, Xuancheng Central Hospital, Xuancheng, China
| | - Min Li
- Department of Orthopaedics, Xuancheng Central Hospital, Xuancheng, China
| | - Ruijun Bai
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ruijun Bai,
| |
Collapse
|
12
|
Wang B, Zhong JL, Jiang N, Shang J, Wu B, Chen YF, Lu HD. Exploring the Mystery of Osteoarthritis using Bioinformatics Analysis of Cartilage Tissue. Comb Chem High Throughput Screen 2022; 25:53-63. [PMID: 33292128 DOI: 10.2174/1386207323666201207100905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a kind of chronic disease relating to joints, which seriously affectsthe daily life activities of the elderly and can also lead to disability. However, the pathogenesis of OA is still unclear, which leads to limited treatment and the therapeutic effect far from people's expectations. This study aims to filter out key genes in the pathogenesis of OA and explore their potential role in the occurrence and development of OA. METHODS The dataset of GSE117999 was obtained and analyzed in order to identify the differentially expressed genes (DEGs), hub genes and key genes. We also identified potential miRNAs which may play a major role in the pathogenesis of OA, and verified their difference in OA by real-time quantitative PCR (RT-qPCR). DGldb was found to serve as an indicator to identify drugs with potential therapeutic effects on key genes and Receiver Operating Characteristic (ROC) analysis was used for identifying underlying biomarkers of OA. RESULTS We identified ten key genes, including MDM2, RB1, EGFR, ESR1, UBE2E3, WWP1, BCL2, OAS2, TYMS and MSH2. Then, we identified hsa-mir-3613-3p, hsa-mir-548e-5p and hsamir- 5692a to be potentially related to key genes. In addition, RT-qPCR confirmed the differential expression of identified genes in mouse cartilage with or without OA. We then identified Etoposide and Everolimus, which were potentially specific to the most key genes. Finally, we speculated that ESR1 might be a potential biomarker of OA. CONCLUSION In this study, potential key genes related to OA and their biological functions were identified, and their potential application value in the diagnosis and treatment of OA has been demonstrated, which will help us to improve the therapeutic effect of OA.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Jun-Long Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Ning Jiang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Jie Shang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Yu-Feng Chen
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Hua-Ding Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| |
Collapse
|
13
|
Bose S, Banerjee D, Vu AA. Ginger and Garlic Extracts Enhance Osteogenesis in 3D Printed Calcium Phosphate Bone Scaffolds with Bimodal Pore Distribution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12964-12975. [PMID: 35263096 PMCID: PMC9034760 DOI: 10.1021/acsami.1c19617] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Natural medicines have long been used to treat physiological ailments where both ginger (gingerol) and garlic (allicin) are key players in immune system promotion, reduction in blood pressure, and lowering inflammation response. With their efficacy in bone healing, these compounds have great value as medicinal additives in bone scaffolds for localized treatment to support tissue formation, along with providing their natural therapeutic benefits. Utilization of 3D-printed (3DP) bone tissue engineering scaffolds as drug delivery vehicles for ginger and garlic extracts enables patient specificity in bone defect applications with enhanced osseointegration. Our objective is to understand their combined efficacy on osteogenesis when released from 3DP calcium phosphate bone scaffolds designed with a bimodal pore distribution. With a porous core and dense exterior, the resulting scaffolds have good mechanical integrity with 10 ± 1 MPa compressive strengths. Results show that ginger + garlic extracts released from bone scaffolds enhance their osteogenic potential through on site drug delivery. Both compounds exhibit exponential drug release profiles which fit Weibull distribution equations. The release of ginger extract also increases osteoblast proliferation by 59%. Both compounds show decreased osteoclast resorption activity, with a greater than 20% reduction in pit area on sample surfaces. Ginger + garlic extract induces a twofold increase in early osteoid tissue formation in vivo at week 4, in addition to a 30% increase in total bone area and a 90% increase in osteocytes with respect to control 3DP tricalcium phosphate scaffolds. Late-stage bone healing at week 10 reveals healthy angiogenic tissue, a twofold higher bone mineralization, and significant enhancement of type I collagen formation in the presence of ginger and garlic extracts. Naturally sourced ginger and garlic extracts provide osteogenic promotion and improved bone tissue in-growth in a patient-specific 3DP scaffold biomedical device for low load-bearing bone tissue engineering and dental applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dishary Banerjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Ashley A Vu
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
14
|
Wu Z, Korntner SH, Mullen AM, Zeugolis DI. Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100030. [PMID: 36824570 PMCID: PMC9934443 DOI: 10.1016/j.bbiosy.2021.100030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Collagen type II is the major constituent of cartilage tissue. Yet, cartilage engineering approaches are primarily based on collagen type I devices that are associated with suboptimal functional therapeutic outcomes. Herein, we briefly describe cartilage's development and cellular and extracellular composition and organisation. We also provide an overview of collagen type II biosynthesis and purification protocols from tissues of terrestrial and marine species and recombinant systems. We then advocate the use of collagen type II as a building block in cartilage engineering approaches, based on safety, efficiency and efficacy data that have been derived over the years from numerous in vitro and in vivo studies.
Collapse
Affiliation(s)
- Z Wu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - SH Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - AM Mullen
- Teagasc Research Centre, Ashtown, Ireland
| | - DI Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
- Correspondence author at: REMODEL, NUI Galway & UCD.
| |
Collapse
|
15
|
Lu KH, Lu PWA, Lu EWH, Tang CH, Su SC, Lin CW, Yang SF. The potential remedy of melatonin on osteoarthritis. J Pineal Res 2021; 71:e12762. [PMID: 34435392 DOI: 10.1111/jpi.12762] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA), the most common arthritis worldwide, is a degenerative joint disease characterized by progressive cartilage breakdown, subchondral remodeling, and synovial inflammation. Although conventional pharmaceutical therapies aimed to prevent further cartilage loss and joint dysfunction, there are no ideal strategies that target the pathogenesis of OA. Melatonin exhibits a variety of regulatory properties by binding to specific receptors and downstream molecules and exerts a myriad of receptor-independent actions via intracellular targets as a chondrocyte protector, an anti-inflammation modulator, and a free radical scavenger. Melatonin also modulates cartilage regeneration and degradation by directly/indirectly regulating the expression of main circadian clock genes, such as transcriptional activators [brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal) and circadian locomotor output cycles kaput (Clock)], transcriptional repressors [period circadian regulator (Per)1/2, cryptochrome (Cry)1/2, and Dec2], and nuclear hormone receptors [Rev-Erbs and retinoid acid-related orphan receptors (Rors)]. Owing to its effects on cartilage homeostasis, we propose a potential role for melatonin in the prevention and therapy of OA via the modulation of circadian clock genes, mitigation of chondrocyte apoptosis, anti-inflammatory activity, and scavenging of free radicals.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital 402, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
16
|
Huan Z, Wang Y, Zhang M, Zhang X, Liu Y, Kong L, Xu J. Follicle-stimulating hormone worsens osteoarthritis by causing inflammation and chondrocyte dedifferentiation. FEBS Open Bio 2021. [PMID: 34176242 PMCID: PMC8329950 DOI: 10.1002/2211-5463.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Previous studies have found follicle‐stimulating hormone (FSH) receptors on chondrocytes (cartilage cells), but the mechanism of FSH action on chondrocytes is not clear. The purpose of this experiment is to study whether FSH affects chondrocytes and how it causes changes in these cells. Our results show that osteoarthritis became worse after FSH injection in the knee joint of mice. After the stimulation of chondrocytes by FSH, a total of 664 up‐regulated genes, such as Col12a1 and Col1a1, and 644 down‐regulated genes, such as MGP, were screened by transcriptomics. A subset of extracellular matrix (ECM)‐related genes and pathways underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the downregulation of MGP, the upregulation of EGR1 and Col1a1, and the increase of IL‐6 were verified. It was also observed that FSH can inhibit the cAMP/PKA and MKK4/JNK signaling pathway. In conclusion, we demonstrated that FSH can increase cartilage inflammatory response and promote chondrocyte dedifferentiation by inhibiting the cAMP/PKA and MKK4/JNK signaling pathways.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Yan Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Mengqi Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Yaping Liu
- Department of Endocrinology, Jining No.1 People's Hospital, Jining, China
| | - Lei Kong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Jin Xu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Up-regulation of P21-activated kinase 1 in osteoarthritis chondrocytes is responsible for osteoarthritic cartilage destruction. Biosci Rep 2021; 40:221716. [PMID: 31868209 PMCID: PMC6954364 DOI: 10.1042/bsr20191017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/19/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis is mainly caused by a degenerative joint disorder, which is characterized by the gradual degradation of articular cartilage and synovial inflammation. The chondrocyte, the unique resident cell type of articular cartilage, is crucial for the development of osteoarthritis. Previous studies revealed that P21-activated kinase-1 (PAK1) was responsible for the initiation of inflammation. The purpose of the present study was to determine the potential role of PAK1 in osteoarthritis. The level of PAK1 expression was measured by Western blot and quantitative real-time PCR in articular cartilage from osteoarthritis model rats and patients with osteoarthritis. In addition, the functional role of aberrant PAK1 expression was detected in the chondrocytes. We found that the expression of PAK1 was significantly increased in chondrocytes treated with osteoarthritis-related factors. Increased expression of PAK1 was also observed in knee articular cartilage samples from patients with osteoarthritis and osteoarthritis model rats. PAK1 was found to inhibit chondrocytes proliferation and to promote the production of inflammatory cytokines in cartilages chondrocytes. Furthermore, we found that PAK1 modulated the production of extracellular matrix and cartilage degrading enzymes in chondrocytes. Results of the present studies demonstrated that PAK1 might play an important role in the pathogenesis of osteoarthritis.
