1
|
Mönki J, Holopainen M, Ruhanen H, Karikoski N, Käkelä R, Mykkänen A. Lipid species profiling of bronchoalveolar lavage fluid cells of horses housed on two different bedding materials. Sci Rep 2023; 13:21778. [PMID: 38066223 PMCID: PMC10709413 DOI: 10.1038/s41598-023-49032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
The lipidome of equine BALF cells has not been described. The objectives of this prospective repeated-measures study were to explore the BALF cells' lipidome in horses and to identify lipids associated with progression or resolution of airway inflammation. BALF cells from 22 horses exposed to two bedding materials (Peat 1-Wood shavings [WS]-Peat 2) were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of bedding on lipid class and species compositions were tested with rmANOVA. Correlations between lipids and cell counts were examined. The BALF cells' lipidome showed bedding-related differences for molar percentage (mol%) of 60 species. Whole phosphatidylcholine (PC) class and its species PC 32:0 (main molecular species 16:0_16:0) had higher mol% after Peat 2 compared with WS. Phosphatidylinositol 38:4 (main molecular species 18:0_20:4) was higher after WS compared with both peat periods. BALF cell count correlated positively with mol% of the lipid classes phosphatidylserine, sphingomyelin, ceramide, hexosylceramide, and triacylglycerol but negatively with PC. BALF cell count correlated positively with phosphatidylinositol 38:4 mol%. In conclusion, equine BALF cells' lipid profiles explored with MS-based lipidomics indicated subclinical inflammatory changes after WS. Inflammatory reactions in the cellular lipid species composition were detected although cytological responses indicating inflammation were weak.
Collapse
Affiliation(s)
- Jenni Mönki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland.
| | - Minna Holopainen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Ninja Karikoski
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE), and Biocenter Finland, University of Helsinki, Biocenter 3 Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, P.O. Box 57, 00014, Helsinki, Finland
| |
Collapse
|
2
|
Kearney CM, Korthagen NM, Plomp SGM, Labberté MC, de Grauw JC, van Weeren PR, Brama PAJ. A Translational Model for Repeated Episodes of Joint Inflammation: Welfare, Clinical and Synovial Fluid Biomarker Assessment. Animals (Basel) 2023; 13:3190. [PMID: 37893914 PMCID: PMC10603652 DOI: 10.3390/ani13203190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigates repeated low-dose lipopolysaccharide (LPS) injections in equine joints as a model for recurrent joint inflammation and its impact on animal welfare. Joint inflammation was induced in eight horses by injecting 0.25 ng of LPS three times at two-week intervals. Welfare scores and clinical parameters were recorded at baseline and over 168 h post-injection. Serial synoviocentesis was performed for the analysis of a panel of synovial fluid biomarkers of inflammation and cartilage turnover. Clinical parameters and a final synoviocentesis were also performed eight weeks after the last sampling point to assess the recovery of normal joint homeostasis. Statistical methods were used to compare the magnitude of response to each of the 3 LPS inductions and to compare the baseline and final measurements. Each LPS injection produced consistent clinical and biomarker responses, with minimal changes in welfare scores. General matrix metalloproteinase (MMP) activity and joint circumference showed greater response to the second LPS induction, but response to the third was comparable to the first. Gylcosaminoglycans (GAG) levels showed a significantly decreased response with each induction, while collagen-cleavage neoepitope of type II collagen (C2C) and carboxypropetide of type II collagen epitope (CPII) showed quicker responses to the second and third inductions. All parameters were comparable to baseline values at the final timepoint. In conclusion, a consistent, reliable intra-articular inflammatory response can be achieved with repeated injections of 0.25 ng LPS, with minimal impact on animal welfare, suggesting potential as a refined translational model of recurrent joint inflammation.
Collapse
Affiliation(s)
- Clodagh M. Kearney
- UCD School of Veterinary Medicine, University College Dublin, D04 W6F6 Dublin, Ireland (P.A.J.B.)
| | - Nicoline M. Korthagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands (S.G.M.P.); (P.R.v.W.)
| | - Saskia G. M. Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands (S.G.M.P.); (P.R.v.W.)
| | - Margot C. Labberté
- UCD School of Veterinary Medicine, University College Dublin, D04 W6F6 Dublin, Ireland (P.A.J.B.)
| | - Janny C. de Grauw
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - P. René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands (S.G.M.P.); (P.R.v.W.)
| | - Pieter A. J. Brama
- UCD School of Veterinary Medicine, University College Dublin, D04 W6F6 Dublin, Ireland (P.A.J.B.)
| |
Collapse
|
3
|
Laus F, Gialletti R, Bazzano M, Laghi L, Dini F, Marchegiani A. Synovial Fluid Metabolome Can Differentiate between Healthy Joints and Joints Affected by Osteoarthritis in Horses. Metabolites 2023; 13:913. [PMID: 37623857 PMCID: PMC10456394 DOI: 10.3390/metabo13080913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Osteoarthritis (OA) is a common cause of lameness in sport horses with a significant economic impact. The prevention of OA is crucial since no effective treatment is available. This study aimed to apply untargeted metabolomic analysis to investigate the differences in synovial fluid (SF) composition between healthy and OA-affected joints in horses. SF collected from healthy (n.8) and OA (n.11) horses was analyzed using H-NMR analysis. Metabolomic analysis allowed 55 different metabolites to be identified and quantified in SF samples. Nineteen metabolites were found to be differently concentrated in OA compared to control horses. Synovial fluids from the OC group were found to be higher in 1,3-dihydroxyacetone but lower in tryptophan, phenylalanine, tyrosine, uridine, creatinine, creatine, glycine, choline, asparagine, glutamine, arginine, 3-hydroxybutyrate, valine, 2-hydroxyisovalerate, α-ketoisovaleric acid, 3-methyl-2-oxovalerate, 3-hydroxyisobutyrate, isoleucine, and methionine compared to the controls. A variety of SF metabolites significantly changed following joint disease, demonstrating the complex mechanism underlying osteoarthritis in horses and highlighting the value of applying the metabolomic approach in clinical research.
Collapse
Affiliation(s)
- Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy; (F.L.); (F.D.); (A.M.)
| | - Rodolfo Gialletti
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy;
| | - Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy; (F.L.); (F.D.); (A.M.)
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, 40100 Bologna, Italy;
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy; (F.L.); (F.D.); (A.M.)
