1
|
Wang D, Yang Y, Yang L, Yang H. Bibliometric analysis and visualization of endocrine therapy for breast cancer research in the last two decade. Front Endocrinol (Lausanne) 2023; 14:1287101. [PMID: 38116321 PMCID: PMC10728495 DOI: 10.3389/fendo.2023.1287101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Background Breast cancer endocrine therapy research has become a crucial domain in oncology since hormone receptor-positive breast cancers have been increasingly recognized, and targeted therapeutic interventions have been advancing over the past few years. This bibliometric analysis attempts to shed light on the trends, dynamics, and knowledge hotspots that have shaped the landscape of breast cancer endocrine therapy research between 2003 and 2022. Methods In this study, we comprehensively reviewed the scientific literature spanning the above-mentioned period, which included publications accessible through the database of the Web of Science (WOS) and the National Center for Biotechnology Information (NCBI). Next, a systematic and data-driven analysis supported by sophisticated software tools was conducted, such that the core themes, prolific authors, influential journals, prominent countries, and critical citation patterns in the relevant research field can be clarified. Results A continuous and substantial expansion of breast cancer endocrine therapy research was revealed over the evaluated period. A total of 1,317 scholarly articles were examined. The results of the analysis suggested that research on endocrine therapy for breast cancer has laid a solid basis for the treatment of hormone receptor-positive breast cancer. From a geographical perspective, the US, the UK, and China emerged as the most active contributors, illustrating the global impact of this study. Furthermore, our analysis delineated prominent research topics that have dominated the discourse in the past two decades, including drug therapy, therapeutic efficacy, molecular biomarkers, and hormonal receptor interactions. Conclusion This comprehensive bibliometric analysis provides a panoramic view of the ever-evolving landscape of breast cancer endocrine therapy research. The findings highlight the trajectory of past developments while signifying an avenue of vast opportunities for future investigations and therapeutic advancements. As the field continues to burgeon, this analysis will provide valuable guidance for to researchers toward pertinent knowledge hotspots and emerging trends, which can expedite the discoveries in the realm of breast cancer endocrine therapy.
Collapse
Affiliation(s)
| | | | | | - Hongwei Yang
- Department of Breast and Thyroid Surgery, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
2
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
3
|
de Lara DV, de Melo DO, Kawakami DY, Gonçalves TS, Santos PC. Pharmacogenetic testing-guided treatment for oncology: an overview of reviews. Pharmacogenomics 2022; 23:739-748. [PMID: 36001087 DOI: 10.2217/pgs-2022-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pharmacogenetics is the relationship between an individual's genetic variations and their response to pharmacological treatment. We conducted an overview of reviews on the use of post-treatment pharmacogenetic testing for oncology, based on clinically relevant gene-drug pairs. We conducted a search on Medline, Embase and Cochrane Library, from their inception to 18 June 2020. We selected six eligible systematic reviews. The most studied drug categories were estrogen agonists/antagonists and fluoropyrimidines associated with cytochrome P450 and dihydropyrimidine dehydrogenase genes (CYP2D6 and DPYD), but many studies were classified as being of critically low or low quality. There is a need for more high-quality primary studies and systematic reviews that assess the risk of bias, with consistent definitions of clinical outcomes to consider the benefits of pharmacogenetic testing for oncology.
Collapse
Affiliation(s)
- Danilo Vieira de Lara
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM - Unifesp, São Paulo, 04044-020, Brazil
| | - Daniela Oliveira de Melo
- Institute of Environmental Sciences, Chemistry & Pharmaceuticals, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, 09913-030, Brazil
| | - Daniele Y Kawakami
- Institute of Environmental Sciences, Chemistry & Pharmaceuticals, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, 09913-030, Brazil
| | - Thuane S Gonçalves
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM - Unifesp, São Paulo, 04044-020, Brazil
| | - Paulo Cjl Santos
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, EPM - Unifesp, São Paulo, 04044-020, Brazil
| |
Collapse
|
4
|
Nthontho KC, Ndlovu AK, Sharma K, Kasvosve I, Hertz DL, Paganotti GM. Pharmacogenetics of Breast Cancer Treatments: A Sub-Saharan Africa Perspective. Pharmgenomics Pers Med 2022; 15:613-652. [PMID: 35761855 PMCID: PMC9233488 DOI: 10.2147/pgpm.s308531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer death in low- and middle-income countries, in particular among sub-Saharan African women, where response to available anticancer treatment therapy is often limited by the recurrent breast tumours and metastasis, ultimately resulting in decreased overall survival rate. This can also be attributed to African genomes that contain more variation than those from other parts of the world. The purpose of this review is to summarize published evidence on pharmacogenetic and pharmacokinetic aspects related to specific available treatments and the known genetic variabilities associated with metabolism and/or transport of breast cancer drugs, and treatment outcomes when possible. The emphasis is on the African genetic variation and focuses on the genes with the highest strength of evidence, with a close look on CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, CYP19A1, UGT1A4, UGT2B7, UGT2B15, SLC22A16, SLC38A7, FcγR, DPYD, ABCB1, and SULT1A1, which are the genes known to play major roles in the metabolism and/or elimination of the respective anti-breast cancer drugs given to the patients. The genetic variability of their metabolism could be associated with different metabolic phenotypes that may cause reduced patients' adherence because of toxicity or sub-therapeutic doses. Finally, this knowledge enhances possible personalized treatment approaches, with the possibility of improving survival outcomes in patients with breast cancer.
Collapse
Affiliation(s)
- Keneuoe Cecilia Nthontho
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Andrew Khulekani Ndlovu
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
5
|
Ratios of Acetaminophen Metabolites Identify New Loci of Pharmacogenetic Relevance in a Genome-Wide Association Study. Metabolites 2022; 12:metabo12060496. [PMID: 35736429 PMCID: PMC9228664 DOI: 10.3390/metabo12060496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies (GWAS) with non-targeted metabolomics have identified many genetic loci of biomedical interest. However, metabolites with a high degree of missingness, such as drug metabolites and xenobiotics, are often excluded from such studies due to a lack of statistical power and higher uncertainty in their quantification. Here we propose ratios between related drug metabolites as GWAS phenotypes that can drastically increase power to detect genetic associations between pairs of biochemically related molecules. As a proof-of-concept we conducted a GWAS with 520 individuals from the Qatar Biobank for who at least five of the nine available acetaminophen metabolites have been detected. We identified compelling evidence for genetic variance in acetaminophen glucuronidation and methylation by UGT2A15 and COMT, respectively. Based on the metabolite ratio association profiles of these two loci we hypothesized the chemical structure of one of their products or substrates as being 3-methoxyacetaminophen, which we then confirmed experimentally. Taken together, our study suggests a novel approach to analyze metabolites with a high degree of missingness in a GWAS setting with ratios, and it also demonstrates how pharmacological pathways can be mapped out using non-targeted metabolomics measurements in large population-based studies.
Collapse
|
6
|
Association between genetic polymorphisms in cytochrome P450 enzymes and survivals in women with breast cancer receiving adjuvant endocrine therapy: a systematic review and meta-analysis. Expert Rev Mol Med 2022; 24:e1. [PMID: 34991754 PMCID: PMC9884795 DOI: 10.1017/erm.2021.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tamoxifen is commonly prescribed for preventing recurrence in patients with breast cancer. However, the responses of the patients on tamoxifen treatment are variable. Cytochrome P450 genetic variants have been reported to have a significant impact on the clinical outcomes of tamoxifen treatment but no tangible conclusion can be made up till now. The present review attempts to provide a comprehensive review on the associative relationship between genetic polymorphisms in cytochrome P450 enzymes and survival in breast cancer patients on adjuvant tamoxifen therapy. The literature search was conducted using five databases, resulting in the inclusion of 58 studies in the review. An appraisal of the reporting quality of the included studies was conducted using the assessment tool from the Effective Public Health Practice Project (EPHPP). Meta-analyses were performed on CYP2D6 studies using Review Manager 5.3 software. For other studies, descriptive analyses were performed. The results of meta-analyses demonstrated that shorter overall survival, disease-free survival and relapse-free survival were found in the patients with decreased metabolisers when compared to normal metabolisers. The findings also showed that varying and conflicting results were reported by the included studies. The possible explanations for the variable results are discussed in this review.
Collapse
|
7
|
Maurya MR, Gautam S, Raj JP, Saha S, Ambre S, Thakurdesai A, Shah A, Thatte UM. Evaluation of genetic polymorphism of CYP3A5 in normal healthy participants from western India - A cross-sectional study. Indian J Pharmacol 2022; 54:97-101. [PMID: 35546460 PMCID: PMC9249149 DOI: 10.4103/ijp.ijp_279_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND CYP3A5 enzymes belong to the phase I Group of drug-metabolizing enzymes, which are involved in the metabolism of 50% of the drugs. Participants with CYP3A5 genotype: CYP3A5 *1/*1 are fast metabolizers of drugs and hence will require higher dosing. Whereas those with CYP3A5 * 3/*3 are poor metabolizers of drugs and will require a lower dose to achieve target drug concentration in the blood and those with CYP3A5 * 1/*3 have intermediate drug metabolizing activity. Pharmacogenetic evaluation may improve disease outcomes by maximizing the efficacy and minimizing the toxicity of drugs in patients. MATERIALS AND METHODS This is a single-center cross-sectional study conducted in the year 2018-2019 to study the population prevalence of genetic polymorphisms of CYP3A5 in healthy participants from western India. Eligible participants willing to give written, informed consent were enrolled in the study. Subsequently, 2 ml venous blood was collected the deoxyribonucleic acid was extracted and then stored at ‒20°C. Genotyping was done by a polymerase chain reaction and restriction fragment length polymorphism. RESULTS A total of 400 participants with a median age of 22 years (range: 18-58 years) were included. Among them, the genotype prevalence for CYP3A5 * 1/*1 was 17% (n = 67/400); CYP3A5 * 1/*3 was 37% (n = 149/400) and that of CYP3A5 * 3/*3 was 46% (184/400). Out of the total 400 healthy participants analyzed, the allele frequency for CYP3A5 * 1 was 35% (142/400) and that of CYP3A5*3 was 65% (259/400). CONCLUSION The genotype prevalence for CYP3A5 * 3*3 (46%) and the allele frequency for CYP3A5 * 3 (65%) respectively were the highest among the western Indian population.
