1
|
Shi J, Chen L, Wang X, Ma X. SIRT6 inhibits endoplasmic reticulum stress-mediated ferroptosis by activating Nrf2/HO-1 signaling to alleviate osteoarthritis. Inflamm Res 2025; 74:35. [PMID: 39928137 DOI: 10.1007/s00011-025-01998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a prevalent joint disease featured by articular cartilage destruction, causing a huge socio-economic burden worldwide. Repressing endoplasmic reticulum stress (ERS)-mediated ferroptosis can alleviate the progression of OA. Sirtuin 6 (SIRT6) has been shown to suppress OA, but whether SIRT6 can regulate ferroptosis in OA through ERS remains unclear. METHODS In this study, both in vivo and in vitro models of OA were constructed. Micro-CT scans and three-dimensional reconstruction were used to observe the structural injury of knee joint in mice. H&E, TB, SOFG and TUNEL staining were employed to conduct pathological examination of cartilage tissues. The levels of inflammatory factors were analyzed using ELISA. Besides, ERS was assessed by detecting the levels of ERS-related proteins using immunohistochemistry, immunoblotting and immunofluorescence staining. Iron deposition in cartilage tissues was tested by prussian blue staining. Moreover, the contents of intracellular ROS, lipid ROS and Fe2+ were evaluated in IL-1β-stimulated C28/I2 cells. Finally, ML385 (an inhibitor of Nrf2) or tunicamycin (an agonist of ERS) was added to C28/I2 cells to elucidate the exact mechanism. RESULTS SIRT6 upregulation reduced the structural injury and inflammation in cartilage tissues of OA mice. ERS and ferroptosis were inhibited by SIRT6 overexpression in cartilage tissues of OA mice and C28/I2 cells exposed to IL-1β. Additionally, SIRT6 upregulation activated Nrf2/HO-1 signaling, as evidenced by elevated nuclear Nrf2 and HO-1 expression. Further, ML385 treatment attenuated the impacts of SIRT6 overexpression on inflammation, ERS and ferroptosis in C28/I2 cells under IL-1β conditions. Particularly, tunicamycin intervention blocked the effects of SIRT6 upregulation on ferroptosis in IL-1β-treated C28/I2 cells. CONCLUSIONS Collectively, SIRT6 inhibits ERS-medicated ferroptosis through activation of Nrf2/HO-1 pathway in chondrocytes to alleviate OA.
Collapse
Affiliation(s)
- Jiaqi Shi
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Li Chen
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Xu Wang
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China
| | - Xin Ma
- Orthopedic Department, Huashan Hospital Affiliated to Fudan University, 12 Urumqi Middle Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
2
|
Liu N, Jiang F, Feng Z, Mei S, Cui Y, Zheng Y, Yang W, Wang B, Zhang W, Xie J, Zhang N. MgO@SiO 2 nanocapsules: a controlled magnesium ion release system for targeted inhibition of osteoarthritis progression. NANOSCALE ADVANCES 2025:d4na00900b. [PMID: 39911730 PMCID: PMC11791780 DOI: 10.1039/d4na00900b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by degenerative changes in articular cartilage and chronic inflammation. Recent studies suggest that intra-articular (i.a.) injection of magnesium salts holds promise as a therapeutic approach for OA. However, the rapid diffusion of magnesium ions limits their efficacy, resulting in a short duration of action. To overcome this limitation, we developed a nanoparticle delivery system using MgO@SiO2 core/shell nanoparticles, designed as a depot for the controlled release of magnesium ions. Electron microscopy confirmed the formation of the core/shell structure with silica shells of varying thickness. Release studies demonstrated that the silica coating effectively slows nanoparticle degradation, extending magnesium release to over 72 hours. In a rabbit OA model, i.a. injection of these nanocapsules significantly mitigated the pathological progression of OA within four weeks without inducing systemic toxicity. Immunohistochemical analysis further revealed that MgO@SiO2 nanocapsules alleviate the inflammatory response in OA cartilage by inhibiting the NF-κB/p65 signaling pathway. In summary, this study confirms the potential of intra-articular magnesium supplementation as a therapeutic option for OA and introduces a novel approach to enhance the delivery and efficacy of magnesium ions in OA treatment, addressing a relatively underexplored area in the field.
Collapse
Affiliation(s)
- Na Liu
- Affiliated Xinhua Hospital of Dalian University Dalian Liaoning 116000 China
| | - Fangchao Jiang
- Department of Chemistry of University of Georgia Athens Georgia 30602 USA
| | - Zhizi Feng
- Department of Chemistry of University of Georgia Athens Georgia 30602 USA
| | - Sen Mei
- Affiliated Xinhua Hospital of Dalian University Dalian Liaoning 116000 China
| | - Yingna Cui
- Department of Chemistry of Dalian University Dalian Liaoning 116000 China
| | - Yu Zheng
- Affiliated Xinhua Hospital of Dalian University Dalian Liaoning 116000 China
| | - Wei Yang
- Department of Chemistry of University of Georgia Athens Georgia 30602 USA
| | - Benjie Wang
- Affiliated Xinhua Hospital of Dalian University Dalian Liaoning 116000 China
| | - Weizhong Zhang
- Department of Chemistry of University of Georgia Athens Georgia 30602 USA
| | - Jin Xie
- Department of Chemistry of University of Georgia Athens Georgia 30602 USA
| | - Nan Zhang
- Affiliated Xinhua Hospital of Dalian University Dalian Liaoning 116000 China
| |
Collapse
|
3
|
Zeng D, Umar M, Zhu Z, Pan H, Lu WW, Xiao G, Chen Y, Tong L, Chen D. Development of novel osteoarthritis therapy by targeting AMPK-β-catenin-Runx2 signaling. Genes Dis 2025; 12:101247. [PMID: 39552787 PMCID: PMC11566674 DOI: 10.1016/j.gendis.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/06/2024] [Accepted: 01/25/2024] [Indexed: 11/19/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating chronic joint disease affecting large populations of patients, especially the elderly. The pathological mechanisms of OA are currently unknown. Multiple risk factors are involved in OA development. Among these risk factors, alterations of mechanical loading in the joint leading to changes in biological signaling pathways have been known as a key event in OA development. The importance of AMPK-β-catenin-Runx2 signaling in the initiation and progression of OA has been recognized in recent years. In this review, we discuss the recent progress in understanding the role of this signaling pathway and the underlying interaction mechanisms during OA development. We also discuss the drug development aiming to target this signaling pathway for OA treatment.
Collapse
Affiliation(s)
- Daofu Zeng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haobo Pan
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, Guangdong 518071, China
| | - William W. Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
4
|
Hecht JT, Veerisetty AC, Hossain MG, Patra D, Carrer M, Chiu F, Relic D, Jafar-nejad P, Posey KL. Loss of CHOP Prevents Joint Degeneration and Pain in a Mouse Model of Pseudoachondroplasia. Int J Mol Sci 2024; 26:16. [PMID: 39795874 PMCID: PMC11720453 DOI: 10.3390/ijms26010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
Pseudoachondroplasia (PSACH), a severe dwarfing condition characterized by impaired skeletal growth and early joint degeneration, results from mutations in cartilage oligomeric matrix protein (COMP). These mutations disrupt normal protein folding, leading to the accumulation of misfolded COMP in chondrocytes. The MT-COMP mouse is a murine model of PSACH that expresses D469del human COMP in response to doxycycline and replicates the PSACH chondrocyte and clinical pathology. The basis for the mutant-COMP pathology involves endoplasmic reticulum (ER) stress signaling through the PERK/eIF2α/CHOP pathway. C/EBP homologous protein (CHOP), in conjunction with a TNFα inflammatory process, upregulates mTORC1, hindering autophagy clearance of mutant COMP protein. Life-long joint pain/degeneration diminishes quality of life, and treatments other than joint replacements are urgently needed. To assess whether molecules that reduce CHOP activity should be considered as a potential treatment for PSACH, we evaluated MT-COMP mice with 50% CHOP (MT-COMP/CHOP+/-), antisense oligonucleotide (ASO)-mediated CHOP knockdown, and complete CHOP ablation (MT-COMP/CHOP-/-). While earlier studies demonstrated that loss of CHOP in MT-COMP mice reduced intracellular retention, inflammation, and growth plate chondrocyte death, we now show that it did not normalize limb growth. ASO treatment reduced CHOP mRNA by approximately 60%, as measured by RT-qPCR, but did not improve limb length similar to MT-COMP/CHOP+/-. Interestingly, both 50% genetic reduction and complete loss of CHOP alleviated pain, while total ablation of CHOP in MT-COMP mice was necessary to preserve joint health. These results indicate that (1) CHOP reduction therapy is not an effective strategy for improving limb length and (2) pain and chondrocyte pathology are more responsive to intervention than the prevention of joint damage.
Collapse
Affiliation(s)
- Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School UTHealth, Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
- School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Alka C. Veerisetty
- Department of Pediatrics, McGovern Medical School UTHealth, Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Mohammad G. Hossain
- Department of Pediatrics, McGovern Medical School UTHealth, Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Michele Carrer
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA; (M.C.); (D.R.); (P.J.)
| | - Frankie Chiu
- Department of Pediatrics, McGovern Medical School UTHealth, Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| | - Dorde Relic
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA; (M.C.); (D.R.); (P.J.)
| | - Paymaan Jafar-nejad
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA; (M.C.); (D.R.); (P.J.)
| | - Karen L. Posey
- Department of Pediatrics, McGovern Medical School UTHealth, Houston, TX 77030, USA; (J.T.H.); (A.C.V.); (M.G.H.); (F.C.)
| |
Collapse
|
5
|
Tian M, Cao H, Gao H, Zhu L, Wu Y, Li G. Rotenone-induced cell apoptosis via endoplasmic reticulum stress and PERK-eIF2α-CHOP signalling pathways in TM3 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116972. [PMID: 39232300 DOI: 10.1016/j.ecoenv.2024.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Rotenone (ROT), a widely used natural pesticide, has an uncertain effect on reproductive toxicity. In this study, we used 20 mice distributed randomly into four groups, with each group receiving ROT doses of 0, 2, 4, and 8 mg/kg/day for 28 days. The results demonstrated that ROT induced significant testicular damage, including impaired spermatogenesis, inhibition of testosterone synthesis, and apoptosis of Leydig cells. Additionally, ROT disrupted the normal ultrastructure of the endoplasmic reticulum (ER) in testicular tissue, leading to ER stress in Leydig cells. To further explore whether ROT-induced apoptosis in Leydig cells is related to ER stress, the mouse Leydig cell line (TM3 cells) was treated with ROT at 0, 250, 500, and 1000 nM. ROT inhibited TM3 cell viability, induced cytotoxicity, and reduced testosterone content in the culture supernatants. Furthermore, ROT treatment triggered apoptosis in TM3 cells by activating ER stress and the PERK-eIF2α-CHOP signalling pathway. Pre-treatment of TM3 cells exposed to ROT with the ER stress inhibitor 4-phenylbutyric acid (4-PBA) alleviated these effects, decreasing apoptosis and preserving testosterone levels. Further intervention with the PERK inhibitor GSK2606414 reduced ROT-induced apoptosis and testosterone reduction by inhibiting PERK activity. In summary, ROT-induced male reproductive toxicity is specifically driven by apoptosis, with the PERK-eIF2α-CHOP signalling pathway activated by ER stress playing a crucial role in the apoptosis of Leydig cells triggered by ROT.