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy; (F.L.); (F.D.); (A.M.)
| |
Collapse
|
4
|
Counts of hyaluronic acid-containing extracellular vesicles decrease in naturally occurring equine osteoarthritis. Sci Rep 2022; 12:17550. [PMID: 36266410 PMCID: PMC9585069 DOI: 10.1038/s41598-022-21398-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 01/13/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with inadequately understood pathogenesis leading to pain and functional limitations. Extracellular vesicles (EVs) released by synovial joint cells can induce both pro- and anti-OA effects. Hyaluronic acid (HA) lubricates the surfaces of articular cartilage and is one of the bioactive molecules transported by EVs. In humans, altered EV counts and composition can be observed in OA synovial fluid (SF), while EV research is in early stages in the horse-a well-recognized OA model. The aim was to characterize SF EVs and their HA cargo in 19 horses. SF was collected after euthanasia from control, OA, and contralateral metacarpophalangeal joints. The SF HA concentrations and size distribution were determined with a sandwich-type enzyme-linked sorbent assay and size-exclusion chromatography. Ultracentrifugation followed by nanoparticle tracking analysis (NTA) were utilized to quantify small EVs, while confocal laser scanning microscopy (CLSM) and image analysis characterized larger EVs. The number and size distribution of small EVs measured by NTA were unaffected by OA, but these results may be limited by the lack of hyaluronidase pre-treatment of the samples. When visualized by CLSM, the number and proportion of larger HA-containing EVs (HA-EVs) decreased in OA SF (generalized linear model, count: p = 0.024, %: p = 0.028). There was an inverse association between the OA grade and total EV count, HA-EV count, and HA-EV % (rs = - 0.264 to - 0.327, p = 0.012-0.045). The total HA concentrations were also lower in OA (generalized linear model, p = 0.002). To conclude, the present study discovered a potential SF biomarker (HA-EVs) for naturally occurring equine OA. The roles of HA-EVs in the pathogenesis of OA and their potential as a joint disease biomarker and therapeutic target warrant future studies.
Collapse
|
5
|
Kearney CM, Khatab S, van Buul GM, Plomp SGM, Korthagen NM, Labberté MC, Goodrich LR, Kisiday JD, Van Weeren PR, van Osch GJVM, Brama PAJ. Treatment Effects of Intra-Articular Allogenic Mesenchymal Stem Cell Secretome in an Equine Model of Joint Inflammation. Front Vet Sci 2022; 9:907616. [PMID: 35812845 PMCID: PMC9257274 DOI: 10.3389/fvets.2022.907616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAllogenic mesenchymal stem cell (MSC) secretome is a novel intra-articular therapeutic that has shown promise in in vitro and small animal models and warrants further investigation.ObjectivesTo investigate if intra-articular allogenic MSC-secretome has anti-inflammatory effects using an equine model of joint inflammation.Study DesignRandomized positively and negatively controlled experimental study.MethodIn phase 1, joint inflammation was induced bilaterally in radiocarpal joints of eight horses by injecting 0.25 ng lipopolysaccharide (LPS). After 2 h, the secretome of INFy and TNFα stimulated allogeneic equine MSCs was injected in one randomly assigned joint, while the contralateral joint was injected with medium (negative control). Clinical parameters (composite welfare scores, joint effusion, joint circumference) were recorded, and synovial fluid samples were analyzed for biomarkers (total protein, WBCC; eicosanoid mediators, CCL2; TNFα; MMP; GAGs; C2C; CPII) at fixed post-injection hours (PIH 0, 8, 24, 72, and 168 h). The effects of time and treatment on clinical and synovial fluid parameters and the presence of time-treatment interactions were evaluated. For phase 2, allogeneic MSC-secretome vs. allogeneic equine MSCs (positive control) was tested using a similar methodology.ResultsIn phase 1, the joint circumference was significantly (p < 0.05) lower in the MSC-secretome treated group compared to the medium control group at PIH 24, and significantly higher peak synovial GAG values were noted at PIH 24 (p < 0.001). In phase 2, no significant differences were noted between the treatment effects of MSC-secretome and MSCs.Main LimitationsThis study is a controlled experimental study and therefore cannot fully reflect natural joint disease. In phase 2, two therapeutics are directly compared and there is no negative control.ConclusionsIn this model of joint inflammation, intra-articular MSC-secretome injection had some clinical anti-inflammatory effects. An effect on cartilage metabolism, evident as a rise in GAG levels was also noted, although it is unclear whether this could be considered a beneficial or detrimental effect. When directly comparing MSC-secretome to MSCs in this model results were comparable, indicating that MSC-secretome could be a viable off-the-shelf alternative to MSC treatment.
Collapse
Affiliation(s)
- Clodagh M. Kearney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- *Correspondence: Clodagh M. Kearney
| | - Sohrab Khatab
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerben M. van Buul
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Beacon Hospital, Dublin, Ireland
| | - Saskia G. M. Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Nicoline M. Korthagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Margot C. Labberté
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Laurie R. Goodrich
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States
| | - John D. Kisiday
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States
| | - P. R. Van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Pieter A. J. Brama
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Noordwijk KJ, Qin R, Diaz-Rubio ME, Zhang S, Su J, Mahal LK, Reesink HL. Metabolism and global protein glycosylation are differentially expressed in healthy and osteoarthritic equine carpal synovial fluid. Equine Vet J 2022; 54:323-333. [PMID: 33587757 PMCID: PMC8364562 DOI: 10.1111/evj.13440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Carpal osteochondral fragmentation and subsequent post-traumatic osteoarthritis (PTOA) are leading causes of wastage in the equine athlete. Identification of synovial fluid biomarkers could contribute to the diagnosis and understanding of osteoarthritis (OA) pathophysiology. OBJECTIVE The aim of this study was to identify differentially expressed metabolic and glycosylation pathways in synovial fluid from healthy horses and horses with naturally occurring carpal OA. STUDY DESIGN Cross-sectional, in vivo metabolomics and glycomics study. METHODS In cohort 1, carpal synovial fluid (n = 12 horses; n = 6 healthy, n = 6 OA) was analysed using high-resolution liquid chromatography mass spectrometry (LC-MS). In cohort 2 (n = 40 horses; n = 20 healthy, n = 20 OA), carpal synovial fluid was analysed using lectin microarrays and a lubricin sandwich ELISA. RESULTS Metabolomic analysis identified >4900 LC-MS features of which 84 identifiable metabolites were differentially expressed (P < .05) between healthy and OA joints, including key pathways related to inflammation (histidine and tryptophan metabolism), oxidative stress (arginine biosynthesis) and collagen metabolism (lysine metabolism). Principle Component Analysis and Partial Least Squares Discriminant Analysis demonstrated separation between healthy and OA synovial fluid. Lectin microarrays identified distinct glycosylation patterns between healthy and OA synovial fluid, including increased Core 1/Core 3 O-glycosylation, increased α-2,3 sialylation and decreased α-1,2 fucosylation in OA. O-glycans predominated over N-glycans in all synovial fluid samples, and synovial fluid lubricin was increased in OA joints as compared to controls. MAIN LIMITATIONS The sample size in cohort 1 was limited, and there is inherent variation in severity and duration of joint injury in naturally occurring OA. However, LC-MS identified up to 5000 unique features. CONCLUSIONS These data suggest new potential diagnostic and therapeutic targets for equine OA. Future targeted metabolomic and glycomic studies should be performed to verify these results. Lectin microarrays could be investigated as a potential screening tool for the diagnosis and therapeutic monitoring of equine OA.