Collapse
Affiliation(s)
| | - Sunanda Gautam
- Department of Clinical Pharmacology, KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Jeffrey Pradeep Raj
- Department of Clinical Pharmacology, KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Shruti Saha
- Department of Clinical Pharmacology, KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Sanchita Ambre
- Department of Clinical Pharmacology, KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Aishwarya Thakurdesai
- Department of Clinical Pharmacology, KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Aditya Shah
- Department of Clinical Pharmacology, KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - Urmila Mukund Thatte
- Department of Clinical Pharmacology, KEM Hospital, Parel, Mumbai, Maharashtra, India,Address for correspondence: Dr. Urmila Mukund Thatte, Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Parel, Mumbai - 400 012, Maharashtra, India. E-mail:
| |
Collapse
|
8
|
Jayaraman S, Reid JM, Hawse JR, Goetz MP. Endoxifen, an Estrogen Receptor Targeted Therapy: From Bench to Bedside. Endocrinology 2021; 162:6364076. [PMID: 34480554 PMCID: PMC8787422 DOI: 10.1210/endocr/bqab191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/19/2022]
Abstract
The selective estrogen receptor (ER) modulator, tamoxifen, is the only endocrine agent with approvals for both the prevention and treatment of premenopausal and postmenopausal estrogen-receptor positive breast cancer as well as for the treatment of male breast cancer. Endoxifen, a secondary metabolite resulting from CYP2D6-dependent biotransformation of the primary tamoxifen metabolite, N-desmethyltamoxifen (NDT), is a more potent antiestrogen than either NDT or the parent drug, tamoxifen. However, endoxifen's antitumor effects may be related to additional molecular mechanisms of action, apart from its effects on ER. In phase 1/2 clinical studies, the efficacy of Z-endoxifen, the active isomer of endoxifen, was evaluated in patients with endocrine-refractory metastatic breast cancer as well as in patients with gynecologic, desmoid, and hormone-receptor positive solid tumors, and demonstrated substantial oral bioavailability and promising antitumor activity. Apart from its potent anticancer effects, Z-endoxifen appears to result in similar or even greater bone agonistic effects while resulting in little or no endometrial proliferative effects compared with tamoxifen. In this review, we summarize the preclinical and clinical studies evaluating endoxifen in the context of breast and other solid tumors, the potential benefits of endoxifen in bone, as well as its emerging role as an antimanic agent in bipolar disorder. In total, the summarized body of literature provides compelling arguments for the ongoing development of Z-endoxifen as a novel drug for multiple indications.
Collapse
Affiliation(s)
| | - Joel M Reid
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew P Goetz
- Correspondence: Matthew P. Goetz, MD, Department of Medical Oncology and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
9
|
Pang H, Zhang G, Yan N, Lang J, Liang Y, Xu X, Cui Y, Wu X, Li X, Shan M, Wang X, Meng X, Liu J, Tian G, Cai L, Yuan D, Wang X. Evaluating the Risk of Breast Cancer Recurrence and Metastasis After Adjuvant Tamoxifen Therapy by Integrating Polymorphisms in Cytochrome P450 Genes and Clinicopathological Characteristics. Front Oncol 2021; 11:738222. [PMID: 34868931 PMCID: PMC8639703 DOI: 10.3389/fonc.2021.738222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Tamoxifen (TAM) is the most commonly used adjuvant endocrine drug for hormone receptor-positive (HR+) breast cancer patients. However, how to accurately evaluate the risk of breast cancer recurrence and metastasis after adjuvant TAM therapy is still a major concern. In recent years, many studies have shown that the clinical outcomes of TAM-treated breast cancer patients are influenced by the activity of some cytochrome P450 (CYP) enzymes that catalyze the formation of active TAM metabolites like endoxifen and 4-hydroxytamoxifen. In this study, we aimed to first develop and validate an algorithm combining polymorphisms in CYP genes and clinicopathological signatures to identify a subpopulation of breast cancer patients who might benefit most from TAM adjuvant therapy and meanwhile evaluate major risk factors related to TAM resistance. Specifically, a total of 256 patients with invasive breast cancer who received adjuvant endocrine therapy were selected. The genotypes at 10 loci from three TAM metabolism-related CYP genes were detected by time-of-flight mass spectrometry and multiplex long PCR. Combining the 10 loci with nine clinicopathological characteristics, we obtained 19 important features whose association with cancer recurrence was assessed by importance score via random forests. After that, a logistic regression model was trained to calculate TAM risk-of-recurrence score (TAM RORs), which is adopted to assess a patient's risk of recurrence after TAM treatment. The sensitivity and specificity of the model in an independent test cohort were 86.67% and 64.56%, respectively. This study showed that breast cancer patients with high TAM RORs were less sensitive to TAM treatment and manifested more invasive characteristics, whereas those with low TAM RORs were highly sensitive to TAM treatment, and their conditions were stable during the follow-up period. There were some risk factors that had a significant effect on the efficacy of TAM. They were tissue classification (tumor Grade < 2 vs. Grade ≥ 2, p = 2.2e-16), the number of lymph node metastases (Node-Negative vs. Node < 4, p = 5.3e-07; Node < 4 vs. Node ≥ 4, p = 0.003; Node-Negative vs. Node ≥ 4, p = 7.2e-15), and the expression levels of estrogen receptor (ER) and progesterone receptor (PR) (ER < 50% vs. ER ≥ 50%, p = 1.3e-12; PR < 50% vs. PR ≥ 50%, p = 2.6e-08). The really remarkable thing is that different genotypes of CYP2D6*10(C188T) show significant differences in prediction function (CYP2D6*10 CC vs. TT, p < 0.019; CYP2D6*10 CT vs. TT, p < 0.037). There are more than 50% Chinese who have CYP2D6*10 mutation. So the genotype of CYP2D6*10(C188T) should be tested before TAM therapy.
Collapse
Affiliation(s)
- Hui Pang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guoqiang Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Na Yan
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
- Department of Science, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jidong Lang
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
- Department of Science, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Yuebin Liang
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
- Department of Science, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Xinyuan Xu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaowen Cui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueya Wu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianjun Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Shan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoqin Wang
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
| | - Xiangzhi Meng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Geng Tian
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
- Department of Science, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Li Cai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dawei Yuan
- Department of Science, Geneis (Beijing) Co., Ltd., Beijing, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Ahmed NS, Samec M, Liskova A, Kubatka P, Saso L. Tamoxifen and oxidative stress: an overlooked connection. Discov Oncol 2021; 12:17. [PMID: 35201439 PMCID: PMC8777555 DOI: 10.1007/s12672-021-00411-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen is the gold standard drug for the treatment of breast cancer in pre and post-menopausal women. Its journey from a failing contraceptive to a blockbuster is an example of pharmaceutical innovation challenges. Tamoxifen has a wide range of pharmacological activities; a drug that was initially thought to work via a simple Estrogen receptor (ER) mechanism was proven to mediate its activity through several non-ER mechanisms. Here in we review the previous literature describing ER and non-ER targets of tamoxifen, we highlighted the overlooked connection between tamoxifen, tamoxifen apoptotic effects and oxidative stress.
Collapse
Affiliation(s)
- Nermin S Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601, Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Department of Experimental Carcinogenesis (Biomedical Center Martin, Division of Oncology), Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 03601, Martin, Slovak Republic
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
11
|
Alimardani M, Moghbeli M, Rastgar-Moghadam A, Shandiz FH, Abbaszadegan MR. Single nucleotide polymorphisms as the efficient prognostic markers in breast cancer. Curr Cancer Drug Targets 2021; 21:768-793. [PMID: 34036920 DOI: 10.2174/1568009621666210525151846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/15/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer (BC) is known as the most common malignancy in women. Environmental and genetic factors are associated with BC progression. Genetic polymorphisms have been reported as important risk factors of BC prognosis and drug response. Main body: Therefore, in the present review, we have summarized all single nucleotide polymorphisms (SNPs) which have been significantly associated with drug response in BC patients around the world. We have also categorized the reported SNPs based on their related genes functions to clarify the molecular biology of drug responses in BC. CONCLUSION The majority of SNPs were reported in detoxifying enzymes, which introduced such genes as the main genetic risk factors during BC drug responses. This review paves the way for introducing a prognostic panel of SNPs for the BC patients in the world.