Collapse
Affiliation(s)
- Mi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hongting Cao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Haoxuan Gao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lingqin Zhu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yang Wu
- Department of Ultrasound Medicine, Ningxia Women and Children's Hospital, Peking University First Hospital, Yinchuan, Ningxia 750004, China.
| | - Guanghua Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
6
|
Kobak KA, Batushansky A, Jopkiewicz A, Peelor FF, Kinter MT, Miller BF, Griffin TM. Effect of biological sex and short-term high-fat diet on cellular proliferation, ribosomal biogenesis, and targeted protein abundance in murine articular cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100495. [PMID: 39040627 PMCID: PMC11260562 DOI: 10.1016/j.ocarto.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Objective To identify factors contributing to sex-differences in OA risk by evaluating the short-term effect of high-fat (HF) diet on sex-specific changes in cartilage cell proliferation, ribosomal biogenesis, and targeted extra-cellular and cellular protein abundance. Materials and methods Knee cartilage was harvested to the subchondral bone from 20-week-old female and male C57BL/6J mice fed a low-fat or HF diet for 4 weeks and labeled with deuterium oxide for 1, 3, 5, 7, 15, or 21 days. Deuterium enrichment was quantified in isolated DNA and RNA to measure cell proliferation and ribosomal biogenesis, respectively. Protein concentration was measured using targeted high resolution accurate mass spectrometry. Results HF diet increased the maximal deuterium incorporation into DNA from approximately 40 to 50%, albeit at a slower rate. These findings, which were magnified in female versus male mice, indicate a greater number of proliferating cells with longer half-lives under HF diet conditions. HF diet caused distinct sex-dependent effects on deuterium incorporation into RNA, increasing the fraction of ribosomes undergoing biogenesis in male mice and doubling the rate of ribosome biogenesis in female mice. HF diet altered cartilage protein abundance similarly in both sexes, except for matrilin-3, which was more abundant in HF versus LF conditions in female mice only. Overall, HF diet treatment had a stronger effect than sex on cartilage protein abundance, with most changes involving extracellular matrix and matrix-associated proteins. Conclusions Short-term HF diet broadly altered cartilage matrix protein abundance, while sex-dependent effects primarily involved differences in cell proliferation and ribosomal biogenesis.
Collapse
Affiliation(s)
- Kamil A. Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Anita Jopkiewicz
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Frederick F. Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Michael T. Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| | - Timothy M. Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
7
|
Fu W, Liu G, Kim SH, Kim B, Kim OS, Ma G, Yang Y, Liu D, Zhu S, Kang JS, Kim O. Effects of 625 nm light-emitting diode irradiation on preventing ER stress-induced apoptosis via GSK-3β phosphorylation in MC3T3-E1. Photochem Photobiol 2024; 100:1408-1418. [PMID: 38214077 DOI: 10.1111/php.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Prolonged endoplasmic reticulum (ER) stress contributes to cell apoptosis and interferes with bone homeostasis. Although photobiomodulation (PBM) might be used for ER stress-induced diseases, the role of PBM in relieving cell apoptosis remains unknown. During ER stress, glycogen synthase kinase-3β (GSK-3β) is critical; however, its functions in PBM remain uncertain. Thus, this study aimed to investigate the role of GSK-3β in 625 nm light-emitting diode irradiation (LEDI) relieving tunicamycin (TM)-induced apoptosis. Based on the results, pre-625 nm LEDI (Pre-IR) phosphorylated GSK-3β via ROS production. Compared with the TM group, Pre-IR + TM group reduced the phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 (eIF-2α) and B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax)/Bcl-2 ratio through regulating GSK-3β. Furthermore, a similar tendency was observed between Pre-IR + TM and Pre-LiCl+TM groups in preventing TM-induced early and late apoptosis. In summary, this study suggests that the Pre-IR treatment in TM-induced ER stress is beneficial for preventing cell apoptosis via GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Wenqi Fu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Guo Liu
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Sun-Hun Kim
- Department of Oral Anatomy, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Byunggook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian, China
| | - Ying Yang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
- Dental Implant Center, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Danyang Liu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Siyu Zhu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jae-Seok Kang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
8
|
Yang C, Dong W, Wang Y, Dong X, Xu X, Yu X, Wang J. DDIT3 aggravates TMJOA cartilage degradation via Nrf2/HO-1/NLRP3-mediated autophagy. Osteoarthritis Cartilage 2024; 32:921-937. [PMID: 38719085 DOI: 10.1016/j.joca.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/10/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE DNA damage-inducible transcript 3 (DDIT3), as a downstream transcription factor of endoplasmic reticulum stress, is reported to regulate chondrogenic differentiation under physiological and pathological state. However, the specific involvement of DDIT3 in the degradation of condylar cartilage of temporomandibular joint osteoarthritis (TMJOA) is unclarified. DESIGN The expression patterns of DDIT3 in condylar cartilage from monosodium iodoacetate-induced TMJOA mice were examined to uncover the potential role of DDIT3 in TMJOA. The Ddit3 knockout (Ddit3-/-) mice and their wildtype littermates (Ddit3+/+) were used to clarify the effect of DDIT3 on cartilage degradation. Primary condylar chondrocytes and ATDC5 cells were applied to explore the mechanisms of DDIT3 on autophagy and extracellular matrix (ECM) degradation in chondrocytes. The autophagy inhibitor chloroquine (CQ) was used to determine the effect of DDIT3-inhibited autophagy in vivo. RESULTS DDIT3 were highly expressed in condylar cartilage from TMJOA mice. Ddit3 knockout alleviated condylar cartilage degradation and subchondral bone loss, compared with their wildtype littermates. In vitro study demonstrated that DDIT3 exacerbated ECM degradation in chondrocytes induced by TNF-α through inhibiting autophagy. The intraperitoneal injection of CQ further confirmed that Ddit3 knockout alleviated cartilage degradation in TMJOA through activating autophagy in vivo. CONCLUSIONS Our findings identified the crucial role of DDIT3-inhibited autophagy in condylar cartilage degradation during the development of TMJOA.
Collapse
Affiliation(s)
- Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaofei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaoxiao Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xijie Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
9
|
Kim YJ, Han J, Han S. The Interplay Between Endoplasmic Reticulum Stress and Oxidative Stress in Chondrocyte Catabolism. Cartilage 2024:19476035241245803. [PMID: 38641979 PMCID: PMC11569657 DOI: 10.1177/19476035241245803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVE Oxidative stress and endoplasmic reticulum (ER) stress play pivotal roles in disrupting the homeostasis of chondrocytes by producing catalytic proteases and enhancing chondrocyte senescence, consequently contributing to the progression of osteoarthritis (OA). Despite their close interaction, the underlying molecular mechanisms remain poorly understood. Here, we show that ER stress and oxidative stress reciprocally modulate each other to promote cartilage degradation. METHODS Primary chondrocytes were obtained from the articular cartilage of 5-day-old C57BL/6J mice by excising distal femur and proximal tibia. Tunicamycin was applied to induce ER stress in primary chondrocytes. Surgical OA was induced in 12-week-old male C57BL/6J mice by destabilizing the medial meniscus (DMM). RESULTS Tunicamycin-induced ER stress led to an increase in the production of reactive oxygen species (ROS) and catalytic proteases, including MMP13 and Adamts5, in primary chondrocytes, and it was primarily dependent on the NADPH oxidase (NOX) system. ER stress directly increased the expression of NOX2, NOX3, NOX4, and p22phox. Specifically, the protein kinase RNA-like ER kinase (PERK) pathway is involved in the expression of NOX4 and p22phox, the inositol-requiring enzyme 1 alpha (IRE1α) pathway in NOX2 and NOX3 expression, and the activating transcription factor 6 (ATF6) pathway influences NOX3 expression in chondrocytes. Conversely, inhibiting NOX function significantly reduced both ER stress sensor-related signaling and chondrocyte catabolism, thereby decelerating the progression of surgically induced OA in vivo. CONCLUSIONS Our findings highlight the positive feedback loop between ER stress and oxidative stress in OA pathogenesis, suggesting that targeting NOX isoforms is a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Yu Jung Kim
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Seungwoo Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
10
|
Liao Z, Cai X, Zheng Y, Lin J, Yang X, Lin W, Zhang Y, He X, Liu C. Sirtuin 1 in osteoarthritis: Perspectives on regulating glucose metabolism. Pharmacol Res 2024; 202:107141. [PMID: 38490314 DOI: 10.1016/j.phrs.2024.107141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Osteoarthritis (OA) is a degenerative disease characterised by articular cartilage destruction, and its complex aetiology contributes to suboptimal clinical treatment outcomes. A close association exists between glucose metabolism dysregulation and OA pathogenesis. Owing to the unique environment of low oxygen and glucose concentrations, chondrocytes rely heavily on their glycolytic capacity, exhibiting distinct spatiotemporal differences. However, under pathological stimulation, chondrocytes undergo excessive glycolytic activity while mitochondrial respiration and other branches of glucose metabolism are compromised. This metabolic change induces cartilage degeneration by reprogramming the inflammatory responses. Sirtuins, a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, regulate glucose metabolism in response to energy fluctuations in different cellular compartments,alleviating metabolic stress. SIRT1, the most extensively studied sirtuin, participates in maintaining glucose homeostasis in almost all key metabolic tissues. While actively contributing to the OA progression and displaying diverse biological effects in cartilage protection, SIRT1's role in regulating glucose metabolism in chondrocytes has not received sufficient attention. This review focuses on discussing the beneficial role of SIRT1 in OA progression from a metabolic regulation perspective based on elucidating the primary characteristics of chondrocyte glucose metabolism. We also summarise the potential mechanisms and therapeutic strategies targeting SIRT1 in chondrocytes to guide clinical practice and explore novel therapeutic directions.