Collapse
|
18
|
Xie WQ, Chen SF, Tao XH, Zhang LY, Hu PW, Pan WL, Fan YB, Li YS. Melatonin: Effects on Cartilage Homeostasis and Therapeutic Prospects in Cartilage-related Diseases. Aging Dis 2021; 12:297-307. [PMID: 33532142 PMCID: PMC7801270 DOI: 10.14336/ad.2020.0519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
Cartilage is a relatively simple connective tissue that plays a variety of roles in the human body, including joint support and protection, load bearing of the intervertebral discs, joint lubrication, formation of the external structure of the ears and nose and support of the trachea. The maintenance of cartilage homeostasis is therefore crucial. Cartilage-related diseases are difficult to diagnose and treat because their molecular and pathological mechanisms are not fully understood. Melatonin, which has a wide range of physiological effects, is an endocrine hormone mainly secreted by the pineal gland. Its biological effects include its antioxidant, antiaging, analgesic, and hypnotic effects and its ability to stabilize the circadian rhythm. In recent years, research on cartilage homeostasis and melatonin has been increasing, and melatonin has gradually been used in the treatment of cartilage-related diseases. Therefore, this article will briefly review the role of melatonin in cartilage homeostasis, including its anti-inflammatory effects and effects in protecting cartilage from damage by other factors and promoting chondrocyte growth and the expression of cartilage-related genes. Based on the above, the current status and future developmental direction of melatonin in the treatment of cartilage-related diseases are also discussed, demonstrating the broad prospects of melatonin in maintaining cartilage homeostasis and treating cartilage injury-related diseases.
Collapse
Affiliation(s)
- Wen-Qing Xie
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China.,6National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Song-Feng Chen
- 2Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xiao-Hua Tao
- 3Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Li-Yang Zhang
- 4Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Pei-Wu Hu
- 5Department of Scientific Research, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Wei-Li Pan
- 3Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Yi-Bin Fan
- 3Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Yu-Sheng Li
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China.,6National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| |
Collapse
|
19
|
Boraldi F, Lofaro FD, Quaglino D. Apoptosis in the Extraosseous Calcification Process. Cells 2021; 10:cells10010131. [PMID: 33445441 PMCID: PMC7827519 DOI: 10.3390/cells10010131] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Extraosseous calcification is a pathologic mineralization process occurring in soft connective tissues (e.g., skin, vessels, tendons, and cartilage). It can take place on a genetic basis or as a consequence of acquired chronic diseases. In this last case, the etiology is multifactorial, including both extra- and intracellular mechanisms, such as the formation of membrane vesicles (e.g., matrix vesicles and apoptotic bodies), mitochondrial alterations, and oxidative stress. This review is an overview of extraosseous calcification mechanisms focusing on the relationships between apoptosis and mineralization in cartilage and vascular tissues, as these are the two tissues mostly affected by a number of age-related diseases having a progressively increased impact in Western Countries.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Correspondence:
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Interuniversity Consortium for Biotechnologies (CIB), Italy
| |
Collapse
|
20
|
Messaoudi O, Henrionnet C, Bourge K, Loeuille D, Gillet P, Pinzano A. Stem Cells and Extrusion 3D Printing for Hyaline Cartilage Engineering. Cells 2020; 10:cells10010002. [PMID: 33374921 PMCID: PMC7821921 DOI: 10.3390/cells10010002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaline cartilage is deficient in self-healing properties. The early treatment of focal cartilage lesions is a public health challenge to prevent long-term degradation and the occurrence of osteoarthritis. Cartilage tissue engineering represents a promising alternative to the current insufficient surgical solutions. 3D printing is a thriving technology and offers new possibilities for personalized regenerative medicine. Extrusion-based processes permit the deposition of cell-seeded bioinks, in a layer-by-layer manner, allowing mimicry of the native zonal organization of hyaline cartilage. Mesenchymal stem cells (MSCs) are a promising cell source for cartilage tissue engineering. Originally isolated from bone marrow, they can now be derived from many different cell sources (e.g., synovium, dental pulp, Wharton’s jelly). Their proliferation and differentiation potential are well characterized, and they possess good chondrogenic potential, making them appropriate candidates for cartilage reconstruction. This review summarizes the different sources, origins, and densities of MSCs used in extrusion-based bioprinting (EBB) processes, as alternatives to chondrocytes. The different bioink constituents and their advantages for producing substitutes mimicking healthy hyaline cartilage is also discussed.
Collapse
Affiliation(s)
- Océane Messaoudi
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
| | - Christel Henrionnet
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
| | - Kevin Bourge
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
| | - Damien Loeuille
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
- Service de Rhumatologie, CHRU de Nancy, Hôpitaux de Brabois, Bâtiment des Spécialités Médicales, 5 rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France
| | - Pierre Gillet
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
- Laboratoire de Pharmacologie, Toxicologie et Pharmacovigilance, Bâtiment de Biologie Médicale et de Biopathologie, CHRU de Nancy-Brabois, 5 Rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France
| | - Astrid Pinzano
- UMR 7365 CNRS-UL, IMoPA (Ingénierie Moléculaire et Physiopathologie Articulaire), Biopôle de l’Université de Lorraine, Campus Brabois-Santé, 9, Avenue de la Forêt de Haye, BP20199, 54505 Vandœuvre-Lès-Nancy, France; (O.M.); (C.H.); (K.B.); (D.L.); (P.G.)