Collapse
Affiliation(s)
- Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Rastgar-Moghadam
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Homaei Shandiz
- Department of Radiotherapy/Oncology, Omid Hospital, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Helland T, Alsomairy S, Lin C, Søiland H, Mellgren G, Hertz DL. Generating a Precision Endoxifen Prediction Algorithm to Advance Personalized Tamoxifen Treatment in Patients with Breast Cancer. J Pers Med 2021; 11:jpm11030201. [PMID: 33805613 PMCID: PMC8000933 DOI: 10.3390/jpm11030201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen is an endocrine treatment for hormone receptor positive breast cancer. The effectiveness of tamoxifen may be compromised in patients with metabolic resistance, who have insufficient metabolic generation of the active metabolites endoxifen and 4-hydroxy-tamoxifen. This has been challenging to validate due to the lack of measured metabolite concentrations in tamoxifen clinical trials. CYP2D6 activity is the primary determinant of endoxifen concentration. Inconclusive results from studies investigating whether CYP2D6 genotype is associated with tamoxifen efficacy may be due to the imprecision in using CYP2D6 genotype as a surrogate of endoxifen concentration without incorporating the influence of other genetic and clinical variables. This review summarizes the evidence that active metabolite concentrations determine tamoxifen efficacy. We then introduce a novel approach to validate this relationship by generating a precision endoxifen prediction algorithm and comprehensively review the factors that must be incorporated into the algorithm, including genetics of CYP2D6 and other pharmacogenes. A precision endoxifen algorithm could be used to validate metabolic resistance in existing tamoxifen clinical trial cohorts and could then be used to select personalized tamoxifen doses to ensure all patients achieve adequate endoxifen concentrations and maximum benefit from tamoxifen treatment.
Collapse
Affiliation(s)
- Thomas Helland
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
- Correspondence: ; Tel.: +47-92847793
| | - Sarah Alsomairy
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| | - Chenchia Lin
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| |
Collapse
|
13
|
Sneha S, Baker SC, Green A, Storr S, Aiyappa R, Martin S, Pors K. Intratumoural Cytochrome P450 Expression in Breast Cancer: Impact on Standard of Care Treatment and New Efforts to Develop Tumour-Selective Therapies. Biomedicines 2021; 9:biomedicines9030290. [PMID: 33809117 PMCID: PMC7998590 DOI: 10.3390/biomedicines9030290] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Despite significant advances in treatment strategies over the past decade, selective treatment of breast cancer with limited side-effects still remains a great challenge. The cytochrome P450 (CYP) family of enzymes contribute to cancer cell proliferation, cell signaling and drug metabolism with implications for treatment outcomes. A clearer understanding of CYP expression is important in the pathogenesis of breast cancer as several isoforms play critical roles in metabolising steroid hormones and xenobiotics that contribute to the genesis of breast cancer. The purpose of this review is to provide an update on how the presence of CYPs impacts on standard of care (SoC) drugs used to treat breast cancer as well as discuss opportunities to exploit CYP expression for therapeutic intervention. Finally, we provide our thoughts on future work in CYP research with the aim of supporting ongoing efforts to develop drugs with improved therapeutic index for patient benefit.
Collapse
Affiliation(s)
- Smarakan Sneha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Simon C. Baker
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology & York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK;
| | - Andrew Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Sarah Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Radhika Aiyappa
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Stewart Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
- Correspondence: ; Tel.: +44-(0)1274-236482 or +44-(0)1274-235866; Fax: +44-(0)1274-233234
| |
Collapse
|
14
|
Slanař O, Hronová K, Bartošová O, Šíma M. Recent advances in the personalized treatment of estrogen receptor-positive breast cancer with tamoxifen: a focus on pharmacogenomics. Expert Opin Drug Metab Toxicol 2020; 17:307-321. [PMID: 33320718 DOI: 10.1080/17425255.2021.1865310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Tamoxifen is still an important drug in hormone-dependent breast cancer therapy. Personalization of its clinical use beyond hormone receptor positivity could improve the substantial variability of the treatment response.Areas covered: The overview of the current evidence for the treatment personalization using therapeutic drug monitoring, or using genetic biomarkers including CYP2D6 is provided. Although many studies focused on the PK aspects or the impact of CYP2D6 variability the translation into clinical routine is not clearly defined due to the inconsistent clinical outcome data.Expert opinion: We believe that at least the main candidate factors, i.e. CYP2D6 polymorphism, CYP2D6 inhibition, endoxifen serum levels may become important predictors of clinical relevance for tamoxifen treatment personalization in the future. To achieve this aim, however, further research should take into consideration more precise characterization of the disease, epigenetic factors and also utilize an appropriately powered multifactorial approach instead of a single gene evaluating studies.
Collapse
Affiliation(s)
- Ondřej Slanař
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Karolína Hronová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Olga Bartošová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
15
|
Daripally S, Peddi K. Polymorphic variants of drug-metabolizing enzymes alter the risk and survival of oral cancer patients. 3 Biotech 2020; 10:529. [PMID: 33214976 DOI: 10.1007/s13205-020-02526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022] Open
Abstract
The present study investigated the prevalence of CYP2D6*4, CYP3A5*3 and SULT1A1*2, using PCR-RFLP, in normal and oral cancer (OC) patients that were stratified by OC subtype and gender. The risk of cancer, 5-year cumulative survival and hazard's ratio (HR) with respect to risk factors and clinical factors were estimated using Fisher's exact test, Kaplan-Meier analysis, and Cox proportional hazards models. CYP2D6*4 'GA' lowered the risk of buccal mucosa cancer (BMC) in males (OR = 0.37), whereas, 'G' allele of CYP3A5*3 increased risk of tongue cancer (TC) (OR = 1.67). SULT1A1*2 'GA' increased the risk of TC (OR = 2.36) and BMC (OR = 3.25) in females. The 5-year survival of the patients depended on factors like age, lymphovascular spread (LVS), perinodal spread (PNS), recurrence, tobacco, and alcohol. CYP3A5*3 'AG' and 'GG' had decreased the hazard ratio (HR) for BMC females when inflammatory infiltrate alone or along with other covariates, LVS, PNI, PNS, metastasis, recurrence, and relapse was adjusted. Similarly, CYP3A5*3 'AG' decreased the risk of death (HR = 0.05) when the grade was adjusted. SULT1A1*2 'GA' had decreased HR for TC males (HR = 0.08) after adjusting for inflammatory infiltrate, LVS, perineural invasion (PNI), PNS, metastasis, recurrence, and relapse. Further, our bioinformatics study revealed the presence of a CpG island within the CYP2D6 and a CTCF binding site upstream of CYP2D6. Interestingly, three CpG islands and two CTCF binding sites were also identified near the SULT1A1. In conclusion, the SNPs altered risk and survival of BMC and TC differentially in a gender specified manner, that varied with clinical and risk factors.
Collapse
|
16
|
Hayes DF, Rae JM. Pharmacogenomics and Endocrine Therapy in Breast Cancer. J Clin Oncol 2019; 38:525-528. [PMID: 31880969 DOI: 10.1200/jco.19.03119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Daniel F Hayes
- University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - James M Rae
- University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
17
|
Ximenez JPB, de Andrade JM, Marques MP, Coelho EB, Suarez-Kurtz G, Lanchote VL. Hormonal status affects plasma exposure of tamoxifen and its main metabolites in tamoxifen-treated breast cancer patients. BMC Pharmacol Toxicol 2019; 20:81. [PMID: 31852530 PMCID: PMC6921430 DOI: 10.1186/s40360-019-0358-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Tamoxifen is considered a prodrug of its active metabolite endoxifen, which is dependent on the CYP2D6 and CYP3A enzymes. Tamoxifen pharmacokinetic variability influences endoxifen exposure and, consequently, its clinical outcome. This study investigated the impact of hormonal status on the pharmacokinetics of tamoxifen and its metabolites in TAM-treated breast cancer patients. Methods TAM-treated breast cancer patients (n = 40) previously believed to have CYP3A activity within the normal range based on oral midazolam and phenotyped as CYP2D6 normal metabolizers using oral metoprolol were divided into two groups according to premenopausal (n = 20; aged 35–50 years) or postmenopausal (n = 20; aged 60–79 years) status. All patients were treated with 20 mg/day tamoxifen for at least three months. Serial plasma samples were collected within the 24 h dose interval for analysis of unchanged tamoxifen, endoxifen, 4-hydroxytamoxifen and N-desmethyltamoxifen quantified by LC-MS/MS. CYP activities were assessed using midazolam apparent clearance (CYP3A) and the metoprolol/alfa-hydroxymetoprolol plasma metabolic ratio (CYP2D6). CYP3A4, CYP3A5 and CYP2D6 SNPs and copy number variation were investigated using TaqMan assays. Results Postmenopausal status increased steady-state plasma concentrations (Css) of tamoxifen (116.95 vs 201.23 ng/mL), endoxifen (8.01 vs 18.87 ng/mL), N-desmethyltamoxifen (485.16 vs 843.88 ng/mL) and 4-hydroxytamoxifen (2.67 vs 4.11 ng/mL). The final regression models included hormonal status as the only predictor for Css of tamoxifen [β-coef ± SE, p-value (75.03 ± 17.71, p = 0.0001)] and 4-hydroxytamoxifen (1.7822 ± 0.4385, p = 0.0002), while endoxifen Css included hormonal status (8.578 ± 3.402, p = 0.02) and race (11.945 ± 2.836, p = 0.007). For N-desmethyltamoxifen Css, the final model was correlated with hormonal status (286.259 ± 76.766, p = 0.0007) and weight (− 8.585 ± 3.060, p = 0.008). Conclusion The premenopausal status was associated with decreased endoxifen plasma concentrations by 135% compared to postmenopausal status. Thus, the endoxifen plasma concentrations should be monitored mainly in the premenopausal period to maintain plasma levels above the efficacy threshold value. Trial registration RBR-7tqc7k.