Collapse
Affiliation(s)
- Zhihao Liao
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Xuepei Cai
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yifan Zheng
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Jiayu Lin
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Xia Yang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Weiyin Lin
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Ying Zhang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Xin He
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, 366, Jiangnan Avenue South, Guangzhou 510280, China.
| |
Collapse
|
11
|
Liu DD, Zhao YC, Li HH, Yin LJ, Chen JQ, Liu G. Endoplasmic reticulum stress-related protein GRP78 and CHOP levels in synovial fluid correlate with disease progression of primary knee osteoarthritis: A cross-sectional study. J Appl Biomed 2024; 22:40-48. [PMID: 38505969 DOI: 10.32725/jab.2024.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/18/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been shown to play an important role in osteoarthritis (OA). OBJECTIVE This study was aimed at assessing the relationship of endoplasmic reticulum (ER) stress-related glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) concentrations in the serum/synovial fluid (SF) with disease severity of primary knee osteoarthritis (pkOA). METHODS Patients with pkOA together with healthy individuals were consecutively recruited from our hospital. The levels of GRP78 and CHOP in serum / SF were detected using enzyme-linked immunosorbent assay. The levels of IL-6 and MMP-3 were also examined. Radiographic progression of pkOA was evaluated based on Kellgren-Lawrence (K-L) grades. Receiver Operating Characteristic (ROC) curves were used to assess the diagnostic value of GRP78/CHOP levels with regard to K-L grades. The assessment of clinical severity was conducted using the visual analogue scale (VAS), Oxford knee score (OKS), and Lequesne algofunctional index (LAI). RESULTS A total of 140 pkOA patients and 140 healthy individuals were included. Serum GRP78 and CHOP levels in pkOA patients were not significantly different from those in healthy individuals. The SF GRP78 and CHOP levels in healthy controls were not detected due to ethical reasons. Compared to those with K-L grade 2 and 3, the pkOA patients with K-L grade 4 had higher GRP78 and CHOP levels in the SF with statistical significance. In addition, the pkOA patients with K-L grade 3 exhibited drastically upregulated GRP78 and CHOP concentrations in the SF compared to those with K-L grade 2. Positive correlations of GRP78 and CHOP levels with K-L grades, IL-6, and MMP-3 levels in the SF were observed. ROC curve analysis indicated that both GRP78 and CHOP levels may act as decent indicators with regard to OA. GRP78 and CHOP concentrations in the SF were positively correlated with VAS/LAI score and negatively associated with OKS score. CONCLUSION The study indicated that GRP78 and CHOP levels in the SF but not the serum were positively correlated with disease severity of pkOA.
Collapse
Affiliation(s)
| | | | - Hai-Hong Li
- Southern Medical University, The Third Affiliated Hospital, Department of Rehabilitation, 510630 Guangzhou, Guangdong Province, China
| | - Lian-Jun Yin
- Southern Medical University, The Third Affiliated Hospital, Department of Rehabilitation, 510630 Guangzhou, Guangdong Province, China
| | | | - Gang Liu
- Southern Medical University, Nanfang Hospital, Department of Rehabilitation Medicine, 510515 Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Fu W, Im YG, Kim B, Kim OS, Yang Y, Song J, Liu D, Zhu S, Kang JS, Kim O. 625 nm Light Irradiation Prevented MC3T3-E1 Cells from Accumulation of Misfolded Proteins via ROS and ATP Production. Int J Mol Sci 2023; 24:ijms24119257. [PMID: 37298212 DOI: 10.3390/ijms24119257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Osteoblasts must acquire a considerable capacity for folding unfolded and misfolded proteins (MPs) to produce large amounts of extracellular matrix proteins and maintain bone homeostasis. MP accumulation contributes to cellular apoptosis and bone disorders. Photobiomodulation therapy has been used to treat bone diseases, but the effects of decreasing MPs with photobiomodulation remain unclear. In this study, we explored the efficacy of 625 nm light-emitting diode irradiation (LEDI) to reduce MPs in tunicamycin (TM) induced-MC3T3-E1 cells. Binding immunoglobulin protein (BiP), an adenosine triphosphate (ATP)-dependent chaperone, is used to evaluate the capacity of folding MPs. The results revealed that pretreatment with 625 nm LEDI (Pre-IR) induced reactive oxygen species (ROS) production, leading to the increased chaperone BiP through the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1s (XBP-1s) pathway, and then restoration of collagen type I (COL-I) and osteopontin (OPN) expression relieving cell apoptosis. Furthermore, the translocation of BiP into the endoplasmic reticulum (ER) lumen might be followed by a high level of ATP production. Taken together, these results suggest that Pre-IR could be beneficial to prevent MP accumulation through ROS and ATP in TM-induced MC3T3-E1cells.
Collapse
Affiliation(s)
- Wenqi Fu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeong-Gwan Im
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byunggook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ying Yang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jianan Song
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Danyang Liu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Siyu Zhu
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Seok Kang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Okjoon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
13
|
Liu S, Pan Y, Li T, Zou M, Liu W, Li Q, Wan H, Peng J, Hao L. The Role of Regulated Programmed Cell Death in Osteoarthritis: From Pathogenesis to Therapy. Int J Mol Sci 2023; 24:ijms24065364. [PMID: 36982438 PMCID: PMC10049357 DOI: 10.3390/ijms24065364] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Osteoarthritis (OA) is a worldwide chronic disease that can cause severe inflammation to damage the surrounding tissue and cartilage. There are many different factors that can lead to osteoarthritis, but abnormally progressed programmed cell death is one of the most important risk factors that can induce osteoarthritis. Prior studies have demonstrated that programmed cell death, including apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and cuproptosis, has a great connection with osteoarthritis. In this paper, we review the role of different types of programmed cell death in the generation and development of OA and how the different signal pathways modulate the different cell death to regulate the development of OA. Additionally, this review provides new insights into the radical treatment of osteoarthritis rather than conservative treatment, such as anti-inflammation drugs or surgical operation.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Yurong Pan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Mi Zou
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenji Liu
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qingqing Li
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Huan Wan
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Peng
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
- Correspondence: (J.P.); (L.H.); Tel.: +86-15983280459 (J.P.); +86-13607008562 (L.H.)
| | - Liang Hao
- Department of Orthopedics, Second Affifiliated Hospital of Nanchang University, Nanchang 330006, China
- Correspondence: (J.P.); (L.H.); Tel.: +86-15983280459 (J.P.); +86-13607008562 (L.H.)
| |
Collapse
|
14
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 387] [Impact Index Per Article: 193.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Jia L, Ma T, Lv L, Yu Y, Zhao M, Chen H, Gao L. Endoplasmic reticulum stress mediated by ROS participates in cadmium exposure-induced MC3T3-E1 cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114517. [PMID: 36669278 DOI: 10.1016/j.ecoenv.2023.114517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), as one of the seventh most toxic heavy metal pollutants, widely persisted in the environment, leading to osteoblast dysfunction and ultimately Cd-related skeletal disease. However, the damaging effects of Cd on cellular functions and the potential pathogenic mechanisms are still unclear. In our study, Cd is believed to induce mitochondrial dysfunction and endoplasmic reticulum stress (ERS) in a dose-dependent manner, thereby leading to apoptosis, as evident by elevated Drp1, Fis1, GRP78, CHOP, ATF4, P-EIF2α, P-PERK, BAX, cleaved caspase 3 proteins expression and ROS levels, and decreased the levels of Mfn2, OPA1, Bcl2, and intracellular Collagen I, B-ALP, RUNX2, and BGP genes. Additionally, when the exogenous addition of NAC and 4-PBA was added, it was found that NAC and 4-PBA had a positive moderating effect on Cd-induced cell dysfunction. Mechanistically, Cd-induced oxidative stress and apoptosis by upregulating the PERK-EIF2α-ATF4-CHOP signaling pathway and inhibiting the Nrf2/NQO1 pathway. In conclusion, we found that Cd was involved in mitochondrial dysfunction, ERS, and apoptosis in MC3T3-E1 cells, While NAC and 4-PBA relieved ERS and attenuated cell apoptosis.
Collapse
Affiliation(s)
- Lina Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Liangyu Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Yue Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Mingchao Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Hong Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China.
| |
Collapse
|
16
|
Jin Z, Chang B, Wei Y, Yang Y, Zhang H, Liu J, Piao L, Bai L. Curcumin exerts chondroprotective effects against osteoarthritis by promoting AMPK/PINK1/Parkin-mediated mitophagy. Biomed Pharmacother 2022; 151:113092. [PMID: 35550528 DOI: 10.1016/j.biopha.2022.113092] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA), a chronic degenerative disease with heterogeneous properties, is difficult to cure due to its complex pathogenesis. Curcumin possesses excellent anti-inflammatory and antioxidant properties and may have potential therapeutic value in OA. In this study, we investigated the action targets of curcumin and identified potential anti-OA targets for curcumin. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses were performed to evaluate these targets. Furthermore, we established a sodium monoiodoacetate-induced rat knee OA model and IL-1β induced OA chondrocyte model to verify the effect and mechanism of curcumin against OA. The GO and KEGG analyses screened seven hub genes involved in metabolic processes and the AMPK signaling pathway. Curcumin can significantly attenuate OA characteristics according to Osteoarthritis Research Society International (OARSI) and Mankin scores in OA rats. Additionally, curcumin is notably employed as an activator of mitophagy in maintaining mitochondrial homeostasis (ROS, Ca2+, ATP production, and mitochondrial membrane potential). The expression levels of mitophagy-related proteins were increased not only in articular cartilage but also in chondrocytes with curcumin intervention. Combining validation experiments and network pharmacology, we identified the importance of mitophagy in the curcumin treatment of OA. The chondroprotective effects of curcumin against OA are mediated by the AMPK/PINK1/Parkin pathway, and curcumin may serve as a potential novel drug for OA management.
Collapse
Affiliation(s)
- Zhuangzhuang Jin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bohan Chang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingliang Wei
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiabao Liu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Longhuan Piao
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Lee SY, Wong PF, Jamal J, Roebuck MM. Naturally-derived endoplasmic reticulum stress inhibitors for osteoarthritis? Eur J Pharmacol 2022; 922:174903. [DOI: 10.1016/j.ejphar.2022.174903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 01/15/2023]
|
18
|
Wen Z, Sun Q, Shan Y, Xie W, Ding Y, Wang W, Ye R, Xiao W, Li Y. Endoplasmic Reticulum Stress in Osteoarthritis: A Novel Perspective on the Pathogenesis and Treatment. Aging Dis 2022; 14:283-286. [PMID: 37008062 PMCID: PMC10017163 DOI: 10.14336/ad.2022.0725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA), the most common degenerative joint disease, causes an enormous socioeconomic burden due to its disabling properties and high prevalence. Increasing evidence suggests that OA is a whole-joint disease involving cartilage degradation, synovitis, meniscal lesions, and subchondral bone remodeling. Endoplasmic reticulum (ER) stress is the accumulation of misfolded/unfolded proteins in the ER. Recent studies have found that ER stress is involved in the OA pathological changes by influencing the physiological function and survival of chondrocytes, fibroblast-like synoviocytes, synovial macrophages, meniscus cells, osteoblasts, osteoclasts, osteocytes, and bone marrow mesenchymal stem cells. Therefore, ER stress is an attractive and promising target for OA. However, although targeting ER stress has been proven to alleviate OA progression in vitro and in vivo, the treatments for OA remain in preclinical stage and require further investigation.