Collapse
Affiliation(s)
- Kira J. Noordwijk
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rui Qin
- Department of Chemistry, New York University, New York, NY, USA,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Maria E. Diaz-Rubio
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, New York University, New York, NY, USA,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Sustained Intra-Articular Release and Biocompatibility of Tacrolimus (FK506) Loaded Monospheres Composed of [PDLA-PEG 1000]- b-[PLLA] Multi-Block Copolymers in Healthy Horse Joints. Pharmaceutics 2021; 13:pharmaceutics13091438. [PMID: 34575514 PMCID: PMC8465142 DOI: 10.3390/pharmaceutics13091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
There is an increasing interest in controlled release systems for local therapy in the treatment of human and equine joint diseases, aiming for optimal intra-articular concentrations with no systemic side effects. In this study, the intra-articular tolerability and suitability for local and sustained release of tacrolimus (FK506) from monospheres composed of [PDLA-PEG1000]-b-PLLA multiblock copolymers were investigated. Unloaded and tacrolimus-loaded (18.4 mg tacrolimus/joint) monospheres were injected into the joints of six healthy horses, with saline and hyaluronic acid (HA) in the contralateral joints as controls. Blood and synovial fluid were analysed for the tacrolimus concentration and biomarkers for inflammation and cartilage metabolism. After an initial burst release, sustained intra-articular tacrolimus concentrations (>20 ng/mL) were observed during the 42 days follow-up. Whole-blood tacrolimus levels were below the detectable level (<0.5 ng/mL). A transient inflammatory reaction was observed for all substances, evidenced by increases of the synovial fluid white blood cell count and total protein. Prostaglandin and glycosaminoglycan release were increased in joints injected with unloaded monospheres, which was mitigated by tacrolimus. Both tacrolimus-loaded monospheres and HA transiently increased the concentration of collagen II cleavage products (C2C). A histologic evaluation of the joints at the endpoint showed no pathological changes in any of the conditions. Together, these results indicate the good biocompatibility of intra-articular applied tacrolimus-loaded monospheres combined with prolonged local drug release while minimising the risk of systemic side effects. Further evaluation in a clinical setting is needed to determine if tacrolimus-loaded monospheres can be beneficial in the treatment of inflammatory joint diseases in humans and animals.
Collapse
|
8
|
Fatty Acids and Oxylipins in Osteoarthritis and Rheumatoid Arthritis-a Complex Field with Significant Potential for Future Treatments. Curr Rheumatol Rep 2021; 23:41. [PMID: 33913032 PMCID: PMC8081702 DOI: 10.1007/s11926-021-01007-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterized by abnormal lipid metabolism manifested as altered fatty acid (FA) profiles of synovial fluid and tissues and in the way dietary FA supplements can influence the symptoms of especially RA. In addition to classic eicosanoids, the potential roles of polyunsaturated FA (PUFA)-derived specialized pro-resolving lipid mediators (SPM) have become the focus of intensive research. Here, we summarize the current state of knowledge of the roles of FA and oxylipins in the degradation or protection of synovial joints. Recent Findings There exists discordance between the large body of literature from cell culture and animal experiments on the adverse and beneficial effects of individual FA and the lack of effective treatments for joint destruction in OA and RA patients. Saturated 16:0 and 18:0 induce mostly deleterious effects, while long-chain n-3 PUFA, especially 20:5n-3, have positive influence on joint health. The situation can be more complex for n-6 PUFA, such as 18:2n-6, 20:4n-6, and its derivative prostaglandin E2, with a combination of potentially adverse and beneficial effects. SPM analogs have future potential as analgesics for arthritic pain. Summary Alterations in FA profiles and their potential implications in SPM production may affect joint lubrication, synovial inflammation, pannus formation, as well as cartilage and bone degradation and contribute to the pathogeneses of inflammatory joint diseases. Further research directions include high-quality randomized controlled trials on dietary FA supplements and investigations on the significance of lipid composition of microvesicle membrane and cargo in joint diseases.
Collapse
|
9
|
Kearney CM, Korthagen NM, Plomp SGM, Labberté MC, de Grauw JC, van Weeren PR, Brama PAJ. Treatment effects of intra-articular triamcinolone acetonide in an equine model of recurrent joint inflammation. Equine Vet J 2020; 53:1277-1286. [PMID: 33280164 DOI: 10.1111/evj.13396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Intra-articular triamcinolone acetonide is a widely used treatment for joint inflammation despite limited scientific evidence of its efficacy. OBJECTIVES To investigate if intra-articular triamcinolone acetonide has sustained anti-inflammatory effects using an equine model of repeated joint inflammation. STUDY DESIGN Randomised controlled experimental study. METHOD For three consecutive cycles 2 weeks apart, inflammation was induced in both middle carpal joints of eight horses by injecting 0.25 ng lipopolysaccharide (LPS). After the first LPS injection only, treatment with 12 mg triamcinolone acetonide (TA) followed in one randomly assigned joint, while the contralateral joint was treated with sterile saline (control). Clinical parameters (composite welfare scores, joint effusion, joint circumference) were recorded and synovial fluid samples were analysed for various biomarkers (total protein, WBCC; PGE2 ; CCL2; TNFα; MMP; GAGs; C2C; CPII) at fixed timepoints (post injection hours 0, 8, 24, 72 and 168). The effects of time and treatment on clinical and synovial fluid parameters and the presence of time-treatment interactions were tested using a linear mixed model for repeated measures with horse as a random effect, and time and treatment as fixed effects. RESULTS The TA treated joints showed significantly higher peak synovial GAG concentrations (Difference in means 283.1875 µg/mL, 95% CI 179.8, 386.6, P < 0.000), and PGE2 levels (Difference in means 77.8025 pg/mL, 95% CI 21.2, 134.4, P < 0.007) after the first inflammation induction. Significantly lower TP levels were seen with TA treatment after the second induction (Difference in means -7.5 g/L, 95% CI -14.8, -0.20, P < 0.04) . Significantly lower WBCC levels were noted with TA treatment after the first (Difference in means -23.7125 × 109 cells/L, 95% CI -46.7, -0.7, P < 0.04) and second (Difference in means -35.95 × 109 cells/L, 95% CI -59.0, -12.9, P < 0.002) inflammation inductions. Significantly lower general MMP activity was also seen with TA treatment after the second inflammation inductions (Difference in means -51.65 RFU/s, 95% CI -92.4, -10.9, P < 0.01). MAIN LIMITATIONS This experimental study cannot fully reflect natural joint disease. CONCLUSIONS In this model, intra-articular TA seems to have some anti-inflammatory activity (demonstrated by reductions in TP, WBCC and general MMP activity) up to 2 weeks post treatment but not at 4 weeks. This anti-inflammatory effect appeared to outlast a shorter-lived, potentially detrimental effect illustrated by increased synovial GAG and PGE2 levels after the first induction.