Collapse
Affiliation(s)
- João Paulo Bianchi Ximenez
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jurandyr Moreira de Andrade
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Paula Marques
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Eduardo Barbosa Coelho
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Vera Lucia Lanchote
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
18
|
Nardin JM, Schroth W, Almeida TA, Mürdter T, Picolotto S, Vendramini ECL, Hoppe R, Kogin JP, Miqueleto D, de Moraes SDR, Schwab M, Pecoits-Filho RF, Brauch H, Casali-da-Rocha JC. The Influences of Adherence to Tamoxifen and CYP2D6 Pharmacogenetics on Plasma Concentrations of the Active Metabolite (Z)-Endoxifen in Breast Cancer. Clin Transl Sci 2019; 13:284-292. [PMID: 31573754 PMCID: PMC7070802 DOI: 10.1111/cts.12707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Tamoxifen efficacy in breast cancer is suspected to depend on adherence and intact drug metabolism. We evaluated the role of adherence behavior and pharmacogenetics on the formation rate of (Z)-endoxifen. In 192 Brazilian patients, we assessed plasma levels of tamoxifen and its metabolites at 3, 6, and 12 months of treatment (liquid-chromatography tandem mass spectrometry), adherence behavior (Morisky, Green, and Levine medication adherence scale), and cytochrome P450 2D6 (CYP2D6) and other pharmacogene polymorphisms (matrix-assisted laser-desorption-ionization time of flight) mass spectrometry, real-time polymerase chain reaction). Adherence explained 47% of the variability of tamoxifen plasma concentrations (P < 0.001). Although CYP2D6 alone explained 26.4%, the combination with adherence explained 40% of (Z)-endoxifen variability at 12 months (P < 0.001). The influence of low adherence to not achieving relevant (Z)-endoxifen levels was highest in patients with noncompromised CYP2D6 function (relative risk 3.65; 95% confidence interval 1.48-8.99). As a proof-of-concept, we demonstrated that (Z)-endoxifen levels are influenced both by patient adherence to tamoxifen and CYP2D6, which is particularly relevant for patients with full CYP2D6 function.
Collapse
Affiliation(s)
- Jeanine Marie Nardin
- Clinical Research Department, Erasto Gaertner Hospital, Curitiba, Brazil.,School of Health Science, UniBrasil, Curitiba, Brazil.,Pontifical Catholic University of Parana, Curitiba, Brazil
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | | | - Thomas Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | | | | | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | | | | | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,iFIT Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
| | | | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,iFIT Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
| | - José Claudio Casali-da-Rocha
- Pontifical Catholic University of Parana, Curitiba, Brazil.,Department of Oncogenetics, Erasto Gaertner Hospital, Curitiba, Brazil
| |
Collapse
|
19
|
Polymorphisms of genes encoding drug transporters or cytochrome P450 enzymes and association with clinical response in cancer patients: a systematic review. Cancer Chemother Pharmacol 2019; 84:959-975. [DOI: 10.1007/s00280-019-03932-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
20
|
Identification of important invasion and proliferation related genes in adrenocortical carcinoma. Med Oncol 2019; 36:73. [DOI: 10.1007/s12032-019-1296-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
|
21
|
Sanchez-Spitman A, Swen J, Dezentje V, Moes D, Gelderblom H, Guchelaar H. Clinical pharmacokinetics and pharmacogenetics of tamoxifen and endoxifen. Expert Rev Clin Pharmacol 2019; 12:523-536. [DOI: 10.1080/17512433.2019.1610390] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- A.B. Sanchez-Spitman
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J.J. Swen
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - V.O. Dezentje
- Department of Medical Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - D.J.A.R. Moes
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - H. Gelderblom
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - H.J. Guchelaar
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Ruffalo M, Bar-Joseph Z. Protein interaction disruption in cancer. BMC Cancer 2019; 19:370. [PMID: 31014259 PMCID: PMC6823625 DOI: 10.1186/s12885-019-5532-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Background Most methods that integrate network and mutation data to study cancer focus on the effects of genes/proteins, quantifying the effect of mutations or differential expression of a gene and its neighbors, or identifying groups of genes that are significantly up- or down-regulated. However, several mutations are known to disrupt specific protein-protein interactions, and network dynamics are often ignored by such methods. Here we introduce a method that allows for predicting the disruption of specific interactions in cancer patients using somatic mutation data and protein interaction networks. Methods We extend standard network smoothing techniques to assign scores to the edges in a protein interaction network in addition to nodes. We use somatic mutations as input to our modified network smoothing method, producing scores that quantify the proximity of each edge to somatic mutations in individual samples. Results Using breast cancer mutation data, we show that predicted edges are significantly associated with patient survival and known ligand binding site mutations. In-silico analysis of protein binding further supports the ability of the method to infer novel disrupted interactions and provides a mechanistic explanation for the impact of mutations on key pathways. Conclusions Our results show the utility of our method both in identifying disruptions of protein interactions from known ligand binding site mutations, and in selecting novel clinically significant interactions.Supporting website with software and data: https://www.cs.cmu.edu/~mruffalo/mut-edge-disrupt/. Electronic supplementary material The online version of this article (10.1186/s12885-019-5532-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew Ruffalo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA. .,Machine Learning Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
23
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
24
|
Lan B, Ma F, Han M, Chen S, Wang W, Li Q, Fan Y, Luo Y, Cai R, Wang J, Yuan P, Zhang P, Li Q, Xu B. The Effect of Polymorphism in UGT1A4 on Clinical Outcomes of Adjuvant Tamoxifen Therapy for Patients With Breast Cancer in China. Clin Breast Cancer 2019; 19:e370-e375. [DOI: 10.1016/j.clbc.2018.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 11/30/2022]
|
25
|
Breast cancer susceptibility genes in estrogen metabolizing pathway in a southern Indian population. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Chan HT, Chin YM, Low SK. The Roles of Common Variation and Somatic Mutation in Cancer Pharmacogenomics. Oncol Ther 2019; 7:1-32. [PMID: 32700193 PMCID: PMC7359987 DOI: 10.1007/s40487-018-0090-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer pharmacogenomics is the science concerned with understanding genetic alterations and its effects on the pharmacokinetics and pharmacodynamics of anti-cancer drugs, with the aim to provide cancer patients with the precise medication that will achieve a good response and cause low/no incidence of adverse events. Advances in biotechnology and bioinformatics have enabled genomic research to evolve from the evaluation of alterations at the single-gene level to studies on the whole-genome scale using large-scale genotyping and next generation sequencing techniques. International collaborative efforts have resulted in the construction of databases to curate the identified genetic alterations that are clinically significant, and these are currently utilized in clinical sequencing and liquid biopsy screening/monitoring. Furthermore, countless clinical studies have accumulated sufficient evidence to match cancer patients to therapies by utilizing the information of clinical-relevant alterations. In this review we summarize the importance of germline alterations that act as predictive biomarkers for drug-induced toxicity and drug response as well as somatic mutations in cancer cells that function as drug targets. The integration of genomics into the medical field has transformed the era of cancer therapy from one-size-fits-all to cancer precision medicine.
Collapse
Affiliation(s)
- Hiu Ting Chan
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoon Ming Chin
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siew-Kee Low
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
27
|
Baez-Jurado E, Rincón-Benavides MA, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Sahebkar A, Echeverria V, Garcia-Segura LM, Barreto GE. Molecular mechanisms involved in the protective actions of Selective Estrogen Receptor Modulators in brain cells. Front Neuroendocrinol 2019; 52:44-64. [PMID: 30223003 DOI: 10.1016/j.yfrne.2018.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
Synthetic selective modulators of the estrogen receptors (SERMs) have shown to protect neurons and glial cells against toxic insults. Among the most relevant beneficial effects attributed to these compounds are the regulation of inflammation, attenuation of astrogliosis and microglial activation, prevention of excitotoxicity and as a consequence the reduction of neuronal cell death. Under pathological conditions, the mechanism of action of the SERMs involves the activation of estrogen receptors (ERs) and G protein-coupled receptor for estrogens (GRP30). These receptors trigger neuroprotective responses such as increasing the expression of antioxidants and the activation of kinase-mediated survival signaling pathways. Despite the advances in the knowledge of the pathways activated by the SERMs, their mechanism of action is still not entirely clear, and there are several controversies. In this review, we focused on the molecular pathways activated by SERMs in brain cells, mainly astrocytes, as a response to treatment with raloxifene and tamoxifen.