Collapse
Affiliation(s)
- Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yunhan Shan
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Yilan Ding
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Weiyang Wang
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Ruixi Ye
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Wen-feng Xiao () and Yu-sheng Li (), Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Wen-feng Xiao () and Yu-sheng Li (), Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|
19
|
Hu S, Wang S, He J, Bian Y. Tetramethylpyrazine alleviates endoplasmic reticulum stress‑activated apoptosis and related inflammation in chondrocytes. Mol Med Rep 2021; 25:12. [PMID: 34779501 PMCID: PMC8600404 DOI: 10.3892/mmr.2021.12528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Excessive apoptosis of chondrocytes and degradation of the extracellular matrix (ECM) contribute to the typical pathological characteristics of osteoarthritis (OA). Various studies have reported that tetramethylpyrazine (TMP) protects against multiple disorders by inhibiting inflammation and oxidative stress. The present study investigated the effects of TMP on chondrocytes and evaluated the associated mechanisms. To determine the effect of TMP on OA and the underlying mechanisms, chondrocytes were incubated with TMP and IL-1β or thapsigargin (TG) Western blotting assays were performed to examine the expression levels of endoplasmic reticulum (ER) stress proteins, and TUNEL staining, fluorescence immunostaining and reverse transcription-quantitative PCR were used to determine the apoptosis levels, and catabolic and inflammatory factors. It was found that TMP protected chondrocytes by suppressing IL-1β-induced expression of glucose-regulated protein 78 (GRP78) and CHOP (an apoptotic protein). TMP regulated the TG-mediated upregulated expression of GRP78 and CHOP in the chondrocytes of rats, as well as markedly suppressed levels of ER stress-triggered inflammatory cytokines (TNF-α and IL-6). Furthermore, TMP modulated TG-induced changes in ECM catabolic metabolism in rat chondrocytes. Collectively, TMP alleviated ER-stress-activated apoptosis and related inflammation in chondrocytes, indicating that it has therapeutic potential for the treatment of OA.
Collapse
Affiliation(s)
- Shuai Hu
- Joint and Traumatology Department, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Sheng Wang
- Joint and Traumatology Department, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Jie He
- Joint and Traumatology Department, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yangyang Bian
- Department of Trauma Medical Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
20
|
Lee CH, Chiang CF, Kuo FC, Su SC, Huang CL, Liu JS, Lu CH, Hsieh CH, Wang CC, Lee CH, Shen PH. High-Molecular-Weight Hyaluronic Acid Inhibits IL-1β-Induced Synovial Inflammation and Macrophage Polarization through the GRP78-NF-κB Signaling Pathway. Int J Mol Sci 2021; 22:ijms222111917. [PMID: 34769349 PMCID: PMC8584972 DOI: 10.3390/ijms222111917] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recent evidence has suggested that synovial inflammation and macrophage polarization were involved in the pathogenesis of osteoarthritis (OA). Additionally, high-molecular-weight hyaluronic acid (HMW-HA) was often used clinically to treat OA. GRP78, an endoplasmic reticulum (ER) stress chaperone, was suggested to contribute to the hyperplasia of synovial cells in OA. However, it was still unclear whether HMW-HA affected macrophage polarization through GRP78. Therefore, we aimed to identify the effect of HMW-HA in primary synovial cells and macrophage polarization and to investigate the role of GRP78 signaling. We used IL-1β to treat primary synoviocytes to mimic OA, and then treated them with HMW-HA. We also collected conditioned medium (CM) to culture THP-1 macrophages and examine the changes in the phenotype. IL-1β increased the expression of GRP78, NF-κB (p65 phosphorylation), IL-6, and PGE2 in primary synoviocytes, accompanied by an increased macrophage M1/M2 polarization. GRP78 knockdown significantly reversed the expression of IL-1β-induced GRP78-related downstream molecules and macrophage polarization. HMW-HA with GRP78 knockdown had additive effects in an IL-1β culture. Finally, the synovial fluid from OA patients revealed significantly decreased IL-6 and PGE2 levels after the HMW-HA treatment. Our study elucidated a new form of signal transduction for HMW-HA-mediated protection against synovial inflammation and macrophage polarization and highlighted the involvement of the GRP78-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chien-Hsing Lee
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chi-Fu Chiang
- National Defense Medical Center, School of Dentistry, Taipei 114, Taiwan;
| | - Feng-Chih Kuo
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Sheng-Chiang Su
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chia-Luen Huang
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Jhih-Syuan Liu
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chieh-Hua Lu
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chang-Hsun Hsieh
- National Defense Medical Center, Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei 114, Taiwan; (C.-H.L.); (F.-C.K.); (S.-C.S.); (C.-L.H.); (J.-S.L.); (C.-H.L.); (C.-H.H.)
| | - Chih-Chien Wang
- National Defense Medical Center, Department of Orthopedics, Tri-Service General Hospital, Taipei 114, Taiwan;
| | - Chian-Her Lee
- Department of Orthopedics, Taipei Medical University, Taipei 110, Taiwan;
| | - Pei-Hung Shen
- National Defense Medical Center, Department of Orthopedics, Tri-Service General Hospital, Taipei 114, Taiwan;
- Correspondence:
| |
Collapse
|
21
|
Yang C, Xu X, Dong X, Yang B, Dong W, Luo Y, Liu X, Wu Y, Wang J. DDIT3/CHOP promotes autophagy in chondrocytes via SIRT1-AKT pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119074. [PMID: 34087318 DOI: 10.1016/j.bbamcr.2021.119074] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 01/18/2023]
Abstract
Endoplasmic reticulum (ER) stress can initiate autophagy via unfolded protein response (UPR). As a key downstream gene of UPR, DDIT3/CHOP is expressed in chondrocytes. However, the regulation mechanism of DDIT3/CHOP on autophagy in chondrocytes remains unclear. In this study, the expression levels of autophagic markers Beclin1 and LC3B were found to decrease while p62 increase in the tibial growth plate and costal primary chondrocytes from DDIT3/CHOP KO mice. In vitro, overexpressing DDIT3/CHOP induced autophagy in ATDC5 chondrocytes, displaying an elevated immunofluorescence signal of LC3B and elevated numbers of autophagosomes and autolysosomes. Analysis of the gain- and loss-of-function indicated that the protein level of Beclin1 and the ratio of LC3BII/I increased in DDIT3/CHOP overexpression cells, whereas decreased in DDIT3/CHOP knockdown cells. The decreased level of p62 and additional accumulation of LC3BII caused by chloroquine (CQ) further indicated that DDIT3/CHOP enhanced autophagic flux. Mechanistically, we found that DDIT3/CHOP binds directly to the promoter of SIRT1 to promote its expression by CHIP, qRT-PCR, and Western blot analysis. In addition, SIRT1 enhanced autophagic activity in ATDC5 cells, and inhibition or activation of SIRT1 partially reversed the effect of overexpressing or downregulating DDIT3/CHOP on autophagy. Furthermore, AKT signaling was found to be responsible for DDIT3/CHOP-regulated autophagy in ATDC5 cells. SIRT1 knockdown reversed the effect of DDIT3/CHOP overexpression on AKT signaling. In conclusion, our data clarifies that DDIT3/CHOP promotes autophagy in ATDC5 chondrocytes through the SIRT1-AKT pathway. These results were also confirmed in the primary chondrocytes.
Collapse
Affiliation(s)
- Chang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Xiaoxiao Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Xiaofei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Yao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Xiayi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Yanru Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China.
| |
Collapse
|
22
|
High glucose suppresses autophagy through the AMPK pathway while it induces autophagy via oxidative stress in chondrocytes. Cell Death Dis 2021; 12:506. [PMID: 34006821 PMCID: PMC8131591 DOI: 10.1038/s41419-021-03791-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Diabetes (DB) is a risk factor for osteoarthritis progression. High glucose (HG) is one of the key pathological features of DB and has been demonstrated to induce apoptosis and senescence in chondrocytes. Autophagy is an endogenous mechanism that can protect cells against apoptosis and senescence. The effects of HG on autophagy in cells including chondrocytes have been studied; however, the results have been inconsistent. The current study aimed to elucidate the underlying mechanisms, which could be associated with the contrasting outcomes. The present study revealed that HG can induce apoptosis and senescence in chondrocytes, in addition to regulating autophagy dynamically. The present study demonstrated that HG can cause oxidative stress in chondrocytes and suppress the AMPK pathway in a dose-dependent manner. Elimination of oxidative stress by Acetylcysteine, also called N-acetyl cysteine (NAC), downregulated autophagy and alleviated HG-stimulated apoptosis and senescence, while activation of the AMPK signaling pathway by AICAR not only upregulated autophagy but also alleviated HG-stimulated apoptosis and senescence. A combined treatment of NAC and AICAR was superior to treatment with either NAC or AICAR. The study has demonstrated that HG can suppress autophagy through the AMPK pathway and induce autophagy via oxidative stress in chondrocytes.
Collapse
|
23
|
Molecular and Cellular Effects of Chemical Chaperone-TUDCA on ER-Stressed NHAC-kn Human Articular Chondrocytes Cultured in Normoxic and Hypoxic Conditions. Molecules 2021; 26:molecules26040878. [PMID: 33562298 PMCID: PMC7915106 DOI: 10.3390/molecules26040878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is considered one of the most common arthritic diseases characterized by progressive degradation and abnormal remodeling of articular cartilage. Potential therapeutics for OA aim at restoring proper chondrocyte functioning and inhibiting apoptosis. Previous studies have demonstrated that tauroursodeoxycholic acid (TUDCA) showed anti-inflammatory and anti-apoptotic activity in many models of various diseases, acting mainly via alleviation of endoplasmic reticulum (ER) stress. However, little is known about cytoprotective effects of TUDCA on chondrocyte cells. The present study was designed to evaluate potential effects of TUDCA on interleukin-1β (IL-1β) and tunicamycin (TNC)-stimulated NHAC-kn chondrocytes cultured in normoxic and hypoxic conditions. Our results showed that TUDCA alleviated ER stress in TNC-treated chondrocytes, as demonstrated by reduced CHOP expression; however, it was not effective enough to prevent apoptosis of NHAC-kn cells in either normoxia nor hypoxia. However, co-treatment with TUDCA alleviated inflammatory response induced by IL-1β, as shown by down regulation of Il-1β, Il-6, Il-8 and Cox2, and increased the expression of antioxidant enzyme Sod2. Additionally, TUDCA enhanced Col IIα expression in IL-1β- and TNC-stimulated cells, but only in normoxic conditions. Altogether, these results suggest that although TUDCA may display chondoprotective potential in ER-stressed cells, further analyses are still necessary to fully confirm its possible recommendation as potential candidate in OA therapy.