- Contrat d’Interface, Service de Rhumatologie, Hôpital de Brabois, Bâtiment Spécialités Médicales, F54511 Vandœuvre Lès Nancy, France
- Correspondence: ; Tel.: +33-(0)372-746-565
| |
Collapse
|
21
|
Integral Roles of Specific Proteoglycans in Hair Growth and Hair Loss: Mechanisms behind the Bioactivity of Proteoglycan Replacement Therapy with Nourkrin® with Marilex® in Pattern Hair Loss and Telogen Effluvium. Dermatol Res Pract 2020; 2020:8125081. [PMID: 32425997 PMCID: PMC7222612 DOI: 10.1155/2020/8125081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/01/2020] [Indexed: 11/30/2022] Open
Abstract
Follicular proteoglycans are key players with structural, functional, and regulatory roles in the growth and cycling behaviour of the hair follicles. The expression pattern of specific proteoglycans is strongly correlated with follicular phase transitions, which further affirms their functional involvement. Research shows that bioactive proteoglycans, e.g., versican and decorin, can actively trigger follicular phase shift by their anagen-inducing, anagen-maintaining, and immunoregulatory properties. This emerging insight has led to the recognition of “dysregulated proteoglycan metabolism” as a plausible causal or mediating pathology in hair growth disorders in both men and women. In support of this, declined expression of proteoglycans has been reported in cases of anagen shortening and follicular miniaturisation. To facilitate scientific communication, we propose designating this pathology “follicular hypoglycania (FHG),” which results from an impaired ability of follicular cells to replenish and maintain a minimum relative concentration of key proteoglycans during anagen. Lasting FHG may advance to structural decay, called proteoglycan follicular atrophy (PFA). This process is suggested to be an integral pathogenetic factor in pattern hair loss (PHL) and telogen effluvium (TE). To address FHG and PFA, a proteoglycan replacement therapy (PRT) program using oral administration of a marine-derived extract (Nourkrin® with Marilex®, produced by Pharma Medico Aps, Aarhus, Denmark) containing specific proteoglycans has been developed. In clinical studies, this treatment significantly reduced hair fall, promoted hair growth, and improved quality of life in patients with male- and female-pattern hair loss. Accordingly, PRT (using Nourkrin® with Marilex®) can be recommended as an add-on treatment or monotherapy in patients with PHL and TE.
Collapse
|
22
|
Apostu D, Lucaciu O, Mester A, Oltean-Dan D, Baciut M, Baciut G, Bran S, Onisor F, Piciu A, Pasca RD, Maxim A, Benea H. Systemic drugs with impact on osteoarthritis. Drug Metab Rev 2019; 51:498-523. [DOI: 10.1080/03602532.2019.1687511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dragos Apostu
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Mester
- Department of Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel Oltean-Dan
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Oral Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Maxillofacial Surgery and Oral Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Onisor
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andra Piciu
- Department of Medical Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana D. Pasca
- Department of Biomolecular Physics, Faculty of Physics, Cluj-Napoca, Romania
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Andrei Maxim
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horea Benea
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Chen J, Brazile B, Prabhu R, Patnaik SS, Bertucci R, Rhee H, Horstemeyer MF, Hong Y, Williams LN, Liao J. Quantitative Analysis of Tissue Damage Evolution in Porcine Liver With Interrupted Mechanical Testing Under Tension, Compression, and Shear. J Biomech Eng 2019; 140:2677754. [PMID: 29715364 DOI: 10.1115/1.4039825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 01/04/2023]
Abstract
In this study, the damage evolution of liver tissue was quantified at the microstructural level under tensile, compression, and shear loading conditions using an interrupted mechanical testing method. To capture the internal microstructural changes in response to global deformation, the tissue samples were loaded to different strain levels and chemically fixed to permanently preserve the deformed tissue geometry. Tissue microstructural alterations were analyzed to quantify the accumulated damages, with damage-related parameters such as number density, area fraction, mean area, and mean nearest neighbor distance (NND). All three loading states showed a unique pattern of damage evolution, in which the damages were found to increase in number and size, but decrease in NND as strain level increased. To validate the observed damage features as true tissue microstructural damages, more samples were loaded to the above-mentioned strain levels and then unloaded back to their reference state, followed by fixation. The most major damage-relevant features at higher strain levels remained after the release of the external loading, indicating the occurrence of permanent inelastic deformation. This study provides a foundation for future structure-based constitutive material modeling that can capture and predict the stress-state dependent damage evolution in liver tissue.
Collapse
Affiliation(s)
- Joseph Chen
- Department of Biological Engineering, Mississippi State University, Mississippi State, MS 39762
| | - Bryn Brazile
- Department of Biological Engineering, Mississippi State University, Mississippi State, MS 39762
| | - Raj Prabhu
- Department of Biological Engineering, Mississippi State University, Mississippi State, MS 39762
| | - Sourav S Patnaik
- Department of Biological Engineering, Mississippi State University, Mississippi State, MS 39762
| | - Robbin Bertucci
- Department of Biological Engineering, Mississippi State University, Mississippi State, MS 39762
| | - Hongjoo Rhee
- Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762
| | - M F Horstemeyer
- Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 79010
| | - Lakiesha N Williams
- Department of Biological Engineering, Mississippi State University, Mississippi State, MS 39762
| | - Jun Liao
- Department of Biological Engineering, Mississippi State University, Mississippi State, MS 39762.,Tissue Biomechanics & Bioengineering Laboratory, Department of Bioengineering, University of Texas at Arlington, 500 UTA Boulevard, Suite 353, Arlington, TX 79010 e-mail:
| |
Collapse
|
24
|
Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019; 165:49-65. [DOI: 10.1016/j.bcp.2019.02.036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
|
25
|
Alemi PS, Atyabi SA, Sharifi F, Mohamadali M, Irani S, Bakhshi H, Atyabi SM. Synergistic effect of pressure cold atmospheric plasma and carboxymethyl chitosan to mesenchymal stem cell differentiation on PCL/CMC nanofibers for cartilage tissue engineering. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4568] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Parinaz Sadat Alemi
- Department of Biology, Science and Research BranchIslamic Azad University Tehran Iran
| | | | - Fereshteh Sharifi
- Department of Biology, Science and Research BranchIslamic Azad University Tehran Iran
| | - Marjan Mohamadali
- Department of Biology, Science and Research BranchIslamic Azad University Tehran Iran
| | - Shiva Irani
- Department of Biology, Science and Research BranchIslamic Azad University Tehran Iran
| | - Hadi Bakhshi
- Macromolecular Chemistry IIUniversity of Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | | |
Collapse
|
26
|
Kim KM, Sohn DH, Kim K, Park YC. Inhibition of protein kinase CK2 facilitates cellular senescence by inhibiting the expression of HO-1 in articular chondrocytes. Int J Mol Med 2018; 43:1033-1040. [PMID: 30535443 DOI: 10.3892/ijmm.2018.4016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/27/2018] [Indexed: 11/06/2022] Open
Abstract
Protein kinase casein kinase 2 (CK2) is important in the regulation of cell proliferation and death, even under pathological conditions. Previously, we reported that CK2 regulates the expression of heme oxygenase‑1 (HO‑1) in stress‑induced chondrocytes. In the present study, it was shown that CK2 is involved in the dedifferentiation and cellular senescence of chondrocytes. Treatment of primary articular chondrocytes with CK2 inhibitors, 4,5,6,7‑terabromo‑2‑azabenzimidazole (TBB) or 5,6‑dichlorobenzimidazole 1‑β‑D‑ribofuranoside (DRB), induced an increase in senescence‑associated β‑galactosidase (SA‑β‑gal) staining. In addition, TBB reduced the expression of type II collagen and stimulated the accumulation of β‑catenin, phenotypic markers of chondrocyte differentiation and dedifferentiation, respectively. It was also observed that the abrogation of CK2 activity by CK2 small interfering RNA induced phenotypes of chondrocyte senescence. The association between HO‑1 and cellular senescence was also examined in CK2 inhibitor‑treated chondrocytes. Pretreatment with 3‑morpholinosydnonimine hydrochloride, an inducer of the HO‑1 expression, or overexpression of the HO‑1 gene significantly delayed chondrocyte senescence. These results show that CK2 is associated with chondrocyte differentiation and cellular senescence and that this is due to regulation of the expression of HO‑1. Furthermore, the findings suggest that CK2 is crucial as an anti‑aging factor during chondrocyte senescence.