Collapse
Affiliation(s)
- E Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - M A Rincón-Benavides
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - O Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - G Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - G M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - V Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Lientur 1457, Concepción 4080871, Chile; Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - L M Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - G E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
28
|
Brooks JD, Comen EA, Reiner AS, Orlow I, Leong SF, Liang X, Mellemkjær L, Knight JA, Lynch CF, John EM, Bernstein L, Woods M, Doody DR, Malone KE, Bernstein JL. CYP2D6 phenotype, tamoxifen, and risk of contralateral breast cancer in the WECARE Study. Breast Cancer Res 2018; 20:149. [PMID: 30526633 PMCID: PMC6288916 DOI: 10.1186/s13058-018-1083-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tamoxifen treatment greatly reduces a woman's risk of developing a second primary breast cancer. There is, however, substantial variability in treatment response, some of which may be attributed to germline genetic variation. CYP2D6 is a key enzyme in the metabolism of tamoxifen to its active metabolites, and variants in this gene have been associated with reduced tamoxifen metabolism. The impact of variation on risk of contralateral breast cancer (CBC) is unknown. METHODS Germline DNA from 1514 CBC cases and 2203 unilateral breast cancer controls was genotyped for seven single nucleotide polymorphisms, one three-nucleotide insertion-deletion, and a full gene deletion. Each variant has an expected impact on enzyme activity, which in combination allows for the classification of women as extensive, intermediate, and poor metabolizers (EM, IM, and PM respectively). Each woman was assigned one of six possible diplotypes and a corresponding CYP2D6 activity score (AS): EM/EM (AS = 2), EM/IM (AS = 1.5), EM/PM (AS = 1), IM/IM (AS = 0.75), IM/PM (AS = 0.5), and PM/PM (AS = 0). We also collapsed categories of the AS to generate an overall phenotype (EM, AS ≥ 1; IM, AS = 0.5-0.75; PM, AS = 0). Rate ratios (RRs) and 95% confidence intervals (CIs) for the association between tamoxifen treatment and risk of CBC in our study population were estimated using conditional logistic regression, stratified by AS. RESULTS Among women with AS ≥ 1 (i.e., EM), tamoxifen treatment was associated with a 20-55% reduced RR of CBC (AS = 2, RR = - 0.81, 95% CI 0.62-1.06; AS = 1.5, RR = 0.45, 95% CI 0.30-0.68; and AS = 1, RR = 0.55, 95% CI 0.40-0.74). Among women with no EM alleles and at least one PM allele (i.e., IM and PM), tamoxifen did not appear to impact the RR of CBC in this population (AS = 0.5, RR = 1.08, 95% CI 0.59-1.96; and AS = 0, RR = 1.17, 95% CI 0.58-2.35) (p for homogeneity = - 0.02). CONCLUSION This study suggests that the CYP2D6 phenotype may contribute to some of the observed variability in the impact of tamoxifen treatment for a first breast cancer on risk of developing CBC.
Collapse
Affiliation(s)
- Jennifer D. Brooks
- University of Toronto, Dalla Lana School of Public Health Sciences, 155 College St. HSB 676, Toronto, ON M5T 3M7 Canada
| | | | - Anne S. Reiner
- Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Irene Orlow
- Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Siok F. Leong
- Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Xiaolin Liang
- Memorial Sloan Kettering Cancer Center, New York, NY USA
| | | | - Julia A. Knight
- University of Toronto, Dalla Lana School of Public Health Sciences, 155 College St. HSB 676, Toronto, ON M5T 3M7 Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | | | - Esther M. John
- Department of Medicine and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA USA
| | - Leslie Bernstein
- Beckman Research Institute, City of Hope National Medical Centre, Duarte, CA USA
| | - Meghan Woods
- Memorial Sloan Kettering Cancer Center, New York, NY USA
| | | | | | | |
Collapse
|
29
|
Onishi H, Udagawa C, Kubo M, Nakamura S, Akashi-Tanaka S, Kuwayama T, Watanabe C, Takamaru T, Takei H, Ishikawa T, Miyahara K, Matsumoto H, Hasegawa Y, Momozawa Y, Low SK, Kutomi G, Shima H, Satomi F, Okazaki M, Zaha H, Onomura M, Matsukata A, Sagara Y, Baba S, Yamada A, Shimada K, Shimizu D, Tsugawa K, Shimo A, Hartman M, Chan CW, Lee SC, Endo I, Zembutsu H. A genome-wide association study identifies three novel genetic markers for response to tamoxifen: A prospective multicenter study. PLoS One 2018; 13:e0201606. [PMID: 30161160 PMCID: PMC6116947 DOI: 10.1371/journal.pone.0201606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/19/2018] [Indexed: 01/13/2023] Open
Abstract
Purpose Although association studies of genetic variations with the clinical outcomes of breast cancer patients treated with tamoxifen have been reported, genetic factors which could determine individual response to tamoxifen are not fully clarified. We performed a genome-wide association study (GWAS) to identify novel genetic markers for response to tamoxifen. Experimental design We prospectively collected 347 blood samples from patients with hormone receptor-positive and human epidermal growth factor receptor 2-negative, invasive breast cancer receiving preoperative tamoxifen monotherapy for 14 to 28 days. We used Ki-67 response in breast cancer tissues after preoperative short-term tamoxifen therapy as a surrogate marker for response to tamoxifen. We performed GWAS and genotype imputation using 275 patients, and an independent set of 72 patients was used for replication study. Results The combined result of GWAS and the replication study, and subsequent imputation analysis indicated possible association of three loci with Ki-67 response after tamoxifen therapy (rs17198973 on chromosome 4q34.3, rs4577773 on 6q12, and rs7087428 on 10p13, Pcombined = 5.69 x 10−6, 1.64 x 10−5, and 9.77 x 10−6, respectively). When patients were classified into three groups by the scoring system based on the genotypes of the three SNPs, patients with higher scores showed significantly higher after/before ratio of Ki-67 compared to those with lower scores (P = 1.8 x 10−12), suggesting the cumulative effect of the three SNPs. Conclusion We identified three novel loci, which could be associated with clinical response to tamoxifen. These findings provide new insights into personalized hormonal therapy for the patients with breast cancer.
Collapse
Affiliation(s)
- Hiroshi Onishi
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chihiro Udagawa
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN, Center for Integrative Medical Sciences, Yokohama, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Sadako Akashi-Tanaka
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Takashi Kuwayama
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Chie Watanabe
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Tomoko Takamaru
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Hiroyuki Takei
- Department of Breast Surgery, Nippon Medical School, Tokyo, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery, Tokyo Medical University, Tokyo, Japan
| | - Kana Miyahara
- Department of Breast Surgery, Tokyo Medical University, Tokyo, Japan
| | | | - Yoshie Hasegawa
- Department of Breast Surgery, Hirosaki Municipal Hospital, Hirosaki, Japan
| | | | - Siew-Kee Low
- RIKEN, Center for Integrative Medical Sciences, Yokohama, Japan
| | - Goro Kutomi
- 1st Department of Surgery, Sapporo Medical University, Sapporo, Japan
| | - Hiroaki Shima
- 1st Department of Surgery, Sapporo Medical University, Sapporo, Japan
| | - Fukino Satomi
- 1st Department of Surgery, Sapporo Medical University, Sapporo, Japan
| | - Minoru Okazaki
- Department of Breast Surgery, Sapporo Breast Surgical Clinic, Sapporo, Japan
| | - Hisamitsu Zaha
- Department of Breast Surgery, Nakagami Hospital, Okinawa, Japan
| | - Mai Onomura
- Department of Breast Surgery, Nakagami Hospital, Okinawa, Japan
| | - Ayami Matsukata
- Department of Breast Surgery, Sagara Hospital, Kagoshima, Japan
| | - Yasuaki Sagara
- Department of Breast Surgery, Sagara Hospital, Kagoshima, Japan
| | - Shinichi Baba
- Department of Breast Surgery, Sagara Hospital, Kagoshima, Japan
| | - Akimitsu Yamada
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Kazuhiro Shimada
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Daisuke Shimizu
- Department of Breast Surgery, Yokohama Minato Red Cross Hospital, Yokohama, Japan
| | - Koichiro Tsugawa
- Department of Breast and Endocrine Surgery, St. Marianna University School of Medicine Hospital, Kawasaki, Japan
| | - Arata Shimo
- Department of Breast and Endocrine Surgery, St. Marianna University School of Medicine Hospital, Kawasaki, Japan
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Ching-Wan Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Soo Chin Lee
- Department of Hematology Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hitoshi Zembutsu
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| |
Collapse
|
30
|
Genetic polymorphisms of 3'-untranslated region of SULT1A1 and their impact on tamoxifen metabolism and efficacy. Breast Cancer Res Treat 2018; 172:401-411. [PMID: 30120701 PMCID: PMC6208901 DOI: 10.1007/s10549-018-4923-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Purpose Tamoxifen has a wide inter-variability. Recently, two SNPs in the 3′-untranslated region (UTR) of the SULT1A1 gene, rs6839 and rs1042157, have been associated with decreased SULT1A1 activity. The aim of this study is to investigate the role of the rs6839 and rs1042157 on tamoxifen metabolism and relapse-free survival (RFS) in women diagnosed with early-breast cancer receiving tamoxifen. Methods Samples from 667 patients collected in the CYPTAM study (NTR1509) were used for genotyping (CYP2D6, SULT1A1 rs6839 and rs1042157) and measurements of tamoxifen and metabolites. Patients were categorized in three groups depending on the decreased SULT1A1 activity due to rs6839 and rs1042157: low activity group (rs6839 (GG) and rs1042157 (TT)); high activity group (rs6839 (AA) and rs1042157 (CC)); and medium activity group (all the other combinations of rs6839 and rs1042157). Associations between SULT1A1 phenotypes and clinical outcome (RFS) were explored. Results In the low SULT1A1 activity group, higher endoxifen and 4-hydroxy-tamoxifen concentrations were found, compared to the medium and high activity group (endoxifen: 31.23 vs. 30.51 vs. 27.00, p value: 0.016; 4-hydroxy-tamoxifen: 5.55 vs. 5.27 vs. 4.94, p value:0.05). In terms of relapse, the low activity group had a borderline better outcome compared to the medium and high SULT1A1 activity group (adjusted Hazard ratio: 0.297; 95% CI 0.088–1.000; p value: 0.05). Conclusion Our results suggested that rs6839 and rs1042157 SNPs have a minor effect on the concentrations and metabolic ratios of tamoxifen and its metabolites, and RFS in women receiving adjuvant tamoxifen. Electronic supplementary material The online version of this article (10.1007/s10549-018-4923-7) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Khan BA, Robinson R, Fohner AE, Muzquiz LI, Schilling BD, Beans JA, Olnes MJ, Trawicki L, Frydenlund H, Laukes C, Beatty P, Phillips B, Nickerson D, Howlett K, Dillard DA, Thornton TA, Thummel KE, Woodahl EL. Cytochrome P450 Genetic Variation Associated with Tamoxifen Biotransformation in American Indian and Alaska Native People. Clin Transl Sci 2018; 11:312-321. [PMID: 29436156 PMCID: PMC5944577 DOI: 10.1111/cts.12542] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 01/15/2017] [Indexed: 01/24/2023] Open
Abstract
Despite evidence that pharmacogenetics can improve tamoxifen pharmacotherapy, there are few studies with American Indian and Alaska Native (AIAN) people. We examined variation in cytochrome P450 (CYP) genes (CYP2D6, CYP3A4, CYP3A5, and CYP2C9) and tamoxifen biotransformation in AIAN patients with breast cancer (n = 42) from the Southcentral Foundation in Alaska and the Confederated Salish and Kootenai Tribes in Montana. We tested for associations between CYP diplotypes and plasma concentrations of tamoxifen and metabolites. Only the CYP2D6 variation was significantly associated with concentrations of endoxifen (P = 0.0008) and 4-hydroxytamoxifen (P = 0.0074), tamoxifen's principal active metabolites, as well as key metabolic ratios. The CYP2D6 was also the most significant predictor of active metabolites and metabolic ratios in a multivariate regression model, including all four genes as predictors, with minor roles for other CYP genes. In AIAN populations, CYP2D6 is the largest contributor to tamoxifen bioactivation, illustrating the importance of validating pharmacogenetic testing for therapy optimization in an understudied population.