Collapse
|
24
|
Wang J, Li J, Song D, Ni J, Ding M, Huang J, Yan M. AMPK: implications in osteoarthritis and therapeutic targets. Am J Transl Res 2020; 12:7670-7681. [PMID: 33437352 PMCID: PMC7791500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Osteoarthritis (OA) is the most common skeletal disease and the leading cause of pain and disability in the aged population (>65 years). However, the underlying factors involved in OA pathogenesis remain elusive which has resulted in failure to identify disease-modifying OA drugs. Altered metabolism has been shown to be a prominent pathological change in OA. As a critical bioenergy sensor, AMP-activated protein kinase (AMPK) mediates not only energy homeostasis but also redox balance in chondrocytes to counter various cell stress. Dysfunction of AMPK activity has been associated with reduced autophagy, impaired mitochondrial function, excessive reactive oxygen species generation, and inflammation in joint tissue. These abnormalities ultimately trigger articular cartilage degeneration, synovial inflammation, and abnormal subchondral bone remodeling. This review focuses on recent findings describing the central role of AMPK in joint homeostasis and OA development. We also highlight current advances that target AMPK as a novel therapeutic strategy for OA prevention.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Jiali Li
- Department of Rheumatology and Nephrology, University of South China Affiliated Changsha Central HospitalChangsha 410008, Hunan, China
| | - Deye Song
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Jiangdong Ni
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Muliang Ding
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Jun Huang
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Mingming Yan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| |
Collapse
|
25
|
Saito M, Nishitani K, Ikeda HO, Yoshida S, Iwai S, Ji X, Nakahata A, Ito A, Nakamura S, Kuriyama S, Yoshitomi H, Murata K, Aoyama T, Ito H, Kuroki H, Kakizuka A, Matsuda S. A VCP modulator, KUS121, as a promising therapeutic agent for post-traumatic osteoarthritis. Sci Rep 2020; 10:20787. [PMID: 33247195 PMCID: PMC7695735 DOI: 10.1038/s41598-020-77735-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is a major cause which hinders patients from the recovery after intra-articular injuries or surgeries. Currently, no effective treatment is available. In this study, we showed that inhibition of the acute stage chondrocyte death is a promising strategy to mitigate the development of PTOA. Namely, we examined efficacies of Kyoto University Substance (KUS) 121, a valosin-containing protein modulator, for PTOA as well as its therapeutic mechanisms. In vivo, in a rat PTOA model by cyclic compressive loading, intra-articular treatments of KUS121 significantly improved the modified Mankin scores and reduced damaged-cartilage volumes, as compared to vehicle treatment. Moreover, KUS121 markedly reduced the numbers of TUNEL-, CHOP-, MMP-13-, and ADAMTS-5-positive chondrocytes in the damaged knees. In vitro, KUS121 rescued human articular chondrocytes from tunicamycin-induced cell death, in both monolayer culture and cartilage explants. It also significantly downregulated the protein or gene expression of ER stress markers, proinflammatory cytokines, and extracellular-matrix-degrading enzymes induced by tunicamycin or IL-1β. Collectively, these results demonstrated that KUS121 protected chondrocytes from cell death through the inhibition of excessive ER stress. Therefore, KUS121 would be a new, promising therapeutic agent with a protective effect on the progression of PTOA.
Collapse
Affiliation(s)
- Motoo Saito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hanako O Ikeda
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeo Yoshida
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Iwai
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiang Ji
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Nakahata
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichiro Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Kuriyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Yoshitomi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Medicine of Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Medicine of Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Tan L, Register TC, Yammani RR. Age-Related Decline in Expression of Molecular Chaperones Induces Endoplasmic Reticulum Stress and Chondrocyte Apoptosis in Articular Cartilage. Aging Dis 2020; 11:1091-1102. [PMID: 33014525 PMCID: PMC7505268 DOI: 10.14336/ad.2019.1130] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/30/2019] [Indexed: 12/27/2022] Open
Abstract
Aging is a major risk factor for the development of osteoarthritis (OA). One hallmark of aging is loss of proteostasis resulting in increased cellular stress and cell death. However, its effect on the development of OA is not clear. Here, using knee articular cartilage tissue from young and old cynomolgus monkeys (Macaca fascicularis), we demonstrate that with aging there is loss of molecular chaperone expression resulting in endoplasmic reticulum (ER) stress and cell death. Chondrocytes from aged articular cartilage showed decreased expression of molecular chaperones, including protein disulfide isomerase, calnexin, and Ero1-like protein alpha, and increased immunohistochemical staining for ER stress markers (phosphorylated IRE1 alpha, spliced X-box binding protein-1, activating transcription factor 4 and C/EBP homologous protein), and apoptotic markers [cleaved caspase 3 and cleaved poly(ADP-ribose) polymerase], suggesting that decreased expression of molecular chaperone during aging induces ER stress and chondrocyte apoptosis in monkey articular cartilage. Apoptosis induced by aging-associated ER stress was further confirmed by TUNEL staining. Aged monkey cartilage also showed increased expression of nuclear protein 1 (Nupr1) and tribbles related protein-3 (TRB3), known regulators of apoptosis and cell survival pathways. Treatment of cultured monkey chondrocytes with a small molecule chemical chaperone, 4-phenylbutyric acid (PBA, a general ER stress inhibitor) or PERK Inhibitor I (an ER stress inhibitor specifically targeting the PERK branch of the unfolded protein response pathway), decreased the expression of ER stress and apoptotic markers and reduced the expression of Nupr1 and TRB3. Consistent with the above finding, knockdown of calnexin expression induces ER stress and apoptotic markers in normal human chondrocytes in vitro. Taken together, our study clearly demonstrates that aging promotes loss of proteostasis and induces ER stress and chondrocyte apoptosis in articular cartilage. Thus, restoring proteostasis using chemical/molecular chaperone or ER stress inhibitor could be a therapeutic option to treat aged-linked OA.
Collapse
Affiliation(s)
- Li Tan
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas C Register
- Departments of Pathology and Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Raghunatha R Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
27
|
Abstract
Osteoarthritis (OA) is one of the most debilitating diseases and is associated with a high personal and socioeconomic burden. So far, there is no therapy available that effectively arrests structural deterioration of cartilage and bone or is able to successfully reverse any of the existing structural defects. Efforts to identify more tailored treatment options led to the development of strategies that enabled the classification of patient subgroups from the pool of heterogeneous phenotypes that display distinct common characteristics. To this end, the classification differentiates the structural endotypes into cartilage and bone subtypes, which are predominantly driven by structure-related degenerative events. In addition, further classifications have highlighted individuals with an increased inflammatory contribution (inflammatory phenotype) and pain-driven phenotypes as well as senescence and metabolic syndrome phenotypes. Most probably, it will not be possible to classify individuals by a single definite subtype, but it might help to identify groups of patients with a predominant pathology that would more likely benefit from a specific drug or cell-based therapy. Current clinical trials addressed mainly regeneration/repair of cartilage and bone defects or targeted pro-inflammatory mediators by intra-articular injections of drugs and antibodies. Pain was treated mostly by antagonizing nerve growth factor (NGF) activity and its receptor tropomyosin-related kinase A (TrkA). Therapies targeting metabolic disorders such as diabetes mellitus and senescence/aging-related pathologies are not specifically addressing OA. However, none of these therapies has been proven to modify disease progression significantly or successfully prevent final joint replacement in the advanced disease stage. Within this review, we discuss the recent advances in phenotype-specific treatment options and evaluate their applicability for use in personalized OA therapy.
Collapse
Affiliation(s)
- Susanne Grässel
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, Am Biopark 9, University of Regensburg, Regensburg, 93053, Germany
| | - Dominique Muschter
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, Am Biopark 9, University of Regensburg, Regensburg, 93053, Germany
| |
Collapse
|
28
|
Abstract
Cartilage comprises a single cell type, the chondrocyte, embedded in a highly complex extracellular matrix. Disruption to the cartilage growth plate leads to reduced bone growth and results in a clinically diverse group of conditions known as genetic skeletal diseases (GSDs). Similarly, long-term degradation of articular cartilage can lead to osteoarthritis (OA), a disease characterised by joint pain and stiffness. As professionally secreting cells, chondrocytes are particularly susceptible to endoplasmic reticulum (ER) stress and this has been identified as a core disease mechanism in a group of clinically and pathologically related GSDs. If unresolved, ER stress can lead to chondrocyte cell death. Recent interest has focused on ER stress as a druggable target for GSDs and this has led to the first clinical trial for a GSD by repurposing an antiepileptic drug. Interestingly, ER stress markers have also been associated with OA in multiple cell and animal models and there is increasing interest in it as a possible therapeutic target for treatment. In summary, chondrocyte ER stress has been identified as a core disease mechanism in GSDs and as a contributory factor in OA. Thus, chondrocyte ER stress is a unifying factor for both common and rare cartilage-related diseases and holds promise as a novel therapeutic target.
Collapse
Affiliation(s)
- Michael D Briggs
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ella P Dennis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Helen F Dietmar
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katarzyna A Pirog
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
29
|
Tan L, Harper L, McNulty MA, Carlson CS, Yammani RR. High-fat diet induces endoplasmic reticulum stress to promote chondrocyte apoptosis in mouse knee joints. FASEB J 2020; 34:5818-5826. [PMID: 32124494 DOI: 10.1096/fj.201902746r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/31/2022]
Abstract
Mice fed a high-fat diet (HFD) become obese and develop osteoarthritis (OA)-like lesions, including chondrocyte apoptosis, in the knee joints. However, the mechanism by which HFD/obesity induces chondrocyte apoptosis is not clearly understood. In the present study, male mice were fed a low-fat diet (LFD, 10% kcal), HFD (45% kcal), or a HFD administered with 0.5 g/kg bodyweight of 4-phenyl butyric acid (PBA, a small chaperone known to ease endoplasmic reticulum [ER] stress), via the drinking water. At the end of the 18-week study, stifle (knee) joints from all animals were collected, fixed, paraffin embedded, and sectioned. Immunostaining of joints from the HFD group showed increased expression of ER stress and apoptotic markers and increased expression of nuclear protein 1 and tribbles related protein-3 compared to the LFD group. Mice on HFD also showed higher percentage of chondrocyte death, lower chondrocyte numbers per cartilage area, and thickening of subchondral bone. Administration of PBA alleviated all of the HFD-induced symptoms. Our study demonstrated that HFD induces ER stress to promote chondrocyte death and subchondral bone thickening, which could be relieved by alleviating ER stress via PBA administration, suggesting that ER stress could play an important role in obesity-linked OA and could be targeted for OA therapeutics.