Collapse
Affiliation(s)
- Kang Mi Kim
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| | - Young Chul Park
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Gyeongnam 50612, Republic of Korea
| |
Collapse
|
27
|
Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol 2018; 71-72:51-69. [PMID: 29803938 PMCID: PMC6146013 DOI: 10.1016/j.matbio.2018.05.005] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
Abstract
Hyaline cartilages, fibrocartilages and elastic cartilages play multiple roles in the human body including bearing loads in articular joints and intervertebral discs, providing joint lubrication, forming the external ears and nose, supporting the trachea, and forming the long bones during development and growth. The structure and organization of cartilage's extracellular matrix (ECM) are the primary determinants of normal function. Most diseases involving cartilage lead to dramatic changes in the ECM which can govern disease progression (e.g., in osteoarthritis), cause the main symptoms of the disease (e.g., dwarfism caused by genetically inherited mutations) or occur as collateral damage in pathological processes occurring in other nearby tissues (e.g., osteochondritis dissecans and inflammatory arthropathies). Challenges associated with cartilage diseases include poor understanding of the etiology and pathogenesis, delayed diagnoses due to the aneural nature of the tissue and drug delivery challenges due to the avascular nature of adult cartilages. This narrative review provides an overview of the clinical and pathological features as well as current treatment options available for various cartilage diseases. Late breaking advances are also described in the quest for development and delivery of effective disease modifying drugs for cartilage diseases including osteoarthritis, the most common form of arthritis that affects hundreds of millions of people worldwide.
Collapse
Affiliation(s)
- Yamini Krishnan
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Kuo CL, Liu ST, Chang YL, Wu CC, Huang SM. Zac1 regulates IL-11 expression in osteoarthritis. Oncotarget 2018; 9:32478-32495. [PMID: 30197757 PMCID: PMC6126702 DOI: 10.18632/oncotarget.25980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/29/2018] [Indexed: 01/24/2023] Open
Abstract
Interleukin (IL)-11, a member of the IL-6 family of cytokines, exerts pleiotropic effects under normal and various disease conditions. We assessed IL-11 expression regulation and the IL-11/IL-6 ratio in osteoarthritis (OA) to better guide clinical therapeutic decision-making. Our findings suggest that Zac1, a zinc finger protein that regulates apoptosis and cell cycle arrest, is a transcription factor regulating IL-11 expression. Zac1 overexpression or knockdown respectively induced or suppressed IL-11 expression in HeLa cells. Zac1 acted synergistically with AP-1, human papillomavirus E2, and hypoxia inducible factor 1 alpha (HIF1α). IL-11 expression under various conditions, including hypoxia or treatment with phorbol 12-myristate 13-acetate or copper sulfate. Recombinant IL-11-induced phosphorylation of signal transducer and activator of transcription 3 at tyrosine 705 was reduced in a dose-dependent manner in HeLa cells. Cross-talk between Zac1, IL-11, p53, and suppressor of cytokine signaling 3 was differentially affected by copper sulfate, digoxin, and caffeine. Finally, aggressive vs. conventional treatment of OA patients was primarily determined by IL-6 levels. However, we suggest that OA patients with higher IL-11 levels may respond well to conventional treatments, even in the presence of high IL-6.
Collapse
Affiliation(s)
- Chun-Lin Kuo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China
- Department of Orthopaedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taiwan, Republic of China
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| | - Chia-Chun Wu
- Department of Orthopaedic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taiwan, Republic of China
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taiwan, Republic of China
- Department of Biochemistry, National Defense Medical Center, Taiwan, Republic of China
| |
Collapse
|
29
|
Bo X, Wu M, Xiao H, Wang H. Transcriptome analyses reveal molecular mechanisms that regulate endochondral ossification in amphibian Bufo gargarizans during metamorphosis. Biochim Biophys Acta Gen Subj 2018; 1862:2632-2644. [PMID: 30076880 DOI: 10.1016/j.bbagen.2018.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND A developmental transition from aquatic to terrestrial existence is one of the most important events in the evolution of terrestrial vertebrates. Amphibian metamorphosis is a classic model to study this transition. The development of the vertebrate skeleton can reflect its evolutionary history. Endochondral ossification serves a vital role in skeletal development. Thus, we sought to unravel molecular mechanisms that regulate endochondral ossification during Bufo gargarizans metamorphosis. METHODS The alizarin red-alcian blue double staining method was used to visualize the skeletal development of B. gargarizans during metamorphosis. RNA sequencing (RNA-seq) was used to explore the transcriptome of B. gargarizans in four key developmental stages during metamorphosis. Real-time quantitative PCR (RT-qPCR) was used to validate the expression patterns of endochondral ossification related genes. RESULTS Endochondral ossification increased gradually in skeletal system of B. gargarizans during metamorphosis. A total of 137,264 unigenes were assembled and 44,035 unigenes were annotated. 10,352 differentially expressed genes (DEGs) were further extracted among four key developmental stages. In addition, 28 endochondral ossification related genes were found by searching for DEG libraries in B. gargarizans. Of the 28 genes, 10 genes were validated using RT-qPCR. CONCLUSIONS The exquisite coordination of the 28 genes is essential for regulation of endochondral ossification during B. gargarizans metamorphosis. GENERAL SIGNIFICANCE The present study will not only provide an invaluable genomic resource and background for further research of endochondral ossification in amphibians but will also aid in enhancing our understanding of the evolution of terrestrial vertebrates.
Collapse
Affiliation(s)
- Xiaoxue Bo
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui Xiao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
30
|
Bo W, Zhou J, Wang K. Sodium butyrate abolishes the degradation of type II collagen in human chondrocytes. Biomed Pharmacother 2018; 102:1099-1104. [DOI: 10.1016/j.biopha.2018.03.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 02/07/2023] Open
|
31
|
Zhang X, Bu Y, Zhu B, Zhao Q, Lv Z, Li B, Liu J. Global transcriptome analysis to identify critical genes involved in the pathology of osteoarthritis. Bone Joint Res 2018; 7:298-307. [PMID: 29922448 PMCID: PMC5987685 DOI: 10.1302/2046-3758.74.bjr-2017-0245.r1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives The aim of this study was to identify key pathological genes in osteoarthritis (OA). Methods We searched and downloaded mRNA expression data from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) of joint synovial tissues from OA and normal individuals. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses were used to assess the function of identified DEGs. The protein-protein interaction (PPI) network and transcriptional factors (TFs) regulatory network were used to further explore the function of identified DEGs. The quantitative real-time polymerase chain reaction (qRT-PCR) was applied to validate the result of bioinformatics analysis. Electronic validation was performed to verify the expression of selected DEGs. The diagnosis value of identified DEGs was accessed by receiver operating characteristic (ROC) analysis. Results A total of 1085 DEGs were identified. KEGG pathway analysis displayed that Wnt was a significantly enriched signalling pathway. Some hub genes with high interactions such as USP46, CPVL, FKBP5, FOSL2, GADD45B, PTGS1, and ZNF423 were identified in the PPI and TFs network. The results of qRT-PCR showed that GADD45B, ADAMTS1, and TFAM were down-regulated in joint synovial tissues of OA, which was consistent with the bioinformatics analysis. The expression levels of USP46, CPVL, FOSL2, and PTGS1 in electronic validation were compatible with the bio-informatics result. CPVL and TFAM had a potential diagnostic value for OA based on the ROC analysis. Conclusion The deregulated genes including USP46, CPVL, FKBP5, FOSL2, GADD45B, PTGS1, ZNF423, ADAMTS1, and TFAM might be involved in the pathology of OA. Cite this article: X. Zhang, Y. Bu, B. Zhu, Q. Zhao, Z. Lv, B. Li, J. Liu. Global transcriptome analysis to identify critical genes involved in the pathology of osteoarthritis. Bone Joint Res 2018;7:298–307. DOI: 10.1302/2046-3758.74.BJR-2017-0245.R1.