Collapse
Affiliation(s)
- Burhan A. Khan
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
- Southcentral FoundationAnchorageAlaskaUSA
| | | | - Alison E. Fohner
- Institute for Public Health GeneticsUniversity of WashingtonSeattleWashingtonUSA
| | - LeeAnna I. Muzquiz
- Tribal Health DepartmentConfederated Salish and Kootenai TribesMontanaUSA
| | | | | | | | - Laura Trawicki
- Alaska Native Tribal Health ConsortiumAnchorageAlaskaUSA
| | | | - Cindi Laukes
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
- Montana Cancer Institute FoundationMissoulaMontanaUSA
| | - Patrick Beatty
- Montana Cancer Institute FoundationMissoulaMontanaUSA
- Montana Cancer SpecialistsMissoulaMontanaUSA
| | - Brian Phillips
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Deborah Nickerson
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Kevin Howlett
- Tribal Health DepartmentConfederated Salish and Kootenai TribesMontanaUSA
| | | | | | | | - Erica L. Woodahl
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
32
|
Neven P, Jongen L, Lintermans A, Van Asten K, Blomme C, Lambrechts D, Poppe A, Wildiers H, Dieudonné AS, Brouckaert O, Decloedt J, Berteloot P, Verhoeven D, Joerger M, Vuylsteke P, Wynendaele W, Casteels M, Van Huffel S, Lybaert W, Van Ginderachter J, Paridaens R, Vergote I, Dezentjé VO, Van Calster B, Guchelaar HJ. Tamoxifen Metabolism and Efficacy in Breast Cancer: A Prospective Multicenter Trial. Clin Cancer Res 2018; 24:2312-2318. [PMID: 29459457 DOI: 10.1158/1078-0432.ccr-17-3028] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/21/2017] [Accepted: 02/13/2018] [Indexed: 01/20/2023]
Abstract
Purpose: Levels of endoxifen, the most active metabolite of tamoxifen, vary by the highly polymorphic cytochrome P450 (CYP) 2D6 enzyme. We prospectively investigated tamoxifen efficacy by serum endoxifen levels and the tamoxifen activity score (TAS).Experimental Design: A prospective observational multicenter study included postmenopausal women with an estrogen receptor-positive breast cancer receiving first-line tamoxifen, 20 mg daily in the neoadjuvant or metastatic setting, recruited between February 2009 and May 2014. The primary endpoint was the objective response rate (ORR) using RECIST criteria 1.0. Secondary endpoints were clinical benefit (CB), progression-free survival (PFS), and tolerability of tamoxifen. The main analysis used logistic regression to relate ORR to serum endoxifen levels after 3 months. Endpoints were also related to other tamoxifen metabolites and to TAS.Results: Endoxifen levels were available for 247 of all 297 patients (83%), of which 209 with target lesions (85%). Median follow-up time for PFS was 32.5 months, and 62% progressed. ORR and CB were 45% and 84%, respectively. ORR was not related to endoxifen, and the OR of ORR was 1.008 per μg/L increase in endoxifen (95% confidence interval, 0.971-1.046; P = 0.56). In general, none of the endpoints was associated with endoxifen levels, tamoxifen metabolites, or TAS.Conclusions: Under the prespecified assumptions, the results from this prospective clinical trial do not suggest therapeutic drug monitoring of endoxifen to be of clinical value in postmenopausal women treated with tamoxifen for breast cancer in the neoadjuvant or metastatic setting. Clin Cancer Res; 24(10); 2312-8. ©2018 AACR.
Collapse
Affiliation(s)
- Patrick Neven
- Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium. .,Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Lynn Jongen
- Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | | | | | - Chantal Blomme
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven-University of Leuven, Leuven, Belgium; VIB Vesalius Research Centre, Laboratory for Translational Genetics, Leuven, Belgium
| | - An Poppe
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Hans Wildiers
- Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - Olivier Brouckaert
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Jan Decloedt
- Department of Gynaecology and Obstetrics, Algemeen Ziekenhuis Sint-Blasius, Dendermonde, Belgium
| | - Patrick Berteloot
- Department of Gynaecology and Obstetrics, Algemeen Ziekenhuis Sint-Maarten, Duffel, Belgium
| | - Didier Verhoeven
- Department of Medical Oncology, Algemeen Ziekenhuis Klina, Brasschaat, Belgium
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland
| | - Peter Vuylsteke
- Department of Medical Oncology, Université catholique de Louvain, CHU UCL, Namur site Sainte-Elisabeth, Namur, Belgium
| | - Wim Wynendaele
- Department of Medical Oncology, Imelda Ziekenhuis, Bonheiden, Belgium
| | - Minne Casteels
- Department of Clinical Pharmacology and Pharmacotherapy, KU Leuven-University of Leuven, Leuven, Belgium
| | - Sabine Van Huffel
- Department of Electrical Engineering, KU Leuven-University of Leuven, Leuven, Belgium.,Imec, Leuven, Belgium
| | - Willem Lybaert
- Department of Medical Oncology, Algemeen Ziekenhuis Nikolaas, Sint-Niklaas, Belgium
| | - Johan Van Ginderachter
- Department of Gynaecology and Obstetrics, Algemeen Ziekenhuis Maria Middelares, Ghent, Belgium
| | - Robert Paridaens
- Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Ignace Vergote
- Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Vincent Olaf Dezentjé
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Ben Van Calster
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
33
|
Helland T, Henne N, Bifulco E, Naume B, Borgen E, Kristensen VN, Kvaløy JT, Lash TL, Alnæs GIG, van Schaik RH, Janssen EAM, Hustad S, Lien EA, Mellgren G, Søiland H. Serum concentrations of active tamoxifen metabolites predict long-term survival in adjuvantly treated breast cancer patients. Breast Cancer Res 2017; 19:125. [PMID: 29183390 PMCID: PMC5706168 DOI: 10.1186/s13058-017-0916-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
Background Controversies exist as to whether the genetic polymorphisms of the enzymes responsible for the metabolism of tamoxifen can predict breast cancer outcome in patients using adjuvant tamoxifen. Direct measurement of concentrations of active tamoxifen metabolites in serum may be a more biological plausible and robust approach. We have investigated the association between CYP2D6 genotypes, serum concentrations of active tamoxifen metabolites, and long-term outcome in tamoxifen treated breast cancer patients. Methods From an original observational study comprising 817 breast cancer patients, 99 women with operable breast cancer were retrospectively included in the present study. This cohort of patients were adjuvantly treated with tamoxifen, had provided serum samples suitable for measuring tamoxifen metabolites, and were relapse-free at 3 years after the primary treatment commenced. The median follow-up time from this entry point to breast cancer death was 13.9 years. Patients were CYP2D6 genotyped and grouped into four CYP2D6 phenotype groups (Ultra rapid, extensive, intermediate, and poor metabolizers). Tamoxifen and nine metabolites were quantified in serum (n = 86) and compared with CYP2D6 phenotype groups and outcome. Results Breast cancer patients with low concentrations of Z-4-hydroxy-tamoxifen (Z-4OHtam; ≤ 3.26 nM) had a breast cancer-specific survival (BCSS) of 60% compared to 84% in patients with Z-4OHtam concentrations > 3.26 nM (p = 0.020, log-rank hazard ratio (HR) = 3.56, 95% confidence interval (CI) = 1.14–11.07). For patients with Z-4-hydroxy-N-desmethyl-tamoxifen (Z-endoxifen) levels ≤ 9.00 nM BCSS was 57% compared to 84% for patients with concentrations > 9.00 nM (p = 0.029, HR = 3.73, 95% CI = 1.05–13.22). Low concentrations of Z-4OHtam and Z-endoxifen were associated with poorer survival also after adjusting for clinically relevant variables (HR = 4.27, 95% CI = 1.35–13.58, and HR = 3.70, 95% CI = 1.03–13.25, respectively). Overall survival analysis showed similar survival differences for both active metabolites. The Antiestrogen Activity Score showed comparable effects, but did not improve the prognostic information. Conclusions Patients with Z-4OHtam and Z-endoxifen concentrations lower than 3.26 nM or 9.00 nM, respectively, showed an adverse outcome. Our results suggest that direct measurement of active tamoxifen metabolite concentrations could be of clinical value. Validation in larger study cohorts is warranted. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0916-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Helland
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nina Henne
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Ersilia Bifulco
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Bjørn Naume
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elin Borgen
- Pathology Department, Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Jan T Kvaløy
- Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway.,Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Timothy L Lash
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, USA