Collapse
Affiliation(s)
- Li Tan
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lindsey Harper
- Veterinary Clinical Sciences Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Margaret A McNulty
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cathy S Carlson
- Veterinary Clinical Sciences Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Raghunatha R Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
30
|
Kung LHW, Mullan L, Soul J, Wang P, Mori K, Bateman JF, Briggs MD, Boot-Handford RP. Cartilage endoplasmic reticulum stress may influence the onset but not the progression of experimental osteoarthritis. Arthritis Res Ther 2019; 21:206. [PMID: 31511053 PMCID: PMC6737683 DOI: 10.1186/s13075-019-1988-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteoarthritis has been associated with a plethora of pathological factors and one which has recently emerged is chondrocyte endoplasmic reticulum (ER) stress. ER stress is sensed by key ER-resident stress sensors, one of which is activating transcription factor 6 (ATF6). The purpose of this study is to determine whether increased ER stress plays a role in OA. METHODS OA was induced in male wild-type (+/+), ColIITgcog (c/c) and Atf6α-/- mice by destabilisation of the medial meniscus (DMM). c/c mice have increased ER stress in chondrocytes via the collagen II promoter-driven expression of ER stress-inducing Tgcog. Knee joints were scored histologically for OA severity. RNA-seq was performed on laser-micro-dissected RNA from cartilage of +/+ and c/c DMM-operated mice. RESULTS In situ hybridisation demonstrated a correlation between the upregulation of ER stress marker, BiP, and early signs of proteoglycan loss and cartilage damage in DMM-operated +/+ mice. Histological analysis revealed a significant reduction in OA severity in c/c mice compared with +/+ at 2 weeks post-DMM. This chondroprotective effect in c/c mice was associated with a higher ambient level of BiP protein prior to DMM and a delay in chondrocyte apoptosis. RNA-seq analysis suggested Xbp1-regulated networks to be significantly enriched in c/c mice at 2 weeks post-DMM. Compromising the ER through genetically ablating Atf6α, a key ER stress sensor, had no effect on DMM-induced OA severity. CONCLUSION Our studies indicate that an increased capacity to effectively manage increases in ER stress in articular cartilage due either to pre-conditioning as a result of prior exposure to ER stress or to genetic pre-disposition may be beneficial in delaying the onset of OA, but once established, ER stress plays no significant role in disease progression.
Collapse
Affiliation(s)
- Louise H. W. Kung
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
- Murdoch Children’s Research Institute, Parkville, VIC 3052 Australia
| | - Lorna Mullan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Jamie Soul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Ping Wang
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, and Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8502 Japan
| | - John F. Bateman
- Murdoch Children’s Research Institute, Parkville, VIC 3052 Australia
| | - Michael D. Briggs
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Raymond P. Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| |
Collapse
|
31
|
Berenbaum F, Griffin TM, Liu-Bryan R. Review: Metabolic Regulation of Inflammation in Osteoarthritis. Arthritis Rheumatol 2019; 69:9-21. [PMID: 27564539 DOI: 10.1002/art.39842] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/09/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Francis Berenbaum
- Sorbonnes Universités, UPMC University Paris 06, INSERM, AP-HP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine, DHU i2B, Paris, France
| | - Timothy M Griffin
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Ru Liu-Bryan
- VA San Diego Healthcare System and University of California, San Diego
| |
Collapse
|
32
|
Lian C, Wang X, Qiu X, Wu Z, Gao B, Liu L, Liang G, Zhou H, Yang X, Peng Y, Liang A, Xu C, Huang D, Su P. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1-SMAD1 interaction. Bone Res 2019; 7:8. [PMID: 30854241 PMCID: PMC6403405 DOI: 10.1038/s41413-019-0046-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Abstract
Hypertrophic differentiation is not only the terminal process of endochondral ossification in the growth plate but is also an important pathological change in osteoarthritic cartilage. Collagen type II (COL2A1) was previously considered to be only a structural component of the cartilage matrix, but recently, it has been revealed to be an extracellular signaling molecule that can significantly suppress chondrocyte hypertrophy. However, the mechanisms by which COL2A1 regulates hypertrophic differentiation remain unclear. In our study, a Col2a1 p.Gly1170Ser mutant mouse model was constructed, and Col2a1 loss was demonstrated in homozygotes. Loss of Col2a1 was found to accelerate chondrocyte hypertrophy through the bone morphogenetic protein (BMP)-SMAD1 pathway. Upon interacting with COL2A1, integrin β1 (ITGB1), the major receptor for COL2A1, competed with BMP receptors for binding to SMAD1 and then inhibited SMAD1 activation and nuclear import. COL2A1 could also activate ITGB1-induced ERK1/2 phosphorylation and, through ERK1/2-SMAD1 interaction, it further repressed SMAD1 activation, thus inhibiting BMP-SMAD1-mediated chondrocyte hypertrophy. Moreover, COL2A1 expression was downregulated, while chondrocyte hypertrophic markers and BMP-SMAD1 signaling activity were upregulated in degenerative human articular cartilage. Our study reveals novel mechanisms for the inhibition of chondrocyte hypertrophy by COL2A1 and suggests that the degradation and decrease in COL2A1 might initiate and promote osteoarthritis progression. A signaling feedback loop that contributes to cartilage degeneration may offer a fruitful target for the treatment of osteoarthritis. During the early stages of this disorder, cartilage-forming chondrocytes undergo a process of expansion known as hypertrophy, after which they die and are replaced by calcium. Researchers led by Peiqiang Su and Dongsheng Huang of Sun Yat-sen University have demonstrated that COL2A1, an important structural protein, represents an important safeguard against hypertrophy. COL2A1 helps maintain chondrocytes in their normal, healthy state, but Su and Huang showed that signaling factors produced during cartilage repair can reduce COL2A1 levels. This in turn accelerates hypertrophy, promoting further depletion of COL2A1 and ultimately leading to full-blown osteoarthritis. Drugs that break this cycle and preserve COL2A1 could thus help protect endangered joints before the damage becomes severe.
Collapse
Affiliation(s)
- Chengjie Lian
- 1Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China.,2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xudong Wang
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xianjian Qiu
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Zizhao Wu
- 3Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Bo Gao
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Lei Liu
- 4Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Guoyan Liang
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medicine Science, Guangzhou, Guangdong China
| | - Hang Zhou
- 1Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Xiaoming Yang
- 1Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yan Peng
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Anjing Liang
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Caixia Xu
- 6Research Centre for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Dongsheng Huang
- 2Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| | - Peiqiang Su
- 1Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong China
| |
Collapse
|
33
|
Abstract
The increase in global lifespan has in turn increased the prevalence of osteoarthritis which is now the most common type of arthritis. Cartilage tissue located on articular joints erodes during osteoarthritis which causes pain and may lead to a crippling loss of function in patients. The pathophysiology of osteoarthritis has been understudied and currently no disease modifying treatments exist. The only current end-point treatment remains joint replacement surgery. The primary risk factor for osteoarthritis is age. Clinical and basic research is now focused on understanding the ageing process of cartilage and its role in osteoarthritis. This chapter will outline the physiology of cartilage tissue, the clinical presentation and treatment options for the disease and the cellular ageing processes which are involved in the pathophysiology of the disease.
Collapse
|
34
|
Serrano RL, Chen LY, Lotz MK, Liu-Bryan R, Terkeltaub R. Impaired Proteasomal Function in Human Osteoarthritic Chondrocytes Can Contribute to Decreased Levels of SOX9 and Aggrecan. Arthritis Rheumatol 2018; 70:1030-1041. [PMID: 29457374 DOI: 10.1002/art.40456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) chondrocytes exhibit impairment of autophagy, one arm of the proteostasis network that coordinates proteome and organelle quality control and degradation. Deficient proteostasis impacts differentiation and viability, and inflammatory processes in aging and disease. The present study was undertaken to assess ubiquitin proteasome system proteasomal function in OA chondrocytes. METHODS We evaluated human knee cartilage by immunohistochemistry, and assessed proteasomal function, levels of proteasomal core subunits and chaperones, and autophagy in cultured chondrocytes. Assays included Western blotting, quantitative reverse transcription-polymerase chain reaction, proteasomal protease activity assessment, and cell immunofluorescence analysis. RESULTS Human knee OA cartilage exhibited polyubiquitin accumulation, with increased ubiquitin K48-linked polyubiquitinated proteins in situ, suggesting proteasomal impairment. Cultured OA chondrocytes demonstrated accumulation of K48 polyubiquitinated proteins, significantly reduced 20S proteasome core protease activity, and decreased levels of phosphorylated FOXO4 and proteasome 26S subunit, non-ATPase 11 (PSMD11), a FOXO4-inducible promoter of proteasomal activation. Levels of proteasome subunit β type 3 (PSMB3), PSMB5, PSMB6, and proteasome assembly chaperone 1 were not decreased in OA chondrocytes. In normal chondrocytes, PSMD11 small interfering RNA knockdown stimulated certain autophagy machinery elements, increased extracellular nitric oxide (NO) levels, and reduced chondrocytic master transcription factor SOX9 protein and messenger RNA (mRNA) and aggrecan (AGC1) mRNA. PSMD11 gain-of- function by transfection increased proteasomal function, increased levels of SOX9-induced AGC1 mRNA, stimulated elements of the autophagic machinery, and inhibited extracellular levels of interleukin-1-induced NO and matrix metalloproteinase 13 in OA chondrocytes. CONCLUSION Deficient PSMD11, associated with reduced phosphorylated FOXO4, promotes impaired proteasomal function in OA chondrocytes, dysregulation of chondrocytic homeostasis, and decreased levels of SOX9 mRNA, SOX9 protein, and AGC1 mRNA. Chondrocyte proteasomal impairment may be a therapeutic target for OA.