Collapse
Affiliation(s)
- X Zhang
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China
| | - Y Bu
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China
| | - B Zhu
- Department of Sports Medicine and Arthroscopic Surgery, Tianjin Hospital, Tianjin, China
| | - Q Zhao
- College of Clinical Medicine, Tianjin Medical University, Tianjin, China
| | - Z Lv
- College of Clinical Medicine, Tianjin Medical University, Tianjin, China
| | - B Li
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China
| | - J Liu
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China
| |
Collapse
|
32
|
Chen K, Yan Y, Li C, Yuan J, Wang F, Huang P, Qian N, Qi J, Zhou H, Zhou Q, Deng L, He C, Guo L. Increased 15-lipoxygenase-1 expression in chondrocytes contributes to the pathogenesis of osteoarthritis. Cell Death Dis 2017; 8:e3109. [PMID: 29022900 PMCID: PMC5682676 DOI: 10.1038/cddis.2017.511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/18/2017] [Accepted: 09/04/2017] [Indexed: 01/15/2023]
Abstract
15-Lipoxygenase-1 (15-LO-1) is involved in many pathological processes. The purpose of this study was to determine the potential role of 15-LO-1 in osteoarthritis (OA). The levels of 15-LO-1 expression were measured by western blotting and quantitative real-time PCR in articular cartilage from the OA rat models and OA patients. To further investigate the effects of 15-LO-1 on chondrocyte functions, such as extracellular matrix (ECM) secretion, the release of matrix-degrading enzymes, the production of reactive oxygen species (ROS), cell proliferation and apoptosis, we decreased or increased 15-LO-1 expression in chondrocytes by means of transfecting with siRNA targeting 15-LO-1 and plasmid encoding 15-LO-1, respectively. The results showed that 15-LO-1 expression was obviously increased in articular cartilage from OA rats and OA patients. It was also found that many factor-related OA, such as mechanical loading, ROS, SNP and inflammatory factor, significantly promoted 15-LO-1 expression and activity in chondrocytes. Silencing 15-LO-1 was able to markedly alleviate mechanical loading-induced cartilage ECM secretion, cartilage-degrading enzyme secretion and ROS production. Overexpression of 15-LO-1 could inhibit chondrocyte proliferation and induce chondrocyte apoptosis. In addition, reduction of 15-LO-1 in vivo significantly alleviated OA. Taken together, these results indicate that 15-LO-1 has an important role in the disease progression of OA. Thus 15-LO-1 may be a good target for developing drugs in the treatment of OA.
Collapse
Affiliation(s)
- Kaizhe Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Yan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changwei Li
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Yuan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Wang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niandong Qian
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan He
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Abstract
Tenascin-C (TN-C) is a glycoprotein component of the extracellular matrix (ECM). TN-C consists of four distinct domains, including the tenascin assembly domain, epidermal growth factor-like repeats, fibronectin type III-like repeats, and the fibrinogen-like globe (FBG) domain. This review summarizes the role of TN-C in articular cartilage. Expression of TN-C is associated with the development of articular cartilage but markedly decreases during maturation of chondrocytes and disappears almost completely in adult articular cartilage. Increased expression of TN-C has been found at diseased cartilage and synovial sites in osteoarthritis (OA) and rheumatoid arthritis (RA). TN-C is increased in the synovial fluid in patients with OA and RA. In addition, serum TN-C is elevated in RA patients. TN-C could be a useful biochemical marker for joint disease. The addition of TN-C results in different effects among TN-C domains. TN-C fragments might be endogenous inducers of cartilage matrix degradation; however, full-length TN-C could promote cartilage repair and prevent cartilage degeneration. The deficiency of TN-C enhanced cartilage degeneration in the spontaneous OA in aged joints and surgical OA model. The clinical significance of TN-C effects on cartilage is not straightforward.
Collapse
Affiliation(s)
- Masahiro Hasegawa
- a Department of Orthopaedic Surgery , Mie University Graduate School of Medicine , Mie , Japan
| | - Toshimichi Yoshida
- b Department of Pathology & Matrix Biology , Mie University Graduate School of Medicine , Mie , Japan
| | - Akihiro Sudo
- a Department of Orthopaedic Surgery , Mie University Graduate School of Medicine , Mie , Japan
| |
Collapse
|
34
|
Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic Science of Articular Cartilage. Clin Sports Med 2017; 36:413-425. [DOI: 10.1016/j.csm.2017.02.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Resveratrol inhibits apoptosis by increase in the proportion of chondrocytes in the S phase of cell cycle in articular cartilage of ACLT plus Mmx rats. Saudi J Biol Sci 2017; 26:839-844. [PMID: 31049011 PMCID: PMC6486510 DOI: 10.1016/j.sjbs.2017.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 11/23/2022] Open
Abstract
The current study was aimed to investigate the effect of resveratrol on apoptosis inhibition in chondrocytes in ACLT plus Mmx rat model. TUNEL assay revealed a markedly higher level of apoptotic chondrocytes in the cartilage of untreated ACLT plus Mmx rats. The percentage of apoptotic chondrocytes was found to be 29.5 and 40.75%, respectively at 21 and 45 days. The percentage of apoptotic chondrocytes at 21 and 45 days in resveratrol (5 mg/kg) treated ACLT plus Mmx rats was found to be 13% and 2%, respectively. Real-time PCR analysis revealed that treatment of the ACLT plus Mmx rats with resveratrol for 45 days caused a significant increase in the expression of miR-18a compared to that in untreated rats. Flow cytometry and BrdUrd incorporation assay revealed that the proportion of chondrocytes in the S phase was increased to 51.4% in resveratrol treatment group compared to 25.3% in the untreated ACLT plus Mmx rats. Western blot analysis showed that treatment of the ACLT plus Mmx rats with resveratrol decreased the expression of ATM protein kinase and GFP protein without any effect on the expression of GFP-ϒ-tubulin in chondrocytes. In addition, resveratrol treatment also led to reduction in the activity of luciferase in the chondrocytes of ACLT plus Mmx rats. Resveratrol treatment of the ACLT plus Mmx rats decreases the expression level of ATM protein and checkpoint kinase 2 (CHK2) phosphorylation in chondrocytes. H2AX and 53BP1 phosphorylation was decreased in ACLT plus Mmx rats on treatment with resveratrol for 45 days. Immunofluorescence results revealed a markedly lower level of H2AX and 53BP1 nuclear foci in the chondrocytes of ACLT plus Mmx rats treated with resveratrol. Thus resveratrol treatment of the ACLT plus Mmx rats inhibits chondrocyte apoptosis and increases proportion of cells in the S phase of cell cycle which may be through the increase in expression of miR18a. A significant relation appears between resveratrol and miR-18a expression in the chondrocytes.
Collapse
|
36
|
Zhang P. Ginsenoside‑Rg5 treatment inhibits apoptosis of chondrocytes and degradation of cartilage matrix in a rat model of osteoarthritis. Oncol Rep 2017; 37:1497-1502. [PMID: 28112382 DOI: 10.3892/or.2017.5392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/07/2016] [Indexed: 11/05/2022] Open
Abstract
This study investigated the effect of ginsenoside‑Rg5 on the degradation of articular cartilage in osteoarthritis rat model and on induction of chondrocyte apoptosis. Osteoarthritis rat model was prepared by ligament transection and medial meniscus resection. The rats were then treated with different doses (1, 2, 5, 10 and 15 µM) of ginsenoside‑Rg5 for 48 h. The results from histopathological analysis revealed a significant (P=0.005) prevention of cartilage degradation in OA rat model by ginsenoside‑Rg5 treatment at 15 µM. Ginsenoside‑Rg5 treatment prevented the disintegration of synovial membrane to a significant (P=0.005) extent. The proportion of apoptotic cells in the knee joints was reduced to 7% by ginsenoside‑Rg5 treatment after one month compared to the control. Treatment of the rats with ginsenoside‑Rg5 caused increase in the levels of proteoglycan, collagen and type II collagen by 5-, 3- and 4-fold compared to the control group. Immunohistochemistry revealed that the level of MMP-13 was reduced to 45% and that of TIMP‑1 was increased by 67% on treatment with ginsenoside‑Rg5. The levels of interleukin-1β, tumor necrosis factor-α, nitric oxide and inducible nitric oxide synthetase were reduced by 67, 54, 32 ad 49%, respectively after one month of treatment with 15 mg/kg dose of ginsenoside‑Rg5. The expression was increased to 67 and 52% for BMP-2 and TGF-β1, respectively on treatment with ginsenoside‑Rg5. Thus ginsenoside‑Rg5 prevents cartilage degradation in the OA rats and inhibits cartilage apoptosis, therefore it can be used for osteoarthritis treatment.