Collapse
Affiliation(s)
- Clodagh M Kearney
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Nicoline M Korthagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia G M Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Margot C Labberté
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Janny C de Grauw
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - P R van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Pieter A J Brama
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Olagaray KE, Bradford BJ, Sordillo LM, Gandy JC, Mamedova LK, Swartz TH, Jackson TD, Persoon EK, Shugart CS, Youngs CR. Postpartum meloxicam administration alters plasma haptoglobin, polyunsaturated fatty acid, and oxylipid concentrations in postpartum ewes. J Anim Sci Biotechnol 2020; 11:68. [PMID: 32626575 PMCID: PMC7329520 DOI: 10.1186/s40104-020-00473-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/17/2020] [Indexed: 11/19/2022] Open
Abstract
Background Postpartum inflammation is a natural and necessary response; however, a dysfunctional inflammatory response can be detrimental to animal productivity. The objective of this study was to determine the effects of a non-steroidal anti-inflammatory drug (meloxicam) on ewe postpartum inflammatory response, ewe plasma polyunsaturated fatty acid and oxylipid concentrations, and lamb growth. Results After lambing, 36 Hampshire and Hampshire × Suffolk ewes were sequentially assigned within type of birth to control (n = 17) or meloxicam orally administered on d 1 and 4 of lactation (MEL; 90 mg, n = 19). Milk and blood samples were collected on d 1 (prior to treatment) and d 4. Milk glucose-6-phosphate was not affected by MEL. Plasma haptoglobin (Hp) concentrations were less for MEL ewes; control ewes with greater d 1 Hp concentrations had elevated Hp on d 4, but this was not the case for MEL-treated ewes. Treatment with MEL increased plasma arachidonic acid concentration by more than 4-fold in ewes rearing singles but decreased concentrations of 9,10-dihydroxyoctadecenoic acid, prostaglandin F2α, 8-iso-prostaglandin E2, and 8,9-dihydroxyeicosatetraenoic acid. Nine oxylipids in plasma had interactions of treatment with d 1 Hp concentration, all of which revealed positive associations between d 1 Hp and d 4 oxylipid concentrations for CON, but neutral or negative relationships for MEL. MEL decreased 13-hydroxyoctadecadienoic acid:13-oxooctadecadienoic acid ratio and tended to increase 9-hydroxyoctadecadienoic acid:9-oxooctadecadienoic acid ratio (both dependent on d 1 values), indicating progressive metabolism of linoleic acid-derived oxylipids occurred by enzymatic oxidation after MEL treatment. Meloxicam reduced oxylipids generated across oxygenation pathways, potentially due to an improved redox state. Conclusions Postpartum MEL treatment of ewes decreased plasma concentrations of Hp and several oxylipids, with the greatest impact in ewes with biomarkers reflecting a greater inflammatory state before treatment. Anti-inflammatory strategies may help resolve excessive postpartum inflammation in some dams.
Collapse
Affiliation(s)
- Katie E Olagaray
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506 USA
| | - Barry J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506 USA
| | - Lorraine M Sordillo
- College of Veterinary Medicine, Michigan State University, 2265K Anthony Hall, East Lansing, MI 48824-1225 USA
| | - Jeffery C Gandy
- College of Veterinary Medicine, Michigan State University, 2265K Anthony Hall, East Lansing, MI 48824-1225 USA
| | - Laman K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506 USA
| | - Turner H Swartz
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506 USA
| | - Trey D Jackson
- Department of Animal Science, Iowa State University, Ames, IA USA
| | - Emma K Persoon
- Department of Animal Science, Iowa State University, Ames, IA USA
| | | | - Curtis R Youngs
- Department of Animal Science, Iowa State University, Ames, IA USA
| |
Collapse
|
11
|
Gibson C, de Ruijter-Villani M, Bauersachs S, Stout TA. Asynchronous Embryo Transfer Followed by Comparative Transcriptomic Analysis of Conceptus Membranes and Endometrium Identifies Processes Important to the Establishment of Equine Pregnancy. Int J Mol Sci 2020; 21:E2562. [PMID: 32272720 PMCID: PMC7177982 DOI: 10.3390/ijms21072562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Preimplantation horse conceptuses require nutrients and signals from histotroph, the composition of which is regulated by luteal progesterone and conceptus-secreted factors. To distinguish progesterone and conceptus effects we shortened the period of endometrial progesterone-priming by asynchronous embryo transfer. Day 8 embryos were transferred to synchronous (day 8) or asynchronous (day 3) recipients, and RNA sequencing was performed on endometrium and conceptuses recovered 6 and 11 days later (embryo days 14 and 19). Asynchrony resulted in many more differentially expressed genes (DEGs) in conceptus membranes (3473) than endometrium (715). Gene ontology analysis identified upregulation in biological processes related to organogenesis and preventing apoptosis in synchronous conceptuses on day 14, and in cell adhesion and migration on day 19. Asynchrony also resulted in large numbers of DEGs related to 'extracellular exosome'. In endometrium, genes involved in immunity, the inflammatory response, and apoptosis regulation were upregulated during synchronous pregnancy and, again, many genes related to extracellular exosome were differentially expressed. Interestingly, only 14 genes were differentially expressed in endometrium recovered 6 days after synchronous versus 11 days after asynchronous transfer (day 14 recipient in both). Among these, KNG1 and IGFBP3 were consistently upregulated in synchronous endometrium. Furthermore bradykinin, an active peptide cleaved from KNG1, stimulated prostaglandin release by cultured trophectoderm cells. The horse conceptus thus responds to a negatively asynchronous uterus by extensively adjusting its transcriptome, whereas the endometrial transcriptome is modified only subtly by a more advanced conceptus.
Collapse
Affiliation(s)
- Charlotte Gibson
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands; (C.G.); (M.d.R.-V.)
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands; (C.G.); (M.d.R.-V.)
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, 8315 Lindau (ZH), Switzerland;
| | - Tom A.E. Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CM Utrecht, The Netherlands; (C.G.); (M.d.R.-V.)
| |
Collapse
|
12
|
Kohira T, Kita Y, Tokuoka SM, Shiba M, Satake M, Shimizu T. Characterization of supported liquid extraction as a sample pretreatment method for eicosanoids and related metabolites in biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:298-307. [PMID: 31260873 DOI: 10.1016/j.jchromb.2019.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/25/2019] [Accepted: 06/10/2019] [Indexed: 02/01/2023]
Abstract
Sample pretreatment is an important process in liquid chromatography-mass spectrometry-based quantitative lipidomics. Reversed-phase solid phase extraction (RP-SPE) has been widely used for analyzing various types of samples, including aqueous samples such as cell culture media, plasma, serum, urine, and other biological fluids. Because lipid mediators are often protein-bound, prior deproteinization is necessary for their effective recovery. Deproteinization is typically performed by the addition of organic solvents, which requires time-consuming evaporation-reconstitution, or dilution with aqueous solvents before RP-SPE; however, both of these approaches compromise the analytical performance. As a potential alternative, we attempted to utilize supported liquid extraction (SLE), an automation-compatible variant of liquid-liquid extraction, for the determination of eicosanoids and related metabolites in aqueous samples. We screened 81 different sample diluent-eluent conditions and found that the use of 0.1% formic acid-water as the diluent and 0.1% formic acid-methyl acetate as the eluent enabled the optimum recovery of a variety of eicosanoids, except for peptide leukotrienes. The optimized SLE method efficiently removed protein from human plasma, while phospholipids and neutral lipids were modestly recovered. Moreover, the proposed method exhibited a quantitative performance comparable to that of typical ordinary RP-SPE method in the analysis of human platelets stimulated with thrombin receptor-activating peptide 6. Thus, we propose SLE as an attractive option for rapid lipid mediator extraction from aqueous samples.