Collapse
Affiliation(s)
- Ramon L Serrano
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Liang-Yu Chen
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Martin K Lotz
- The Scripps Research Institute, La Jolla, California
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Robert Terkeltaub
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| |
Collapse
|
35
|
Xu T, Gu Z, Wu H, Yao H, Wang G. Expression of endoplasmic reticulum stress protein in rabbit condyle cartilage following anterior disk displacement. J Oral Pathol Med 2018; 47:606-612. [PMID: 29663508 DOI: 10.1111/jop.12715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Anterior disk displacement (ADD) is a most common subtype of temporomandibular disorders (TMD), which is promoted by chondrocytes apoptosis. However, the signaling pathways that trigger apoptosis are still unknown. The aim of this study was to investigate the expression of endoplasmic reticulum (ER) stress-related proteins in the condylar cartilage of rabbits following ADD. METHODS Sixty healthy adult rabbits were randomly assigned to the experimental and sham-operated control groups (n = 12). The experimental rabbits were subjected to surgical ADD in the right temporomandibular joints. The production of ER stress-related proteins C/EBP homologous protein (CHOP), glucose-regulated protein 78 (GRP78), cleaved caspase-3, and caspase-12 in cartilage was evaluated by immunohistochemistry, quantitative real-time PCR, and Western blot analysis. RESULTS Our results showed that the expression of CHOP, GRP78, cleaved caspase-3, and caspase-12 increased significantly along with degenerative changes in cartilage after ADD. CONCLUSION These results indicate that the ER stress pathway is activated in ADD cartilage and might promote the development of TMD.
Collapse
Affiliation(s)
- Ting Xu
- Department of Stomatology, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyuan Gu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Yao
- Department of Stomatology, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guohua Wang
- Department of Stomatology, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Glucagon-like peptide-1 receptor regulates endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat. Cell Death Dis 2018; 9:212. [PMID: 29434185 PMCID: PMC5833344 DOI: 10.1038/s41419-017-0217-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/11/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022]
Abstract
Treatments for osteoarthritis (OA) are designed to restore chondrocyte function and inhibit cell apoptosis. Previous studies have shown that activation of the glucagon-like peptide-1 receptor (GLP-1R) leads to anti-inflammatory and anti-apoptotic effects. However, the role of GLP-1R in the pathological process of OA is unclear. In present work, we aimed to demonstrate the potential effect of GLP-1R on chondrocytes and elucidate its underlying mechanisms. We found that activation of GLP-1R with liraglutide could protect chondrocytes against endoplasmic reticulum stress and apoptosis induced by interleukin (IL)-1β or triglycerides (TGs). These effects were partially attenuated by GLP-1R small interfering RNA treatment. Moreover, inhibiting PI3K/Akt signaling abolished the protective effects of GLP-1R by increase the apoptosis activity and ER stress. Activating GLP-1R suppressed the nuclear factor kappa-B pathway, decreased the release of inflammatory mediators (IL-6, tumor necrosis factor α), and reduced matrix catabolism in TG-treated chondrocytes; these effects were abolished by GLP-1R knockdown. In the end, liraglutide attenuated rat cartilage degeneration in an OA model of knee joints in vivo. Our results indicate that GLP-1R is a therapeutic target for the treatment of OA, and that liraglutide could be a therapeutic candidate for this clinical application.
Collapse
|
37
|
Yang J, Xu J, Danniel M, Wang X, Wang W, Zeng L, Shen L. The interaction between XBP1 and eNOS contributes to endothelial cell migration. Exp Cell Res 2018; 363:262-270. [PMID: 29352987 DOI: 10.1016/j.yexcr.2018.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 11/29/2022]
Abstract
The X-box binding protein 1 (XBP1) is a pivotal transcription factor in the endoplasmic reticulum stress response. Our previous studies have proven that XBP1 is involved in vascular endothelial growth factor (VEGF)-mediated endothelial cell (EC) proliferation and angiogenesis. In this study, we used EC monolayer wound healing, tube formation and transwell migration models to explore the role of XBP1splicing in EC migration. We found that scratching on EC monolayer triggered XBP1splicing, which was attenuated by the presence of SU5416and LY294002, suggesting that VEGF signalling pathways may be involved. Over-expression of the spliced XBP1 (XBP1s) via Ad-XBP1s gene transfer increased while knockdown of IRE1αor XBP1 by ShRNA lentivirus suppressed EC migration. Over-expression of XBP1s up-regulated the nitric oxide synthase 3 (NOS3)mRNA through the 3'UTR-mediated stabilisation and increased eNOS protein translation. Further experiments demonstrated that miR-24 participated in the XBP1s-induced eNOSup-regulation and EC migration. Further co-IP and immunofluorescence staining assays revealed that protein kinase B (Akt), eNOS andXBP1s form a complex, resulting in Akt and eNOS nucleus relocation. These results suggest that XBP1 splicing can regulate eNOS expression and cellular location, leading to EC migration and therefore contributing to wound healing and angiogenesis.
Collapse
Affiliation(s)
- Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, SE5 9NU London, United Kingdom
| | - Jing Xu
- School of Engineering and Materials Science, Queen Mary, University of London, E1 4NS London, United Kingdom
| | - Martin Danniel
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, SE5 9NU London, United Kingdom
| | - Xiaocong Wang
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, SE5 9NU London, United Kingdom
| | - Wen Wang
- School of Engineering and Materials Science, Queen Mary, University of London, E1 4NS London, United Kingdom
| | - Lingfang Zeng
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, SE5 9NU London, United Kingdom.
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
38
|
Pitale PM, Gorbatyuk O, Gorbatyuk M. Neurodegeneration: Keeping ATF4 on a Tight Leash. Front Cell Neurosci 2017; 11:410. [PMID: 29326555 PMCID: PMC5736573 DOI: 10.3389/fncel.2017.00410] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Activation of the endoplasmic reticulum (ER) stress and ER stress response, also known as the unfolded protein response (UPR), is common to various degenerative disorders. Therefore, signaling components of the UPR are currently emerging as potential targets for intervention and treatment of human diseases. One UPR signaling member, activating transcription factor 4 (ATF4), has been found up-regulated in many pathological conditions, pointing to therapeutic potential in targeting its expression. In cells, ATF4 governs multiple signaling pathways, including autophagy, oxidative stress, inflammation, and translation, suggesting a multifaceted role of ATF4 in the progression of various pathologies. However, ATF4 has been shown to trigger both pro-survival and pro-death pathways, and this, perhaps, can explain the contradictory opinions in current literature regarding targeting ATF4 for clinical application. In this review, we summarized recent published studies from our labs and others that focus on the therapeutic potential of the strategy controlling ATF4 expression in different retinal and neurodegenerative disorders.
Collapse
Affiliation(s)
- Priyamvada M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Oleg Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
39
|
Xie JJ, Chen J, Guo SK, Gu YT, Yan YZ, Guo WJ, Yao CL, Jin MY, Xie CL, Wang X, Wang XY, Chen L. Panax quinquefolium saponin inhibits endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and attenuates the progression of osteoarthritis in rat. Biomed Pharmacother 2017; 97:886-894. [PMID: 29136765 DOI: 10.1016/j.biopha.2017.10.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
Treatments for osteoarthritis (OA) seek to restore chondrocyte function and inhibit cell apoptosis. Panax quinquefolium saponin (PQS) is the major active ingredient of Radix panacis quinquefolii (American ginseng), and has been demonstrated to exert anti-inflammatory and anti-apoptotic effects in various diseases. However, any potential effect of PQS on the pathological process of OA remains unclear. This work aimed to explore the role of PQS in chondrocytes and to clarify its potential mechanisms. We showed that PQS treatment could protect chondrocytes against endoplasmic reticulum (ER) stress and associated apoptosis induced by interleukin (IL)-1β. Also, PQS further attenuated triglyceride (TG)-induced ER stress and associated apoptosis. Moreover, PQS may inhibit the ER stress-activated NF-κB pathway and associated inflammatory response in chondrocytes. Finally, PQS abolished rat cartilage degeneration in an in-vivo OA model of the knee joint. Our results indicate that PQS may be a potential novel treatment for OA.
Collapse
Affiliation(s)
- Jun-Jun Xie
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Shi-Kun Guo
- Department of Postgraduate Education, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Yun-Tao Gu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Ying-Zhao Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Wei-Jun Guo
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Cheng-Lun Yao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Meng-Yun Jin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Cheng-Long Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China
| | - Xiang Wang
- North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiang-Yang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China.
| | - Long Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou, 325027, People's Republic of China.
| |
Collapse
|
40
|
Nazli SA, Loeser RF, Chubinskaya S, Willey JS, Yammani RR. High fat-diet and saturated fatty acid palmitate inhibits IGF-1 function in chondrocytes. Osteoarthritis Cartilage 2017; 25:1516-1521. [PMID: 28545881 PMCID: PMC5565687 DOI: 10.1016/j.joca.2017.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Insulin-like growth factor-1 (IGF-1) promotes matrix synthesis and cell survival in cartilage. Chondrocytes from aged and osteoarthritic cartilage have a reduced response to IGF-1. The purpose of this study was to determine the effect of free fatty acids (FFA) present in a high-fat diet on IGF-1 function in cartilage and the role of endoplasmic reticulum (ER) stress. METHODS C57BL/6 male mice were maintained on either a high-fat (60% kcal from fat) or a low-fat (10% kcal from fat) diet for 4 months. Mice were then sacrificed; femoral head cartilage caps were collected and treated with IGF-1 to measure proteoglycan (PG) synthesis. Cultured human chondrocytes were treated with 500 μM FFA palmitate or oleate, followed by stimulation with (100 ng/ml) IGF-1 overnight to measure CHOP (a protein marker for ER stress) and PG synthesis. Human chondrocytes were pre-treated with palmitate or 1 mM 4-phenyl butyric acid (PBA) or 1 μM C-Jun N terminal Kinase (JNK) inhibitor, and IGF-1 function (PG synthesis and signaling) was measured. RESULTS Cartilage explants from mice on the high fat-diet showed reduced IGF-1 mediated PG synthesis compared to a low-fat group. Treatment of human chondrocytes with palmitate induced expression of CHOP, activated JNK and inhibited IGF-1 function. PBA, a small molecule chemical chaperone that alleviates ER stress rescued IGF-1 function and a JNK inhibitor rescued IGF-1 signaling. CONCLUSIONS Palmitate-induced ER stress inhibited IGF-1 function in chondrocytes/cartilage via activating the mitogen-activated protein (MAP) kinase JNK. This is the first study to demonstrate that ER stress is metabolic factor that regulates IGF-1 function in chondrocytes.