Collapse
Affiliation(s)
- Ping Zhang
- The Disease Prevention Center of Anyang Hospital of Traditional Chinese Medicine of Henan Province, Nanyang, Henan 455000, P.R. China
| |
Collapse
|
37
|
Hellewell AL, Rosini S, Adams JC. A Rapid, Scalable Method for the Isolation, Functional Study, and Analysis of Cell-derived Extracellular Matrix. J Vis Exp 2017. [PMID: 28117783 PMCID: PMC5351878 DOI: 10.3791/55051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is recognized as a diverse, dynamic, and complex environment that is involved in multiple cell-physiological and pathological processes. However, the isolation of ECM, from tissues or cell culture, is complicated by the insoluble and cross-linked nature of the assembled ECM and by the potential contamination of ECM extracts with cell surface and intracellular proteins. Here, we describe a method for use with cultured cells that is rapid and reliably removes cells to isolate a cell-derived ECM for downstream experimentation. Through use of this method, the isolated ECM and its components can be visualized by in situ immunofluorescence microscopy. The dynamics of specific ECM proteins can be tracked by tracing the deposition of a tagged protein using fluorescence microscopy, both before and after the removal of cells. Alternatively, the isolated ECM can be extracted for biochemical analysis, such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. At larger scales, a full proteomics analysis of the isolated ECM by mass spectrometry can be conducted. By conducting ECM isolation under sterile conditions, sterile ECM layers can be obtained for functional or phenotypic studies with any cell of interest. The method can be applied to any adherent cell type, is relatively easy to perform, and can be linked to a wide repertoire of experimental designs.
Collapse
|
38
|
Reimann S, Schneider T, Welker P, Neumann F, Licha K, Schulze-Tanzil G, Wagermaier W, Fratzl P, Haag R. Dendritic polyglycerol anions for the selective targeting of native and inflamed articular cartilage. J Mater Chem B 2017; 5:4754-4767. [DOI: 10.1039/c7tb00618g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dye-conjugated polyanions show high affinities toward native and inflamed cartilage dependent on the anionic moiety and the condition of the tissue.
Collapse
Affiliation(s)
- Sabine Reimann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Tobias Schneider
- Institute of Anatomy
- General Hospital Nuremberg
- Paracelsus Medical University
- 90419 Nuremberg
- Germany
| | - Pia Welker
- Institute of Anatomy and Cell Biology Charité Universitätsmedizin Berlin
- 10115 Berlin
- Germany
| | - Falko Neumann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy
- General Hospital Nuremberg
- Paracelsus Medical University
- 90419 Nuremberg
- Germany
| | - Wolfgang Wagermaier
- Max Planck Institute of Colloids and Interfaces
- Department of Biomaterials
- 14424 Potsdam
- Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces
- Department of Biomaterials
- 14424 Potsdam
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
39
|
Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis. Int J Mol Sci 2016; 17:ijms17122146. [PMID: 27999417 PMCID: PMC5187946 DOI: 10.3390/ijms17122146] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1β (IL-1β), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression.
Collapse
|
40
|
Silva SV, Lima MA, Cella N, Jaeger RG, Freitas VM. ADAMTS-1 Is Found in the Nuclei of Normal and Tumoral Breast Cells. PLoS One 2016; 11:e0165061. [PMID: 27764205 PMCID: PMC5072708 DOI: 10.1371/journal.pone.0165061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/05/2016] [Indexed: 12/13/2022] Open
Abstract
Proteins secreted in the extracellular matrix microenvironment (ECM) by tumor cells are involved in cell adhesion, motility, intercellular communication and invasion. The tumor microenvironment is expansively modified and remodeled by proteases, resulting in important changes in both cell-cell and cell-ECM interactions and in the generation of new signals from the cell surface. Metalloproteinases belonging to the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family have been implicated in tissue remodeling events observed in cancer development, growth and progression. Here we investigated the subcellular localization of ADAMTS-1 in normal-like (MCF10-A) and tumoral (MCF7 and MDA-MB-231) human breast cells. ADAMTS-1 is a secreted protease found in the extracellular matrix. However, in this study we show for the first time that ADAMTS-1 is also present in the nuclei and nucleoli of the three mammary cell lines studied here. Our findings indicate that ADAMTS-1 has proteolytic functions in the nucleus through its interaction with aggrecan substrate.
Collapse
Affiliation(s)
- Suély V. Silva
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Maíra A. Lima
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Nathalie Cella
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Ruy G. Jaeger
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
41
|
Osteopontin Promotes Expression of Matrix Metalloproteinase 13 through NF- κB Signaling in Osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6345656. [PMID: 27656654 PMCID: PMC5021466 DOI: 10.1155/2016/6345656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/07/2016] [Indexed: 12/03/2022]
Abstract
Osteopontin (OPN) is associated with the severity and progression of osteoarthritis (OA); however, the mechanism of OPN in the pathogenesis of OA is unknown. In this study, we found that OA patients had higher abundance of OPN and matrix metalloproteinase 13 (MMP13). In chondrocytes, we showed that OPN promoted the production of MMP13 and activation of NF-κB pathway by increasing the abundance of p65 and phosphorylated p65 and translocation of p65 protein from cytoplasm to nucleus. Notably, inhibition of NF-κB pathway by inhibitor suppressed the production of MMP13 induced by OPN treatment. In conclusion, OPN induces production of MMP13 through activation of NF-κB pathway.
Collapse
|
42
|
Li T, Shi HY, Hua YX, Gao C, Xia Q, Yang G, Li B. Effects of allicin on the proliferation and cell cycle of chondrocytes. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12525-12532. [PMID: 26722440 PMCID: PMC4680385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/22/2015] [Indexed: 06/05/2023]
Abstract
The present study demonstrates the effect of allicin on the proliferation and the cell cycle distribution of the chondrocytes. MTT assay and flow cytometry were used for the evaluation of the effect of allicin on cell proliferative and the cell cycle distribution, respectively of the chondrocytes. The reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis were respectively used for the analysis of mRNA and protein expression levels of cyclin D1, CDK4 and CDK6. The results revealed that exposure of the chondrocytes to allicin at a concentration of 40 µM significantly promoted the cell viability. Treatment of the cells with 10, 20, 30, 40, and 50 μg/mL of allicin enhanced the cell viability by 2.5.47 ± 0.86, 5.43 ± 0.66, 10.74 ± 1.48, 35.89 ± 3.78, and 32.21 ± 2.92%, respectively after 36 h compared to control cells. Allicin exposure caused a marked decrease in the percentage of cells in G0/G1 phase with a subsequent increase in the S phase population. Furthermore, allicin treatment enhanced the expression of cyclin D1, CDK4 and CDK6. Therefore, allicin treatment enhances the proliferation of chondrocytes by promoting the transition from G1 to S phase of the cell cycle through increase in the expression of cyclin D1, CDK4 and CDK6 levels.