Collapse
Affiliation(s)
- Takahiro Kohira
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Central Blood Institute, Japanese Red Cross Society, 2-1-67 Tatsumi, Koto-ku, Tokyo 135-8521, Japan
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Shiba
- Central Blood Institute, Japanese Red Cross Society, 2-1-67 Tatsumi, Koto-ku, Tokyo 135-8521, Japan
| | - Masahiro Satake
- Central Blood Institute, Japanese Red Cross Society, 2-1-67 Tatsumi, Koto-ku, Tokyo 135-8521, Japan
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| |
Collapse
|
13
|
Mustonen AM, Käkelä R, Lehenkari P, Huhtakangas J, Turunen S, Joukainen A, Kääriäinen T, Paakkonen T, Kröger H, Nieminen P. Distinct fatty acid signatures in infrapatellar fat pad and synovial fluid of patients with osteoarthritis versus rheumatoid arthritis. Arthritis Res Ther 2019; 21:124. [PMID: 31118103 PMCID: PMC6532171 DOI: 10.1186/s13075-019-1914-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background Infrapatellar fat pad (IFP) has recently emerged as a potential source of inflammation in knee arthropathies. It has been proposed to be one source of adipocytokines, fatty acids (FA), and FA-derived lipid mediators that could contribute to the pathophysiological processes in the knee joint. Alterations in synovial fluid (SF) lipid composition have been linked to both osteoarthritis (OA) and rheumatoid arthritis (RA). The aim of the present study was to compare the FA signatures in the IFP and SF of RA and OA patients. Methods Pairs of IFP and SF samples were collected from the same knees of RA (n = 10) and OA patients (n = 10) undergoing total joint replacement surgery. Control SF samples (n = 6) were harvested during diagnostic or therapeutic arthroscopic knee surgery unrelated to RA or OA. The FA composition in the total lipids of IFP and SF was determined by gas chromatography with flame ionization and mass spectrometric detection. Results Arthropathies resulted in a significant reduction in the SF proportions of n-6 polyunsaturated FA (PUFA), more pronouncedly in OA than in RA. OA was also characterized with reduced percentages of 22:6n-3 and lower product/precursor ratios of n-3 PUFA. The proportions of total monounsaturated FA increased in both RA and OA SF. Regarding IFP, RA patients had lower proportions of 20:4n-6, total n-6 PUFA, and 22:6n-3, as well as lower product/precursor ratios of n-3 PUFA compared to OA patients. The average chain length of SF FA decreased in both diagnoses and the double bond index in OA. Conclusions The observed complex alterations in the FA signatures could have both contributed to but also limited the inflammatory processes and cartilage destruction in the RA and OA knees.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland.,Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE), University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Petri Lehenkari
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Surgery and Medical Research Center, Oulu University Hospital (OYS), P.O. Box 21, FI-90029, Oulu, Finland
| | - Johanna Huhtakangas
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Rheumatology Unit and Medical Research Center, Oulu University Hospital (OYS), P.O. Box 21, FI-90029, Oulu, Finland
| | - Sanna Turunen
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Surgery and Medical Research Center, Oulu University Hospital (OYS), P.O. Box 21, FI-90029, Oulu, Finland
| | - Antti Joukainen
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital (KYS), P.O. Box 100, FI-70029, Kuopio, Finland
| | - Tommi Kääriäinen
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital (KYS), P.O. Box 100, FI-70029, Kuopio, Finland
| | - Tommi Paakkonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Heikki Kröger
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital (KYS), P.O. Box 100, FI-70029, Kuopio, Finland
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| |
Collapse
|
14
|
Christmann U, Hite RD, Witonsky SG, Buechner-Maxwell VA, Wood PL. Evaluation of lipid markers in surfactant obtained from asthmatic horses exposed to hay. Am J Vet Res 2019; 80:300-305. [PMID: 30801214 DOI: 10.2460/ajvr.80.3.300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the lipidomic profile of surfactant obtained from horses with asthma at various clinical stages and to compare results with findings for healthy horses exposed to the same conditions. SAMPLE Surfactant samples obtained from 6 horses with severe asthma and 7 healthy horses. PROCEDURES Clinical evaluation of horses and surfactant analysis were performed. Samples obtained from horses with severe asthma and healthy horses before (baseline), during, and after exposure to hay were analyzed. Crude surfactant pellets were dried prior to dissolution in a solution of isopropanol:methanol:chloroform (4:2:1) containing 7.5mM ammonium acetate. Shotgun lipidomics were performed by use of high-resolution data acquisition on an ion-trap mass spectrometer. Findings were analyzed by use of an ANOVA with a Tukey-Kramer post hoc test. RESULTS Results of lipidomic analysis were evaluated to detect significant differences between groups of horses and among exposure statuses within groups of horses. Significantly increased amounts of cyclic phosphatidic acid (cPA) and diacylglycerol (DAG) were detected in surfactant from severely asthmatic horses during exposure to hay, compared with baseline and postexposure concentrations. Concentrations of cPA and DAG did not change significantly in healthy horses regardless of exposure status. CONCLUSIONS AND CLINICAL RELEVANCE cPA 16:0 and DAG 36:2 were 2 novel lipid mediators identified in surfactant obtained from asthmatic horses with clinical disease. These molecules were likely biomarkers of sustained inflammation. Further studies are needed to evaluate a possible correlation with disease severity and potential alterations in the plasma lipidomic profile of horses with asthma.
