1
|
Lan BQ, Wang YJ, Yu SX, Liu W, Liu YJ. Physical effects of 3-D microenvironments on confined cell behaviors. Am J Physiol Cell Physiol 2024; 327:C1192-C1201. [PMID: 39246142 DOI: 10.1152/ajpcell.00288.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Cell migration is a fundamental and functional cellular process, influenced by a complex microenvironment consisting of different cells and extracellular matrix. Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instructs cell movement. Here, we explore various examples of three-dimensional microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.
Collapse
Affiliation(s)
- Bao-Qiong Lan
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, the People's Republic of China
| |
Collapse
|
2
|
Surgical approach for appendicitis in neutropenia: a case report and review of the literature. Surg Case Rep 2022; 8:208. [PMID: 36394682 PMCID: PMC9672175 DOI: 10.1186/s40792-022-01563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute appendicitis is a common abdominal pathology, particularly in younger patients presenting with abdominal pain. The clinical presentation is typically characterized by right lower quadrant pain (with local peritonitis) accompanied by fever and nausea. In neutropenic patients it is challenging to diagnose acute appendicitis. It is much more challenging because the characteristic symptoms are different, and diagnosis may be delayed or missed. CASE PRESENTATION We present the case of a 33-year-old Caucasian male patient with fever, abdominal pain, and an absolute granulocyte count of 0 × 109/L. Abdominal CT demonstrated an uncomplicated acute appendicitis. We initiated a conservative in-hospital treatment with intravenous antibiotic therapy and simultaneous bone marrow stimulation, with close monitoring. On day three, there was evidence of monocyte increase, one of the first signs of bone marrow regeneration, and delayed laparoscopic appendectomy was performed. The perioperative and postoperative course was uneventful. CONCLUSION We discuss the different treatment strategies in patients with neutropenia presenting with acute appendicitis (i.e., conservative management, delayed appendectomy, and immediate appendectomy) based on our experience and a review of the literature. In summary, delayed laparoscopic appendectomy at the onset of granulocyte regeneration under antibiotic and G-CSF therapy represents a viable surgical option for adults as well as for children and should be discussed compared with conservative therapy.
Collapse
|
3
|
Serwer P, Wright ET, Hunter B. Additions to Alpha-Sheet Based Hypotheses for the Cause of Alzheimer's Disease. J Alzheimers Dis 2022; 88:429-438. [PMID: 35662126 DOI: 10.3233/jad-220311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein amyloid-β (Aβ) oligomers with β-sheet-like backbone (β-structured) form extracellular amyloid plaques associated with Alzheimer's disease (AD). However, the relationship to AD is not known. Some investigations suggest that the toxic Aβ component has α-sheet-like backbone (α-structured) subsequently detoxified by intracellular α-to-β conversion before plaque formation. Our objective is to compare this latter hypothesis with observations made by electron microscopy of thin sections of AD-cerebral cortex. We observe irregular, 200-2,000 nm, intracellular, lipofuscin-like inclusions. Some are light-staining and smooth. Others are dark-staining and made granular by fibers that are usually overlapping and are sometimes individually seen. Aspects unusual for lipofuscin include 1) dark and light inclusions interlocking as though previously one inclusion, 2) dark inclusion-contained 2.6 nm thick sub-fibers that are bent as though α-structured, and 3) presence of inclusions in lysosomes and apparent transfer of dark inclusion material to damaged, nearby lysosomal membranes. These data suggest the following additions to α-structure-based hypotheses: 1) Lipofuscin-associated, α-structured protein toxicity to lysosomal membranes is in the chain of AD causation; 2) α-to-β detoxification of α-structured protein occurs in lipofuscin and causes dark-to-light transition that, when incomplete, is the origin of cell-to-cell transmission essential for development of AD.
Collapse
Affiliation(s)
- Philip Serwer
- The University of Texas Health Center, San Antonio, TX, USA
| | - Elena T Wright
- The University of Texas Health Center, San Antonio, TX, USA
| | - Barbara Hunter
- The University of Texas Health Center, San Antonio, TX, USA
| |
Collapse
|
4
|
Park S, Jung WH, Pittman M, Chen J, Chen Y. The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. J Biomech Eng 2020; 142:100804. [PMID: 32803227 PMCID: PMC7477718 DOI: 10.1115/1.4048110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Cells sense biophysical cues in the micro-environment and respond to the cues biochemically and biophysically. Proper responses from cells are critical to maintain the homeostasis in the body. Abnormal biophysical cues will cause pathological development in the cells; pathological or aging cells, on the other hand, can alter their micro-environment to become abnormal. In this minireview, we discuss four important biophysical cues of the micro-environment-stiffness, curvature, extracellular matrix (ECM) architecture and viscosity-in terms of their roles in health, aging, and diseases.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Matthew Pittman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
5
|
Leppkes M, Schick M, Hohberger B, Mahajan A, Knopf J, Schett G, Muñoz LE, Herrmann M. Updates on NET formation in health and disease. Semin Arthritis Rheum 2020; 49:S43-S48. [PMID: 31779852 DOI: 10.1016/j.semarthrit.2019.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022]
Abstract
Following a recent presentation at ATT Mallorca in May 2019, this paper gives insight into the current research of neutrophil extracellular traps (NETs) and their role in conditions of health and disease. Though NETs reportedly support disease progression and play a role in the development of autoimmune diseases, we argue that NETs are mandatory for the mammalian immune system. They are especially important to patrol and surveil outer and inner body surfaces and are capable to perform major anti-microbial activities. Neutrophils are the first cells to be recruited to wounds, where they form NETs and aggregated NETs (aggNETs). The latter close the wounds and are ever-present in skinfolds, where the integrity of the skin is impaired. On infected ocular surfaces NETs form an antimicrobial barrier, which prevents bacterial dissemination into the brain. In the oral cavity, NETs display anti-bacterial properties. Although NETs on internal body surfaces like ducts and vessels offer superficial surveillance, exaggerated aggNET formation may directly block vessels and ducts and thus cause thrombi and ductal occlusion, respectively. In the case of biliopancreatic ducts, clogging by aggNETs may even cause acute pancreatitis. Insufficient clearance of apoptotic remnants and NETs can lead to autoimmune diseases or unwanted, chronic inflammation. To prevent this, macrophages cloak dead cells, while apoptotic cells are cleared. We conclude that neutrophils, NETs and aggNETs can be considered double edged swords that orchestrate the innate immune response but carry the risk to precipitate autoimmunity and epithelial damage.
Collapse
Affiliation(s)
- Moritz Leppkes
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 1 - Gastroenterology, Pneumology and Endocrinology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Maximilian Schick
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| | - Bettina Hohberger
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Ophtalmology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| | - Aparna Mahajan
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| | - Jasmin Knopf
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| | - Georg Schett
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| | - Luis E Muñoz
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany.
| | - Martin Herrmann
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, 90154 Erlangen, Germany
| |
Collapse
|
6
|
Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? ACTA ACUST UNITED AC 2013; 198:773-83. [PMID: 22945932 PMCID: PMC3432757 DOI: 10.1083/jcb.201203170] [Citation(s) in RCA: 724] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are made of processed chromatin bound to granular and selected cytoplasmic proteins. NETs are released by white blood cells called neutrophils, maybe as a last resort, to control microbial infections. This release of chromatin is the result of a unique form of cell death, dubbed “NETosis.” Here we review our understanding of how NETs are made, their function in infections and as danger signals, and their emerging importance in autoimmunity and coagulation.
Collapse
Affiliation(s)
- Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
| | | |
Collapse
|