Collapse
Affiliation(s)
- Tao Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong, China
| | - Hong-Yan Shi
- Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Yong-Xin Hua
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Chen Gao
- Medical Devices Department, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Qing Xia
- Medical Devices Department, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| | - Guang Yang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong, China
| | - Bin Li
- Department of Orthopaedics, Jinan Central Hospital Affiliated to Shandong UniversityJinan 250013, Shandong, China
| |
Collapse
|
43
|
Alper M, Aydemir AT, Köçkar F. Induction of human ADAMTS-2 gene expression by IL-1α is mediated by a multiple crosstalk of MEK/JNK and PI3K pathways in osteoblast like cells. Gene 2015; 573:321-7. [PMID: 26232334 DOI: 10.1016/j.gene.2015.07.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/02/2015] [Accepted: 07/19/2015] [Indexed: 12/25/2022]
Abstract
Up-regulation of ADAMTS genes with proinflammatory cytokines is important for some pathological conditions such as osteoarthritis (OA) that is a disease based on ECM degradation in cartilage. IL-1α is a proinflammatory cytokine and important both to normal and pathophysiologic conditions in cartilage and bone. Effects of some proinflammatory cytokines such as TNF-α and IL-1β on the some members of ADAMTS family have been investigated in some chondrocyte tissues or cell lines. However the effect of the IL-1α on the expression of ADAMTS-2 and ADAMTS-3 gene expression in osteoblast like cell lines, remains unclear. Therefore, the aim of this study is to investigate the effect of IL-1α on ADAMTS-2 and ADAMTS-3 gene expression in osteoblast like cells, Saos-2 and MG-63. The present study, for the first time, demonstrated that IL-1α increases ADAMTS-2 and ADAMTS-3 gene expressions in both Saos-2 and MG-63 cells. Having correlation to mRNA induction, the upregulation of ADAMTS-2,-3 protein levels by IL-1α stimulation is also observed. The inhibition studies showed that this upregulation occurred at the level of transcription, and there was no effect of IL-1α on ADAMTS-2 mRNA half-life in Saos-2 cells. Transactivation potential of IL-1α on ADAMTS-2 promoter was investigated by transient transfection assay. Specifically, IL-1α strongly increased -658/+112 and -530/+112 ADAMTS-2 promoter constructs. Further, we analyzed signaling pathways involved in ADAMTS-2 induction. Pathway inhibition studies revealed that this upregulation depends on the activation of MEK, JNK and PI3K pathways. These findings suggested that IL-1α is a strong positive regulator of ADAMTS-2 and ADAMTS-3 expression. These findings would provide novel insight into the pathophysiology of OA.
Collapse
Affiliation(s)
- Meltem Alper
- Aksaray University, Aksaray Vocational School of Technical Sciences,68100 Aksaray, Turkey
| | - A Tuğşen Aydemir
- Balikesir University, Faculty of Science and Literature, Department of Biology, Balikesir, Turkey
| | - Feray Köçkar
- Balikesir University, Faculty of Science and Literature, Department of Biology, Balikesir, Turkey.
| |
Collapse
|
44
|
Torrero JI, Martínez C. New developments in the treatment of osteoarthritis - focus on biologic agents. Open Access Rheumatol 2015; 7:33-43. [PMID: 27790043 PMCID: PMC5045124 DOI: 10.2147/oarrr.s50058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common diseases around the world. Medical, social, and financial consequences oblige clinicians, surgeons, and researchers to focus on finding the best treatment option, to eradicate and stop this degenerative joint disease, in order to avoid surgical options which in many instances are over-indicated. Noninvasive treatments, such as anti-inflammatory drugs, physiotherapy, orthotic devices, dietary supplements, have demonstrated lack of effectiveness. The possibility to perform intra-articular injections with hyaluronic acid, corticosteroids, or the newest but criticized treatment based on platelet-rich plasma (PRP) has changed the management of OA disease. The use of PRP has led to many differences in treatment since there is a lack of consensus about protocols, indications, number of doses, cost-effectiveness, and duration of the treatment. Many publications have suggested efficacy in tendon injuries, but when PRP has been indicated to treat cartilage injuries, things are more inconsistent. Some authors have reported their experience treating OA with PRP, and it seems that, if well indicated, it is an option as a supplementary therapy. Therefore, we need to understand that OA is a mechanical disease which not only produces changes in radiographs, but also affects the quality of life. Pathogenesis of OA has been well explained, providing us new knowledge and future possibilities to improve the clinical approach. From basic science to surgery, there is a great field we all need to contribute to, because the general population is aging and total joint replacements should not be the only solution for OA. So herein is an actual review of the developments for treating OA with biologics, intended to be useful for the population inside orthopedics who could be called bio-orthopedists, since OA is a molecular homeostasis disbalance between catabolism and anabolism triggered by mechanical stress.
Collapse
Affiliation(s)
| | - Carlos Martínez
- University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| |
Collapse
|
45
|
Sun Y, Zhou L, Lv D, Liu H, He T, Wang X. Poly(ADP-ribose) polymerase 1 inhibition prevents interleukin-1β-induced inflammation in human osteoarthritic chondrocytes. Acta Biochim Biophys Sin (Shanghai) 2015; 47:422-30. [PMID: 25926140 DOI: 10.1093/abbs/gmv033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/03/2015] [Indexed: 11/14/2022] Open
Abstract
Osteoarthritis (OA) is an age-related joint disease that is characterized by the degeneration of articular chondrocytes. Nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is associated with inflammation response. We investigated the role of PARP-1 in interleukin-1β (IL-1β)-stimulated human articular chondrocytes and its underlying mechanism. Cell viability and apoptosis were evaluated by using 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide assay and flow cytometry, respectively. Tumor necrosis factor-α (TNF-α) level was measured by enzyme-linked immunosorbent assay. The mRNA and protein expression levels of PARP-1, IL-1 receptor (IL-1R), inducible nitric oxide synthase (iNOS), matrix metalloproteinases (MMPs), and tissue inhibitor of metalloproteinases-1 (TIMP-1) were determined by real-time reverse transcriptase-polymerase chain reaction and western blot analysis, respectively. The expression and phosphorylation of NF-кB p65 were measured by western blot analysis. Results showed that stimulation of chondrocytes with IL-1β caused a significant up-regulation of PARP-1 and IL-1R, resulting in NF-кB p65 nuclear translocation and phosphorylation associated with an increase of TNF-α secretion and iNOS expression. PARP-1 was inhibited by siRNA transfection. Results showed that PARP-1 inhibition suppressed IL-1β-induced reduction of cell viability and up-regulation of cell apoptosis, with a reduced IL-1R expression. PARP-1 inhibition also effectively reversed IL-1β-induced inflammatory response through inhibiting the IL-1R/NF-кB pathway. These data suggested that PARP-1 inhibition prevents IL-1β-induced inflammation response at least partly by inhibiting the IL-1R/NF-кB signaling pathway in human articular chondrocytes. Moreover, PARP-1 inhibition reduced MMPs expression and increased TIMP-1 expression, suggesting that PARP-1 inhibition could suppress cartilage destruction by modulating the balance between MMPs and TIMP-1. Inhibition of PARP-1 might be useful in the treatment of OA.
Collapse
Affiliation(s)
- Yujie Sun
- Orthopedics Department, Yantai Yuhuangding Hospital, Affiliated by Qingdao University Medical College, Yantai 264000, China
| | - Lugang Zhou
- Orthopedics Department, Yantai Yuhuangding Hospital, Affiliated by Qingdao University Medical College, Yantai 264000, China
| | - Dongmei Lv
- Orthopedics Department, Yantai Yuhuangding Hospital, Affiliated by Qingdao University Medical College, Yantai 264000, China
| | - Hongzhi Liu
- Orthopedics Department, Yantai Yuhuangding Hospital, Affiliated by Qingdao University Medical College, Yantai 264000, China
| | - Tian He
- Orthopedics Department, Yantai Yuhuangding Hospital, Affiliated by Qingdao University Medical College, Yantai 264000, China
| | - Xin Wang
- Orthopedics Department, Yantai Yuhuangding Hospital, Affiliated by Qingdao University Medical College, Yantai 264000, China
| |
Collapse
|
46
|
Huang W, Liang Q, Chen J, Zhu H, Xie W, Wang Y, Yang B, Peng W, Xiong X. Quantitative proteomic analysis of synovial tissue from rats with collagen-induced arthritis. RSC Adv 2015. [DOI: 10.1039/c5ra18743e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The pathway networks involved in RA pathological process were analyzed by Ingenuity pathway analysis (IPA).