Collapse
|
15
|
Caron JP, Gandy JC, Brown JL, Sordillo LM. Omega-3 fatty acids and docosahexaenoic acid oxymetabolites modulate the inflammatory response of equine recombinant interleukin1β-stimulated equine synoviocytes. Prostaglandins Other Lipid Mediat 2019; 142:1-8. [PMID: 30836143 DOI: 10.1016/j.prostaglandins.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Accepted: 02/28/2019] [Indexed: 01/15/2023]
Abstract
Omega-3 fatty acid (n-3 PUFA) supplementation may have beneficial effects in certain chronic diseases, potentially including osteoarthritis. Favorable effects are attributed, in part, to downstream pro-resolving oxylipid metabolites. We investigated the role of n-3 PUFA and docosahexaenoic acid (DHA)-derived oxylipids (docosanoids) on equine synoviocyte metabolism. We hypothesized that n-3 PUFA and selected docosanoids would modulate inflammatory mediator gene expression by recombinant equine (re)IL-1β-stimulated synovial fibroblasts. Synoviocyte monolayer cultures were prepared from grossly normal equine carpal synovium. Cellular incorporation of eicosapentaenoic acid (EPA) and DHA was determined using LC-MS and docosanoid biosynthesis by LC-MS-MS. The influence of n-3 PUFA and docosanoids on osteoarthritis marker gene expression was determined by quantitative real time polymerase chain reaction (qPCR). Synoviocytes incorporated EPA and DHA in significant amounts and DHA treatment augmented the synthesis of several docosanoids. Synoviocyte cultures pre-treated with EPA or DHA followed by reIL-1β stimulation had significant reductions in expression of ADAMTS4, MMP-1, MMP-13, IL-1β, IL-6 and COX-2. The docosanoids resolvin D1 and D2, maresin 1 and protectin DX, alone and in combination, abrogated ADAMTS4, MMP-1, MMP-13, and IL-6 gene expression in reIL-1β-stimulated synoviocytes. Similarly, both resolvins and maresin 1 stifled COX-2 expression. Our results demonstrate that synoviocytes readily incorporate n-3 PUFA. DHA incorporation was sufficient for biosynthesis of significant concentrations of several docosanoids which modulated the synovial inflammatory response in vitro. These data indicate n-3 PUFA supplementation may prove useful in the prevention or treatment of osteoarthritis.
Collapse
Affiliation(s)
- John P Caron
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48823-1314, United States.
| | - Jeffrey C Gandy
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48823-1314, United States
| | - Jennifer L Brown
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48823-1314, United States
| | - Lorraine M Sordillo
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48823-1314, United States
| |
Collapse
|
16
|
Abstract
PURPOSE Lipid mediators of inflammation are a group of signaling molecules produced by various cells under physiological conditions and modulate the inflammatory process during various pathologic conditions. Although eicosanoids and F2-isoprostanes are recognized lipid mediators of inflammation, there is no consensus yet on the extraction and mass spectrometry (MS) method for their analysis in individual human tear samples. Thus, the aim of this study was to develop an optimal method for extraction of lipid mediators of inflammation in the tear film and evaluate MS techniques for their analysis. METHODS Basal tears were collected from each eye of 19 subjects using glass microcapillaries. Lipid extraction was performed using either varying concentrations of acidified methanol, a modified Folch method, or solid-phase extraction. Initially, an untargeted analysis of the extracts was performed using SCIEX TripleTOF 5600 mass spectrometer to identify any lipid mediators of inflammation (eicosanoids) and later a targeted analysis was performed using the SCIEX 6500 Qtrap to identify and quantify prostaglandins and isoprostanes. Mass spectra and chromatograms were analyzed using Peakview, XCMS, and Multiquant software. RESULTS Prostaglandins and isoprostanes were observed and quantified using the Qtrap mass spectrometer under multiple reaction monitoring (MRM) mode after solid-phase extraction. Extraction with acidified methanol along with the Folch method produced cleaner spectra during MS with the Triple time of flight (TOF) mass spectrometer. Lipid mediators of inflammation were not observed in any of the tear samples using the Triple TOF mass spectrometer. CONCLUSIONS Solid-phase extraction may be the method of choice for extraction of prostaglandins and isoprostanes in low volumes of tears. The SCIEX Qtrap 6500 in MRM mode may be suitable to identify and quantify similar lipid mediators of inflammation.
Collapse
|
17
|
Sandker MJ, Duque LF, Redout EM, Klijnstra EC, Steendam R, Kops N, Waarsing JH, van Weeren R, Hennink WE, Weinans H. Degradation, Intra-Articular Biocompatibility, Drug Release, and Bioactivity of Tacrolimus-Loaded Poly(d-l-lactide-PEG)-b-poly(l-lactide) Multiblock Copolymer-Based Monospheres. ACS Biomater Sci Eng 2018; 4:2390-2403. [DOI: 10.1021/acsbiomaterials.8b00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Maria J. Sandker
- Department of Orthopaedics, Erasmus Medical Centre, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
- Department of Orthopaedics, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Luisa F. Duque
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Everaldo M. Redout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Evelien C. Klijnstra
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Rob Steendam
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Nicole Kops
- Department of Orthopaedics, Erasmus Medical Centre, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Jan H. Waarsing
- Department of Orthopaedics, Erasmus Medical Centre, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Rene van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3512 JE Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopaedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, TUDelft, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
18
|
Kinkead RA, Elliott CT, Cannizzo FT, Biolatti B, Gadaj A, Mooney MH. Plasma metabolomic profiling based detection of drug specific responses to different bovine growth promoting regimes. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
O'Connor A, Brasher CJ, Slatter DA, Meckelmann SW, Hawksworth JI, Allen SM, O'Donnell VB. LipidFinder: A computational workflow for discovery of lipids identifies eicosanoid-phosphoinositides in platelets. JCI Insight 2017; 2:e91634. [PMID: 28405621 DOI: 10.1172/jci.insight.91634] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Accurate and high-quality curation of lipidomic datasets generated from plasma, cells, or tissues is becoming essential for cell biology investigations and biomarker discovery for personalized medicine. However, a major challenge lies in removing artifacts otherwise mistakenly interpreted as real lipids from large mass spectrometry files (>60 K features), while retaining genuine ions in the dataset. This requires powerful informatics tools; however, available workflows have not been tailored specifically for lipidomics, particularly discovery research. We designed LipidFinder, an open-source Python workflow. An algorithm is included that optimizes analysis based on users' own data, and outputs are screened against online databases and categorized into LIPID MAPS classes. LipidFinder outperformed three widely used metabolomics packages using data from human platelets. We show a family of three 12-hydroxyeicosatetraenoic acid phosphoinositides (16:0/, 18:1/, 18:0/12-HETE-PI) generated by thrombin-activated platelets, indicating crosstalk between eicosanoid and phosphoinositide pathways in human cells. The software is available on GitHub (https://github.com/cjbrasher/LipidFinder), with full userguides.