| | - Grethe I G Alnæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Ron H van Schaik
- Expert Center Pharmacogenetics, Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Emiel A M Janssen
- Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway.,Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Steinar Hustad
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Ernst A Lien
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Surgery, Section of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
34
|
Sanchez Spitman AB, Moes DJAR, Gelderblom H, Dezentje VO, Swen JJ, Guchelaar HJ. Effect of CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes on tamoxifen metabolism. Eur J Clin Pharmacol 2017; 73:1589-1598. [PMID: 28849250 PMCID: PMC5684327 DOI: 10.1007/s00228-017-2323-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/14/2017] [Indexed: 12/14/2022]
Abstract
Background Tamoxifen is one of the cornerstones of endocrine therapy for breast cancer. Recently, the decreased activity CYP3A4*22 allele and the loss of function CYP3A5*3 allele have been described as potential factors that could help to explain the inter-patient variability in tamoxifen metabolism. The aim of this study is to investigate the effect of CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes on tamoxifen metabolism. Methods DNA from 667 women enrolled in the CYPTAM study (NTR1509) was genotyped (CYP2D6, CYP3A4*22, and CYP3A5*3). Tamoxifen and metabolite concentrations were measured in serum, and metabolic ratios were calculated. The effect of the CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes in addition to the CYP2D6 genotypes was examined by multiple linear regression analysis. Results CYP3A4*22 carriers reached significant higher concentrations of tamoxifen, N-desmethyl-tamoxifen, and 4-hydroxy-tamoxifen compared to non-carriers, whereas a tendency toward increased endoxifen levels was observed (p = 0.088). The metabolic ratio tamoxifen/N-desmethyl-tamoxifen was significantly higher in CYP3A4*22 individuals (0.59 vs. 0.52, p < 0.001). At the same time, CYP3A4*22 genotype contributed to improving the inter-variability [R2 of the (log-transformed) metabolic ratio tamoxifen/N-desmethyl-tamoxifen improved from 21.8 to 23.9%, p < 0.001]. CYP3A5*3 marginally improved the explained variability of the (log transformed) metabolic ratio 4-hydroxy-tamoxifen/endoxifen (from 44.9 to 46.2%, p < 0.038). Conclusion Our data demonstrate that CYP3A genotype has a minor effect to explaining the variability between patients in tamoxifen metabolism and has no added value in addition to CYP2D6 genotype. Electronic supplementary material The online version of this article (10.1007/s00228-017-2323-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A B Sanchez Spitman
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300, RC, The Netherlands
| | - D J A R Moes
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300, RC, The Netherlands
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - V O Dezentje
- Department of Medical Oncology, Reinier de Graaf, Delft, The Netherlands
| | - J J Swen
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300, RC, The Netherlands
| | - H J Guchelaar
- Leiden Network for Personalised Therapeutics, Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300, RC, The Netherlands.
| |
Collapse
|
35
|
Park GC, Jung JA, Bae KS, Lim HS. A Simulation Study to Compare the Treatment Effect of Tamoxifen by CYP2D6 Genotypes and Third-Generation Aromatase Inhibitors. J Clin Pharmacol 2017; 57:1088-1096. [PMID: 28369967 DOI: 10.1002/jcph.896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Abstract
Some prospective, randomized clinical trials, including ATAC and BIG 1-98, demonstrated superior treatment effect of third-generation aromatase inhibitors (AIs) versus tamoxifen in postoperative therapy for patients with breast cancer. In retrospective genotyping analyses of the 2 studies using tumor samples, no difference in the treatment effect of tamoxifen was observed by CYP2D6 genotypes. However, those analyses did not consider loss of heterozygosity that could have occurred when genotyping using tumor tissue. The present simulation study aimed to comparatively evaluate the treatment effect of tamoxifen versus AIs of anastrozole and letrozole by CYP2D6 genotypes. A meta-analysis was conducted to estimate disease-free survival (DFS) hazard ratios of CYP2D6 genotypes representing extensive metabolizers (EMs), HRW/W,TAM , versus intermediate metabolizers (IMs)/poor metabolizers (PMs), HRV/W,TAM , using previous study results in which genotypes were determined using blood samples. Based on known allele frequencies, the CYP2D6 genotype distribution of participants in ATAC and BIG 1-98 trials were simulated. Subsequently, DFS HRs of AIs versus tamoxifen by CYP2D6 genotypes (HRAI/TAM,W for EMs, HRAI/TAM,V for IMs/PMs) were estimated via regression analyses using NONMEM, based on the simulated genotype distributions, HRV/W,TAM , and HRs, of AIs versus tamoxifen (HRAI/TAM ) reported in the ATAC and BIG 1-98 trials. Median HRAI/TAM,V (95% prediction interval [PI]) was 0.43 (0.23-0.79) and 0.40 (0.22-0.73) for the ATAC and BIG 1-98 trials, respectively. However, the corresponding HRAI/TAM,W values were 0.97 (0.84-1.11) and 0.91 (0.77-1.08), respectively. These results suggest that in patients with the CYP2D6 genotype representing EMs, the treatment effect of tamoxifen is comparable to that of AIs.
Collapse
Affiliation(s)
- Gwan Cheol Park
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, Seoul, Korea.,University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-A Jung
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, Seoul, Korea.,University of Ulsan College of Medicine, Seoul, Korea
| | - Kyun-Seop Bae
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, Seoul, Korea.,University of Ulsan College of Medicine, Seoul, Korea
| | - Hyeong-Seok Lim
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, Seoul, Korea.,University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Chen YY. Correlations of CYP2C9*3/CYP2D6*10/CYP3A5*3 gene polymorphisms with efficacy of etanercept treatment for patients with ankylosing spondylitis: A case-control study. Medicine (Baltimore) 2017; 96:e5993. [PMID: 28248857 PMCID: PMC5340430 DOI: 10.1097/md.0000000000005993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The tumor necrosis factor alpha (TNF-α) inhibitor etanercept has been proven to be effective in the treatment of ankylosing spondylitis (AS), while genetic polymorphism may affect drug metabolism or drug receptor, resulting in interindividual variability in drug disposition and efficacy. The purpose of this study is to investigate the correlations between CYP2C9*3/CYP2D6*10/CYP3A5*3 gene polymorphisms and the efficacy of etanercept treatment for patients with AS. METHODS From March 2012 to June 2015, 312 AS patients (174 males and 138 females, mean age: 35.2 ± 5.83 years) from 18 to 56 years old were enrolled in this study. Polymerase chain reaction-restriction fragment length polymorphism was applied to detect the allele and genotype frequencies of CYP2C93, CYP2D610, and CYP3A53 gene polymorphisms. The joint swelling score, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) level of AS patients were compared before and after 24-week etanercept treatment. Assessment in Ankylosing Spondylitis (ASAS) and bath ankylosing spondylitis disease activity index (BASDAI) scores were recorded to assess the efficacy of etanercept treatment. RESULTS The AS patients with wild-type 1/1 and heterozygous 1/3 genotypes of CYP2C93 polymorphism accounted for 93.59% and 6.41%, respectively, without 3/3 genotype. The AS patients with wild-type CC, heterozygous CT, and mutation homozygous TT genotypes of CYP2D610 polymorphism accounted for 19.23%, 39.10%, and 41.67%, respectively. The AS patients with wild-type 1/1, heterozygous 1/3, and mutation homozygous 3/3 genotypes of CYP3A53 polymorphism accounted for 7.69%, 36.22%, and 56.09%, respectively. After 24-week treatment, AS patients with wild-type 1/1 genotype of CYP2C93, CC genotype of CYP2D610, and 3/3 genotype of CYP3A53 polymorphisms had lower joint swelling score, ESR, and CRP level. The joint swelling score, ESR, and CRP levels were significantly lower in the patients with CC genotype of CYP2D610 polymorphism than in CT and TT genotype patients, and they were lower in patients with 3/3 genotype of CYP3A53 polymorphism compared to those with 1/1 and 1/3 genotypes. Average visual analog scale scores of 4 ASAS20 indexes were decreased after treatment. The patients with CC genotype of CYP2D610 polymorphism and 3/3 genotype of CYP3A53 polymorphism exhibited higher scores of >ASAS20, >BASDAI50%, and effective rate. CONCLUSION Our results indicate that CC genotype of CYP2D610 polymorphism and 33 genotype of CYP3A53 polymorphism are correlated with the efficacy of etanercept treatment for AS patients.