Collapse
Affiliation(s)
- Wei Huang
- Institute of Integrated Medicine
- Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Qinghua Liang
- Institute of Integrated Medicine
- Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Jiang Chen
- Central of Telemedicine
- Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Hao Zhu
- Institute of Integrated Medicine
- The First Affiliated Hospital of Soochow University
- Soochow
- PR China
| | - Wei Xie
- Department of Pathology & Immunology
- Baylor College of Medicine
- Houston
- USA
| | - Yang Wang
- Institute of Integrated Medicine
- Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Bo Yang
- Institute of Integrated Medicine
- Xiangya Hospital
- Central South University
- Changsha
- PR China
| | - Weijun Peng
- Department of Integrated Chinese and Western Medicine
- The Second Xiangya Hospital
- Central South University
- Changsha 410011
- PR China
| | - Xingui Xiong
- Institute of Integrated Medicine
- Xiangya Hospital
- Central South University
- Changsha
- PR China
| |
Collapse
|
47
|
Zhang FJ, Luo W, Lei GH. Role of HIF-1α and HIF-2α in osteoarthritis. Joint Bone Spine 2014; 82:144-7. [PMID: 25553838 DOI: 10.1016/j.jbspin.2014.10.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 10/01/2014] [Indexed: 01/21/2023]
Abstract
The hallmark of OA is cartilage destruction, several factors such as catabolic enzymes and chondrocyte death include apoptosis and/or autophagy are considered for the pathogenesis. Articular cartilage is maintained in a low oxygen environment throughout life. Chondrocytes are therefore adapted to these hypoxic conditions. The increased HIF-1α and HIF-2α mediate the response of chondrocytes to hypoxia. HIF-1α regulates chondrogenesis by regulating SOX9 expression in the genetic level, HIF-1 also serves to regulate both autophagy and apoptosis. Therefore, HIF-1α may protect articular cartilage by promoting the chondrocyte phenotype, maintaining chondrocyte viability, and supporting metabolic adaptation to a hypoxic environment. In contrast with HIF-1α, HIF-2α is a catabolic factor in the osteoarthritic process. Although HIF-2α is essential for hypoxic induction of the human articular chondrocyte phenotype, HIF-2α directly induces the expression of catabolic factors in chondrocytes, and HIF-2α enhances Fas expression to mediate chondrocyte apoptosis and regulates autophagy in maturing chondrocytes. Taken together, manipulation of HIF-1α and HIF-2α could represent a promising approach to the treatment of OA. Further study should elucidate the exact machnism of HIF-1α and HIF-2α in cartilage and determine which is predominant in osteoarthritic process.
Collapse
Affiliation(s)
- Fang-Jie Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan, China
| | - Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan, China
| | - Guang-Hua Lei
- Department of Orthopedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008 Hunan, China.
| |
Collapse
|
48
|
Tian J, Zhang FJ, Lei GH. Role of integrins and their ligands in osteoarthritic cartilage. Rheumatol Int 2014; 35:787-98. [PMID: 25261047 DOI: 10.1007/s00296-014-3137-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/17/2014] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease, which is characterized by articular cartilage destruction, and mainly affects the older people. The extracellular matrix (ECM) provides a vital cellular environment, and interactions between the cell and ECM are important in regulating many biological processes, including cell growth, differentiation, and survival. However, the pathogenesis of this disease is not fully elucidated, and it cannot be cured totally. Integrins are one of the major receptors in chondrocytes. A number of studies confirmed that the chondrocytes express several integrins including α5β1, αVβ3, αVβ5, α6β1, α1β1, α2β1, α10β1, and α3β1, and some integrins ligands might act as the OA progression biomarkers. This review focuses on the functional role of integrins and their extracellular ligands in OA progression, especially OA cartilage. Clear understanding of the role of integrins and their ligands in OA cartilage may have impact on future development of successful therapeutic approaches to OA.
Collapse
Affiliation(s)
- Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, China
| | | | | |
Collapse
|
49
|
Xu Y, Dai GJ, Liu Q, Liu ZL, Song ZQ, Li L, Chen WH, Lin N. Sanmiao formula inhibits chondrocyte apoptosis and cartilage matrix degradation in a rat model of osteoarthritis. Exp Ther Med 2014; 8:1065-1074. [PMID: 25187798 PMCID: PMC4151698 DOI: 10.3892/etm.2014.1862] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022] Open
Abstract
Sanmiao formula (SM) is a basic prescription for the treatment of gouty and rheumatoid arthritis that has been used in China over a long period of history. However, there is no evidence associating SM with the treatment of osteoarthritis (OA). In this study, a characterization of the anti-OA effect of SM was conducted using an in vivo rat model induced by anterior cruciate ligament transection and medial meniscus resection (ACLT plus MMx), together with in vitro studies using chondrocytes for further molecular characterization. Rats subjected to ACLT plus MMx were treated with SM at doses of 0.63, 1.25 and 2.5 g/kg per day for three or six weeks. SM treatment significantly inhibited the histopathological changes of articular cartilage damage and synovial inflammation in the rats following ACLT plus MMx. SM (2.5 g/kg) clearly inhibited chondrocyte apoptosis and prevented cartilage matrix degradation, which was indicated by the increased proteoglycan and collagen content, particularly with regard to type II collagen expression in articular cartilage. Furthermore, SM (2.5 g/kg) markedly inhibited the release of interleukin (IL)-1β, tumor necrosis factor-α and nitric oxide in serum, while simultaneously increasing the levels of bone morphogenetic protein-2 and transforming growth factor-β in the circulation. Notably, SM (2.5 g/kg) clearly attenuated the OA-augmented expression of matrix metalloproteinase (MMP)-13 and augmented the OA-reduced expression of tissue inhibitor of metalloproteinase (TIMP)-1 in the knee joints. In addition, SM significantly reduced the proportion of early and late apoptotic and sub-G1 phase cells, and clearly decreased the expression of MMP-13 and increased that of TIMP-1 at the mRNA and protein levels in IL-1β-induced chondrocytes. These findings provide the first evidence that SM effectively treats OA by inhibiting chondrocyte apoptosis, cartilage matrix degradation and the inflammatory response.
Collapse
Affiliation(s)
- Ying Xu
- Institutes of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Guo-Jing Dai
- Institutes of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Qian Liu
- Institutes of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Zhen-Li Liu
- Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Zhi-Qian Song
- Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Li Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Wei-Heng Chen
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Na Lin
- Institutes of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
50
|
Zhang FJ, Yu WB, Luo W, Gao SG, Li YS, Lei GH. Effect of osteopontin on TIMP-1 and TIMP-2 mRNA in chondrocytes of human knee osteoarthritis in vitro.. Exp Ther Med 2014; 8:391-394. [PMID: 25009588 PMCID: PMC4079415 DOI: 10.3892/etm.2014.1750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 05/02/2014] [Indexed: 01/09/2023] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) regulate the activity of matrix metalloproteinases (MMPs) and enzymes from the a disintegrin and metalloproteinase domain with thrombospondin motifs family in osteoarthritis (OA). Elevated osteopontin (OPN) levels in plasma, synovial fluid and articular cartilage are associated with progressive OA joint damage; however, the role of OPN in the pathological changes of knee OA remains undetermined. The present study was undertaken to examine the effect of OPN on the expression of TIMP-1 and TIMP-2 mRNA in chondrocytes from 16 patients with knee OA. In this study, following the stimulation of human chondrocytes with recombinant human OPN (rhOPN; 100 ng/ml and 1 μg/ml, respectively) for 48 h, MTT assay was used to determine cell viability while the quantitative polymerase chain reaction (PCR) was used to detect the alterations in TIMP-1 and TIMP-2 levels. The results illustrated that neither 100 ng/ml nor 1 μg/ml rhOPN caused cytotoxicity or apoptosis of chondrocytes and that the relative mRNA expression of TIMP-1 and TIMP-2 was significantly increased in the 1 μg/ml rhOPN group compared with that in the control group (P=0.022 and P=0.003, respectively). However, no significant difference in expression was revealed between the 100 ng/ml rhOPN and control groups (P=0.998 and P=0.209, respectively). In conclusion, OPN may have a protective effect against pathological changes in advanced-stage OA.
Collapse
Affiliation(s)
- Fang-Jie Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wen-Bo Yu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Orthopaedics, The First People's Hospital of Nanpin, Nanpin, Fujian 353000, P.R. China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shu-Guang Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Orthopaedics Institute of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Orthopaedics Institute of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|