Collapse
Affiliation(s)
- Anne O'Connor
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| | - Christopher J Brasher
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| | - David A Slatter
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| | - Sven W Meckelmann
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| | - Jade I Hawksworth
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| | - Stuart M Allen
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Institute of Infection and Immunity, School of Medicine
| |
Collapse
|
20
|
Checa A, Bedia C, Jaumot J. Lipidomic data analysis: Tutorial, practical guidelines and applications. Anal Chim Acta 2015; 885:1-16. [DOI: 10.1016/j.aca.2015.02.068] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
|
21
|
Hong SH, Han JE, Ko JS, Do SH, Lee EH, Cho MH. Quantitative determination of 12-hydroxyeicosatetraenoic acids by chiral liquid chromatography tandem mass spectrometry in a murine atopic dermatitis model. J Vet Sci 2015; 16:307-15. [PMID: 25797298 PMCID: PMC4588016 DOI: 10.4142/jvs.2015.16.3.307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/07/2015] [Indexed: 11/20/2022] Open
Abstract
Atopic dermatitis, one of the most important skin diseases, is characterized by both skin barrier impairment and immunological abnormalities. Although several studies have demonstrated the significant relationship between atopic dermatitis and immunological abnormalities, the role of hydroxyeicosatetraenoic acids (HETE) in atopic dermatitis remains unknown. To develop chiral methods for characterization of 12-HETE enantiomers in a 1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis mouse model and evaluate the effects of 12-HETE on atopic dermatitis, BALB/c mice were treated with either DNCB or acetone/olive oil (AOO) to induce atopic dermatitis, after which 12(R)- and 12(S)-HETEs in the plasma, skin, spleen, and lymph nodes were quantified by chiral liquid chromatography-tandem mass spectrometry. 12(R)- and 12(S)-HETEs in biological samples of DNCB-induced atopic dermatitis mice increased significantly compared with the AOO group, reflecting the involvement of 12(R)- and 12(S)-HETEs in atopic dermatitis. These findings indicate that 12(R)- and 12(S)-HETEs could be a useful guide for understanding the pathogenesis of atopic dermatitis.
Collapse
Affiliation(s)
- Seong-Ho Hong
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. J Neuroimmunol 2015; 279:25-32. [DOI: 10.1016/j.jneuroim.2015.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/09/2014] [Accepted: 01/05/2015] [Indexed: 12/31/2022]
|
23
|
Tuohetahuntila M, Spee B, Kruitwagen HS, Wubbolts R, Brouwers JF, van de Lest CH, Molenaar MR, Houweling M, Helms JB, Vaandrager AB. Role of long-chain acyl-CoA synthetase 4 in formation of polyunsaturated lipid species in hepatic stellate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:220-30. [PMID: 25500141 DOI: 10.1016/j.bbalip.2014.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/17/2014] [Accepted: 12/01/2014] [Indexed: 02/02/2023]
Abstract
Hepatic stellate cell (HSC) activation is a critical step in the development of chronic liver disease. We previously observed that the levels of triacylglycerol (TAG) species containing long polyunsaturated fatty acids (PUFAs) are increased in in vitro activated HSCs. Here we investigated the cause and consequences of the rise in PUFA-TAGs by profiling enzymes involved in PUFA incorporation. We report that acyl CoA synthetase (ACSL) type 4, which has a preference for PUFAs, is the only upregulated ACSL family member in activated HSCs. Inhibition of the activity of ACSL4 by siRNA-mediated knockdown or addition of rosiglitazone specifically inhibited the incorporation of deuterated arachidonic acid (AA-d8) into TAG in HSCs. In agreement with this, ACSL4 was found to be partially localized around lipid droplets (LDs) in HSCs. Inhibition of ACSL4 also prevented the large increase in PUFA-TAGs in HSCs upon activation and to a lesser extent the increase of arachidonate-containing phosphatidylcholine species. Inhibition of ACSL4 by rosiglitazone was associated with an inhibition of HSC activation and prostaglandin secretion. Our combined data show that upregulation of ACSL4 is responsible for the increase in PUFA-TAG species during activation of HSCs, which may serve to protect cells against a shortage of PUFAs required for eicosanoid secretion.
Collapse
Affiliation(s)
- Maidina Tuohetahuntila
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| | - Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| | - Richard Wubbolts
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Chris H van de Lest
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Martijn R Molenaar
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Martin Houweling
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| | - Arie B Vaandrager
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands.
| |
Collapse
|
24
|
Bastiaansen-Jenniskens YM, Wei W, Feijt C, Waarsing JH, Verhaar JAN, Zuurmond AM, Hanemaaijer R, Stoop R, van Osch GJVM. Stimulation of fibrotic processes by the infrapatellar fat pad in cultured synoviocytes from patients with osteoarthritis: a possible role for prostaglandin f2α. ACTA ACUST UNITED AC 2013; 65:2070-80. [PMID: 23666869 DOI: 10.1002/art.37996] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 04/24/2013] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Stiffening of the joint is a feature of knee osteoarthritis (OA) that can be caused by fibrosis of the synovium. The infrapatellar fat pad (IPFP) present in the knee joint produces immune-modulatory and angiogenic factors. The goal of the present study was to investigate whether the IPFP can influence fibrotic processes in synovial fibroblasts, and to determine the role of transforming growth factor β (TGFβ) and prostaglandin F2α (PGF2α ) in these processes. METHODS Batches of fat-conditioned medium (FCM) were made by culturing pieces of IPFP obtained from the knees of 13 patients with OA. Human OA fibroblast-like synoviocytes (FLS) (from passage 3) were cultured in FCM with or without inhibitors of TGFβ/activin receptor-like kinase 5 or PGF2α for 4 days. The FLS were analyzed for production of collagen and expression of the gene for procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2; encoding lysyl hydroxylase 2b, an enzyme involved in collagen crosslinking) as well as the genes encoding α-smooth muscle actin and type I collagen α1 chain. In parallel, proliferation and migration of the synoviocytes were analyzed. RESULTS Collagen production and PLOD2 gene expression by the FLS were increased 1.8-fold (P < 0.05) and 6.0-fold (P < 0.01), respectively, in the presence of FCM, relative to control cultures without FCM. Moreover, the migration and proliferation of synoviocytes were stimulated by FCM. Collagen production was positively associated with PGF2α levels in the FCM (R = 0.89, P < 0.05), and inhibition of PGF2α levels reduced the extent of FCM-induced collagen production and PLOD2 expression. Inhibition of TGFβ signaling had no effect on the profibrotic changes. CONCLUSION These results indicate that the IPFP can contribute to the development of synovial fibrosis in the knee joint by increasing collagen production, PLOD2 expression, cell proliferation, and cell migration. In addition, whereas the findings showed that TGFβ is not involved, the more recently discovered profibrotic factor PGF2α appears to be partially involved in the regulation of profibrotic changes.
Collapse
|
25
|
Markworth JF, Vella L, Lingard BS, Tull DL, Rupasinghe TW, Sinclair AJ, Maddipati KR, Cameron-Smith D. Human inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1281-96. [PMID: 24089379 DOI: 10.1152/ajpregu.00128.2013] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0-3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a biological active inflammatory resolution program, regulated by proresolving lipid mediators during postexercise recovery.