Collapse
Affiliation(s)
- Sumaiya A. Nazli
- Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Richard F. Loeser
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC
| | | | | | - Raghunatha R. Yammani
- Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC,Corresponding author: Raghunatha R. Yammani, PhD, Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157,
| |
Collapse
|
41
|
Gu YT, Chen J, Meng ZL, Ge WY, Bian YY, Cheng SW, Xing CK, Yao JL, Fu J, Peng L. Research progress on osteoarthritis treatment mechanisms. Biomed Pharmacother 2017; 93:1246-1252. [DOI: 10.1016/j.biopha.2017.07.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
|
42
|
Mobasheri A, Rayman MP, Gualillo O, Sellam J, van der Kraan P, Fearon U. The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2017; 13:302-311. [PMID: 28381830 DOI: 10.1038/nrrheum.2017.50] [Citation(s) in RCA: 451] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabolism is important for cartilage and synovial joint function. Under adverse microenvironmental conditions, mammalian cells undergo a switch in cell metabolism from a resting regulatory state to a highly metabolically activate state to maintain energy homeostasis. This phenomenon also leads to an increase in metabolic intermediates for the biosynthesis of inflammatory and degradative proteins, which in turn activate key transcription factors and inflammatory signalling pathways involved in catabolic processes, and the persistent perpetuation of drivers of pathogenesis. In the past few years, several studies have demonstrated that metabolism has a key role in inflammatory joint diseases. In particular, metabolism is drastically altered in osteoarthritis (OA) and aberrant immunometabolism may be a key feature of many phenotypes of OA. This Review focuses on aberrant metabolism in the pathogenesis of OA, summarizing the current state of knowledge on the role of impaired metabolism in the cells of the osteoarthritic joint. We also highlight areas for future research, such as the potential to target metabolic pathways and mediators therapeutically.
Collapse
Affiliation(s)
- Ali Mobasheri
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences University of Surrey, Guildford GU2 7AL, UK.,Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis and MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Margaret P Rayman
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesia da Choupana S/N, Santiago de Compostela 15706, Spain
| | - Jérémie Sellam
- Department of Rheumatology, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (APHP), 184 Rue de Faubourg Saint-Antoine, 75012 Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), INSERM, UMR S938, Sorbonne University, University of Paris 6, 75005 Paris, France
| | - Peter van der Kraan
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 26-28, 6500 HB Nijmegen, Netherlands
| | - Ursula Fearon
- Department of Molecular Rheumatology, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
43
|
AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice. Sci Rep 2017; 7:43245. [PMID: 28225087 PMCID: PMC5320548 DOI: 10.1038/srep43245] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease of the joints that is associated with both joint injury and ageing. Here, we investigated the role of the energy sensor AMP-activated protein kinase (AMPK) in maintaining a healthy state of articular cartilage and in OA development. Using cartilage-specific, tamoxifen-inducible AMPKα1 conditional knockout (AMPKα1 cKO), AMPKα2 conditional knockout (AMPKα2 cKO) and AMPKα1α2 conditional double knockout (AMPKα cDKO) mice, we found that compared with wild-type (WT) littermates, mutant mice displayed accelerated severity of surgically induced OA, especially AMPKα cDKO mice. Furthermore, male but not female AMPKα cDKO mice exhibited severely spontaneous ageing-associated OA lesions at 12 months of age. The chondrocytes isolated from AMPKα cDKO mice resulted in an enhanced interleukin-1β (IL-1β)-stimulated catabolic response. In addition, upregulated expression of matrix metalloproteinase-3 (MMP-3), MMP-13 and phospho-nuclear factor-κB (phospho-NF-κB) p65 and increased levels of apoptotic markers were detected in the cartilage of AMPKα cDKO mice compared with their WT littermates in vivo. Thus, our findings suggest that AMPK activity in chondrocytes is important in maintaining joint homeostasis and OA development.
Collapse
|
44
|
Role of endoplasmic reticulum stress pathway in hydrostatic pressure-induced apoptosis in rat mandibular condylar chondrocytes. Mol Cell Biochem 2017; 429:23-31. [DOI: 10.1007/s11010-016-2933-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/23/2016] [Indexed: 01/07/2023]
|
45
|
June RK, Liu-Bryan R, Long F, Griffin TM. Emerging role of metabolic signaling in synovial joint remodeling and osteoarthritis. J Orthop Res 2016; 34:2048-2058. [PMID: 27605370 PMCID: PMC5365077 DOI: 10.1002/jor.23420] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 02/04/2023]
Abstract
Obesity and associated metabolic diseases collectively referred to as the metabolic syndrome increase the risk of skeletal and synovial joint diseases, including osteoarthritis (OA). The relationship between obesity and musculoskeletal diseases is complex, involving biomechanical, dietary, genetic, inflammatory, and metabolic factors. Recent findings illustrate how changes in cellular metabolism and metabolic signaling pathways alter skeletal development, remodeling, and homeostasis, especially in response to biomechanical and inflammatory stressors. Consequently, a better understanding of the energy metabolism of diarthrodial joint cells and tissues, including bone, cartilage, and synovium, may lead to new strategies to treat or prevent synovial joint diseases such as OA. This rationale was the basis of a workshop presented at the 2016 Annual ORS Meeting in Orlando, FL on the emerging role of metabolic signaling in synovial joint remodeling and OA. The topics we covered included (i) the relationship between metabolic syndrome and OA in clinical and pre-clinical studies; (ii) the effect of biomechanical loading on chondrocyte metabolism; (iii) the effect of Wnt signaling on osteoblast carbohydrate and amino acid metabolism with respect to bone anabolism; and (iv) the role of AMP-activated protein kinase in chondrocyte energetic and biomechanical stress responses in the context of cartilage injury, aging, and OA. Although challenges exist for measuring in vivo changes in synovial joint tissue metabolism, the findings presented herein provide multiple lines of evidence to support a central role for disrupted cellular energy metabolism in the pathogenesis of OA. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2048-2058, 2016.
Collapse
Affiliation(s)
- Ronald K. June
- Depts. of Mechanical & Industrial Engineering and Cell Biology & Neuroscience, Montana State University, Bozeman, MT, USA
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, Dept. of Medicine, University of California San Diego, San Diego, California, USA
| | - Fanxing Long
- Dept. of Orthopaedic Surgery, Dept. of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy M. Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Depts. of Biochemistry and Molecular Biology, Physiology, and Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
46
|
Abstract
The pseudo-kinase family of tribbles (TRIB) proteins has been linked to a variety of cell signalling pathways and appears to have functionally divergent roles with respect to intracellular protein degradation and the ability to regulate signal transduction pathways. In the arthritides, inflammation and a wide variety of pro-inflammatory pathways have been implicated to drive the cartilage destruction and consequent disability associated with both rheumatoid arthritis (RA) and osteoarthritis (OA). Despite burgeoning evidence linking the TRIB to inflammation-related pathologies such as diabetes, multiple sclerosis and cancer, very little is known about their roles in arthritis. The present review discusses current knowledge of the impact of TRIB on pro-inflammatory cellular mechanisms and pathways known to be important in the pathogenesis of RA and OA.
Collapse
|
47
|
Horiuchi K, Tohmonda T, Morioka H. The unfolded protein response in skeletal development and homeostasis. Cell Mol Life Sci 2016; 73:2851-69. [PMID: 27002737 PMCID: PMC11108572 DOI: 10.1007/s00018-016-2178-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/06/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
Abstract
Osteoblasts and chondrocytes produce a large number of extracellular matrix proteins to generate and maintain the skeletal system. To cope with their functions as secretory cells, these cells must acquire a considerable capacity for protein synthesis and also the machinery for the quality-control and transport of newly synthesized secreted proteins. The unfolded protein response (UPR) plays a crucial role during the differentiation of these cells to achieve this goal. Unexpectedly, however, studies in the past several years have revealed that the UPR has more extensive functions in skeletal development than was initially assumed, and the UPR critically orchestrates many facets of skeletal development and homeostasis. This review focuses on recent findings on the functions of the UPR in the differentiation of osteoblasts, chondrocytes, and osteoclasts. These findings may have a substantial impact on our understanding of bone metabolism and also on establishing treatments for congenital and acquired skeletal disorders.
Collapse
Affiliation(s)
- Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Anti-aging Orthopedic Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takahide Tohmonda
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Anti-aging Orthopedic Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideo Morioka
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
48
|
Abstract
Age is the strongest independent risk factor for the development of osteoarthritis (OA) and for many years this was assumed to be due to repetitive microtrauma of the joint surface over time, the so-called 'wear and tear' arthritis. As our understanding of OA pathogenesis has become more refined, it has changed our appreciation of the role of ageing on disease. Cartilage breakdown in disease is not a passive process but one involving induction and activation of specific matrix-degrading enzymes; chondrocytes are exquisitely sensitive to changes in the mechanical, inflammatory and metabolic environment of the joint; cartilage is continuously adapting to these changes by altering its matrix. Ageing influences all of these processes. In this review, we will discuss how ageing affects tissue structure, joint use and the cellular metabolism. We describe what is known about pathways implicated in ageing in other model systems and discuss the potential value of targeting these pathways in OA.
Collapse
|
49
|
Haywood J, Yammani RR. Free fatty acid palmitate activates unfolded protein response pathway and promotes apoptosis in meniscus cells. Osteoarthritis Cartilage 2016; 24:942-5. [PMID: 26687823 PMCID: PMC4838514 DOI: 10.1016/j.joca.2015.11.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Obesity is the major risk factor for the development of osteoarthritis (OA); however, the mechanisms involved are not clearly understood. Obesity is associated with increased production of adipokine and elevated levels of circulating free fatty acids (FFA). A recent study has shown that saturated fatty acid palmitate induced pro-inflammatory and pro-apoptotic pathways in chondrocytes. Meniscus has been shown to be more susceptible than articular cartilage to catabolic stimuli. Thus, the aim of this study was to determine the effect of FFA (specifically, palmitate) on meniscus cells. METHODS Cultured primary porcine meniscus cells were stimulated with 500 μM FFA (palmitate and oleate) for 24 h to induce endoplasmic reticulum (ER) stress. After treatment, cell lysates were prepared and immunoblotted for C/EBP homologous protein (CHOP). To determine the activation of unfolded protein response (UPR) signaling, cell lysates were probed for cJun n-terminal kinase (JNK), cleaved caspase -3 and Xbp-1s, an alternative mRNA splicing product generated due to Ire1α activation. RESULTS Treatment of isolated primary meniscus cells with palmitate but not oleate induced expression of CHOP and Xbp-1s. Palmitate treatment of meniscus cells also activated JNK and increased expression of caspase-3, thus promoting apoptosis in meniscus cells. CONCLUSIONS Palmitate induces ER stress and promotes apoptotic pathways in meniscus cells. This is the first study to establish ER stress as a key metabolic mechanistic link between obesity and OA, in addition to (or operating with) biomechanical factors.
Collapse
Affiliation(s)
| | - Raghunatha R. Yammani
- Corresponding author: Raghunatha R. Yammani, PhD, Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157,
| |
Collapse
|
50
|
Bottini M, Magrini A, Fadeel B, Rosato N. Tackling chondrocyte hypertrophy with multifunctional nanoparticles. Gene Ther 2016; 23:560-4. [DOI: 10.1038/gt.2016.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 01/09/2023]
|