Collapse
Affiliation(s)
- James F Markworth
- School of Exercise and Nutrition Science, Deakin University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jiao J, Zhang Y. Transgenic Biosynthesis of Polyunsaturated Fatty Acids: A Sustainable Biochemical Engineering Approach for Making Essential Fatty Acids in Plants and Animals. Chem Rev 2013; 113:3799-814. [DOI: 10.1021/cr300007p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jingjing Jiao
- Chronic Disease Research Institute,
Department of Nutrition and Food Hygiene, School of Public Health,
Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Department of Food Science and
Nutrition, School of Biosystems Engineering and Food Science, Zhejiang
University, Hangzhou 310058, China
| |
Collapse
|
27
|
Qu F, Wu CS, Hou JF, Jin Y, Zhang JL. Sphingolipids as new biomarkers for assessment of delayed-type hypersensitivity and response to triptolide. PLoS One 2012; 7:e52454. [PMID: 23300675 PMCID: PMC3530451 DOI: 10.1371/journal.pone.0052454] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/19/2012] [Indexed: 11/23/2022] Open
Abstract
Background Hypersensitivity diseases are associated with many severe human illnesses, including leprosy and tuberculosis. Emerging evidence suggests that the pathogenesis and pathological mechanisms of treating these diseases may be attributable to sphingolipid metabolism. Methods High performance liquid chromatography-tandem mass spectrometry was employed to target and measure 43 core sphingolipids in the plasma, kidneys, livers and spleens of BALB/c mice from four experimental groups: control, delayed-type hypersensitivity (DTH) model, DTH+triptolide, and control+triptolide. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to identify potential biomarkers associated with variance between groups. Relationships between the identified biomarkers and disease markers were evaluated by Spearman correlation. Results As a treatment to hypersensitivity disease, triptolide significantly inhibit the ear swelling and recover the reduction of splenic index caused by DTH. The sphingolipidomic result revealed marked alterations in sphingolipid levels between groups that were associated with the effects of the disease and triptolide treatment. Based on this data, 23 potential biomarkers were identified by OPLS-DA, and seven of these biomarkers correlated markedly with the disease markers (p<0.05) by Spearman correlation. Conclusions These data indicate that differences in sphingolipid levels in plasma and tissues are related to DTH and treatment with triptolide. Restoration of proper sphingolipid levels may attribute to the therapeutic effect of triptolide treatment. Furthermore, these findings demonstrate that targeted sphingolipidomic analysis followed by multivariate analysis presents a novel strategy for the identification of biomarkers in biological samples.
Collapse
Affiliation(s)
- Feng Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cai-Sheng Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Feng Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
Lester GD, Rice BL. Effects of leukotriene C4 on the bioelectric properties and ion transport of equine tracheal epithelium. Am J Vet Res 2012; 73:2007-12. [PMID: 23176432 DOI: 10.2460/ajvr.73.12.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine effects of leukotriene (LT) C(4) on ion transport across equine tracheal epithelium. Sample-Tracheal epithelium from cadavers of 24 horses considered free of respiratory tract disease. PROCEDURES Mucosae were mounted into Ussing chambers, and short-circuit current (I(sc)) was monitored over time. Effects of LTC(4) were examined for various conditions, including addition of amiloride (10μM) to the mucosal bath solution, addition of bumetanide (10μM) to the serosal bath solution, addition of barium (1mM) to the serosal bath solution, and substitution of gluconate for chloride and HEPES for bicarbonate in bath solutions. Electrolyte transport was assessed via (22)Na and (36)Cl isotope fluxes. RESULTS Addition of LTC(4) (50nM) to the serosal bath solution caused an increase in I(sc) for basal conditions and a larger increase after pretreatment with amiloride. The increase was negated in part by the addition of bumetanide to the serosal bath solution and further reduced by substitution of HEPES for bicarbonate in bath solutions. Remaining current was reduced to values less than those before treatment with LTC(4) by the addition of barium to the serosal solution. There was a small increase in I(sc) after the addition of amiloride and substitution of gluconate for chloride. Radioisotope flux indicated that addition of LTC(4) to the serosal bath solution increased chloride secretion and reduced sodium absorption. CONCLUSIONS AND CLINICAL RELEVANCE LTC(4) stimulated chloride secretion through a predominately bumetanide-sensitive pathway, with a smaller contribution from a bicarbonate-dependent pathway. Thus, LTC(4) appears to be a potential mediator of airway hypersecretion in horses.
Collapse
Affiliation(s)
- Guy D Lester
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
29
|
Giera M, Ioan-Facsinay A, Toes R, Gao F, Dalli J, Deelder AM, Serhan CN, Mayboroda OA. Lipid and lipid mediator profiling of human synovial fluid in rheumatoid arthritis patients by means of LC-MS/MS. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1415-24. [PMID: 22841830 DOI: 10.1016/j.bbalip.2012.07.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/04/2012] [Accepted: 07/13/2012] [Indexed: 12/20/2022]
Abstract
Human synovial fluid (SF) provides nutrition and lubrication to the articular cartilage. Particularly in arthritic diseases, SF is extensively accumulating in the synovial junction. During the last decade lipids have attracted considerable attention as their role in the development and resolution of diseases became increasingly recognized. Here, we describe a capillary LC-MS/MS screening platform that was used for the untargeted screening of lipids present in human SF of rheumatoid arthritis (RA) patients. Using this platform we give a detailed overview of the lipids and lipid-derived mediators present in the SF of RA patients. Almost 70 different lipid components from distinct lipid classes were identified and quantification was achieved for the lysophosphatidylcholine and phosphatidylcholine species. In addition, we describe a targeted LC-MS/MS lipid mediator metabolomics strategy for the detection, identification and quantification of maresin 1, lipoxin A(4) and resolvin D5 in SF from RA patients. Additionally, we present the identification of 5S,12S-diHETE as a major marker of lipoxygenase pathway interactions in the investigated SF samples. These results are the first to provide a comprehensive approach to the identification and profiling of lipids and lipid mediators present in SF and to describe the presence of key anti-inflammatory and pro-resolving lipid mediators identified in SF from RA patients.
Collapse
Affiliation(s)
- Martin Giera
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Scott JL, Musselman CA, Adu-Gyamfi E, Kutateladze TG, Stahelin RV. Emerging methodologies to investigate lipid-protein interactions. Integr Biol (Camb) 2012; 4:247-58. [PMID: 22327461 DOI: 10.1039/c2ib00143h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cellular membranes are composed of hundreds of different lipids, ion channels, receptors and scaffolding complexes that act as signalling and trafficking platforms for processes fundamental to life. Cellular signalling and membrane trafficking are often regulated by peripheral proteins, which reversibly interact with lipid molecules in highly regulated spatial and temporal fashions. In most cases, one or more modular lipid-binding domain(s) mediate recruitment of peripheral proteins to specific cellular membranes. These domains, of which more than 10 have been identified since 1989, harbour structurally selective lipid-binding sites. Traditional in vitro and in vivo studies have elucidated how these domains coordinate their cognate lipids and thus how the parent proteins associate with membranes. Cellular activities of peripheral proteins and subsequent physiological processes depend upon lipid binding affinities and selectivity. Thus, the development of novel sensitive and quantitative tools is essential in furthering our understanding of the function and regulation of these proteins. As this field expands into new areas such as computational biology, cellular lipid mapping, single molecule imaging, and lipidomics, there is an urgent need to integrate technologies to detail the molecular architecture and mechanisms of lipid signalling. This review surveys emerging cellular and in vitro approaches for studying protein-lipid interactions and provides perspective on how integration of methodologies directs the future development of the field.
Collapse
Affiliation(s)
- Jordan L Scott
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|