Collapse
|
37
|
Motoi Y, Watanabe K, Honma H, Tadano Y, Hashimoto H, Kubota T. Digital PCR for determination of cytochrome P450 2D6 and sulfotransferase 1A1 gene copy number variations. Drug Discov Ther 2017; 11:336-341. [DOI: 10.5582/ddt.2017.01057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yutaro Motoi
- Niigata University of Pharmacy and Applied Life Sciences
| | | | - Hiroyuki Honma
- Niigata University of Pharmacy and Applied Life Sciences
| | - Yousuke Tadano
- Niigata University of Pharmacy and Applied Life Sciences
| | | | | |
Collapse
|
38
|
Zembutsu H, Nakamura S, Akashi-Tanaka S, Kuwayama T, Watanabe C, Takamaru T, Takei H, Ishikawa T, Miyahara K, Matsumoto H, Hasegawa Y, Kutomi G, Shima H, Satomi F, Okazaki M, Zaha H, Onomura M, Matsukata A, Sagara Y, Baba S, Yamada A, Shimada K, Shimizu D, Tsugawa K, Shimo A, Tan EY, Hartman M, Chan CW, Lee SC, Nakamura Y. Significant Effect of Polymorphisms in CYP2D6 on Response to Tamoxifen Therapy for Breast Cancer: A Prospective Multicenter Study. Clin Cancer Res 2016; 23:2019-2026. [DOI: 10.1158/1078-0432.ccr-16-1779] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022]
|
39
|
Iuliano A, Occhipinti A, Angelini C, De Feis I, Lió P. Cancer Markers Selection Using Network-Based Cox Regression: A Methodological and Computational Practice. Front Physiol 2016; 7:208. [PMID: 27378931 PMCID: PMC4911360 DOI: 10.3389/fphys.2016.00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/22/2016] [Indexed: 12/15/2022] Open
Abstract
International initiatives such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) are collecting multiple datasets at different genome-scales with the aim of identifying novel cancer biomarkers and predicting survival of patients. To analyze such data, several statistical methods have been applied, among them Cox regression models. Although these models provide a good statistical framework to analyze omic data, there is still a lack of studies that illustrate advantages and drawbacks in integrating biological information and selecting groups of biomarkers. In fact, classical Cox regression algorithms focus on the selection of a single biomarker, without taking into account the strong correlation between genes. Even though network-based Cox regression algorithms overcome such drawbacks, such network-based approaches are less widely used within the life science community. In this article, we aim to provide a clear methodological framework on the use of such approaches in order to turn cancer research results into clinical applications. Therefore, we first discuss the rationale and the practical usage of three recently proposed network-based Cox regression algorithms (i.e., Net-Cox, AdaLnet, and fastcox). Then, we show how to combine existing biological knowledge and available data with such algorithms to identify networks of cancer biomarkers and to estimate survival of patients. Finally, we describe in detail a new permutation-based approach to better validate the significance of the selection in terms of cancer gene signatures and pathway/networks identification. We illustrate the proposed methodology by means of both simulations and real case studies. Overall, the aim of our work is two-fold. Firstly, to show how network-based Cox regression models can be used to integrate biological knowledge (e.g., multi-omics data) for the analysis of survival data. Secondly, to provide a clear methodological and computational approach for investigating cancers regulatory networks.
Collapse
Affiliation(s)
- Antonella Iuliano
- Istituto per le Applicazioni del Calcolo "Mauro Picone," Consiglio Nazionale delle Ricerche Naples, Italy
| | | | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo "Mauro Picone," Consiglio Nazionale delle Ricerche Naples, Italy
| | - Italia De Feis
- Istituto per le Applicazioni del Calcolo "Mauro Picone," Consiglio Nazionale delle Ricerche Naples, Italy
| | - Pietro Lió
- Computer Laboratory, University of Cambridge Cambridge, UK
| |
Collapse
|
40
|
de Vries Schultink AHM, Zwart W, Linn SC, Beijnen JH, Huitema ADR. Effects of Pharmacogenetics on the Pharmacokinetics and Pharmacodynamics of Tamoxifen. Clin Pharmacokinet 2016; 54:797-810. [PMID: 25940823 PMCID: PMC4513218 DOI: 10.1007/s40262-015-0273-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The antiestrogenic drug tamoxifen is widely used in the treatment of estrogen receptor-α-positive breast cancer and substantially decreases recurrence and mortality rates. However, high interindividual variability in response is observed, calling for a personalized approach to tamoxifen treatment. Tamoxifen is bioactivated by cytochrome P450 (CYP) enzymes such as CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4/5, resulting in the formation of active metabolites, including 4-hydroxy-tamoxifen and endoxifen. Therefore, polymorphisms in the genes encoding these enzymes are proposed to influence tamoxifen and active tamoxifen metabolites in the serum and consequently affect patient response rates. To tailor tamoxifen treatment, multiple studies have been performed to clarify the influence of polymorphisms on its pharmacokinetics and pharmacodynamics. Nevertheless, personalized treatment of tamoxifen based on genotyping has not yet met consensus. This article critically reviews the published data on the effect of various genetic polymorphisms on the pharmacokinetics and pharmacodynamics of tamoxifen, and reviews the clinical implications of its findings. For each CYP enzyme, the influence of polymorphisms on pharmacokinetic and pharmacodynamic outcome measures is described throughout this review. No clear effects on pharmacokinetics and pharmacodynamics were seen for various polymorphisms in the CYP encoding genes CYP2B6, CYP2C9, CYP2C19 and CYP3A4/5. For CYP2D6, there was a clear gene-exposure effect that was able to partially explain the interindividual variability in plasma concentrations of the pharmacologically most active metabolite endoxifen; however, a clear exposure-response effect remained controversial. These controversial findings and the partial contribution of genotype in explaining interindividual variability in plasma concentrations of, in particular, endoxifen, imply that tailored tamoxifen treatment may not be fully realized through pharmacogenetics of metabolizing enzymes alone.
Collapse
Affiliation(s)
- Aurelia H M de Vries Schultink
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Sensorn I, Sukasem C, Sirachainan E, Chamnanphon M, Pasomsub E, Trachu N, Supavilai P, Pinthong D, Wongwaisayawan S. ABCB1 and ABCC2 and the risk of distant metastasis in Thai breast cancer patients treated with tamoxifen. Onco Targets Ther 2016; 9:2121-9. [PMID: 27110128 PMCID: PMC4835128 DOI: 10.2147/ott.s100905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Genetic polymorphisms of drug-metabolizing enzymes and transporters have been extensively studied with regard to tamoxifen treatment outcomes. However, the results are inconclusive. Analysis of organ-specific metastasis may reveal the association of these pharmacogenetic factors. The aim of this study is to investigate the impact of CYP3A5, CYP2D6, ABCB1, and ABCC2 polymorphisms on the risk of all distant and organ-specific metastases in Thai patients who received tamoxifen adjuvant therapy. METHODS Genomic DNA was extracted from blood samples of 73 patients with breast cancer who received tamoxifen adjuvant therapy. CYP3A5 (6986A>G), CYP2D6 (100C>T), ABCB1 (3435C>T), and ABCC2 (-24C>T) were genotyped using allelic discrimination real-time polymerase chain reaction assays. The impacts of prognostic clinical factors and genetic variants on disease-free survival were analyzed using the Kaplan-Meier method and Cox regression analysis. RESULTS In the univariate analysis, primary tumor size >5 cm was significantly associated with increased risk of distant metastasis (P=0.004; hazard ratio [HR] =3.05; 95% confidence interval [CI], 1.44-6.47). In the multivariate analysis, tumor size >5 cm remained predictive of distant metastasis (P<0.001; HR=5.49; 95% CI, 2.30-13.10). ABCC2 -24CC were shown to be associated with increased risk of distant metastasis (P=0.040; adjusted HR=2.34; 95% CI, 1.04-5.27). The combined genotype of ABCC2 -24CC - ABCB1 3435 CT+TT was associated with increased risk of distant and bone metastasis (P=0.020; adjusted HR=2.46; 95% CI, 1.15-5.26 and P=0.040; adjusted HR=3.70; 95% CI, 1.06-12.89, respectively). CONCLUSION This study indicates that polymorphisms of ABCC2 and ABCB1 are independently associated with bone metastasis. Further prospective studies with larger sample sizes are needed to verify this finding.
Collapse
Affiliation(s)
- Insee Sensorn
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ekaphop Sirachainan
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Montri Chamnanphon
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ekawat Pasomsub
- Division of Virology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Narumol Trachu
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Porntip Supavilai
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Darawan Pinthong
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sansanee Wongwaisayawan
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
42
|
Del Re M, Citi V, Crucitta S, Rofi E, Belcari F, van Schaik RH, Danesi R. Pharmacogenetics of CYP2D6 and tamoxifen therapy: Light at the end of the tunnel? Pharmacol Res 2016; 107:398-406. [PMID: 27060675 DOI: 10.1016/j.phrs.2016.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
The clinical usefulness of assessing the enzymatic activity of CYPD6 in patients taking tamoxifen had been longly debated. In favour of preemptive evaluation of phenotypic profile of patients is the strong pharmacologic rationale, being that the formation of endoxifen, the major and clinically most important metabolite of tamoxifen, is largely dependent on the activity of CYP2D6. This enzyme is highly polymorphic for which the activity is largely depending on genetics, but that can also be inhibited by a number of drugs, i.e. antidepressants, which are frequently used in patients with cancer. Unfortunately, the clinical trials that have been published in the last years are contradicting each other on the association between CYP2D6 and significant clinical endpoints, and for this reason CYP2D6 genotyping is at present not generally recommended. Despite this, the CYP2D6 genotyping test for tamoxifen is available in many laboratories and it may still be an appropriate test to use it in specific cases.
Collapse
Affiliation(s)
- M Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy.
| | - V Citi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - S Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - E Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - F Belcari
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| | - R H van Schaik
- Department of Clinical Chemistry, Erasmus MC, Rotterdam, The Netherlands
| | - R Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Laboratory Medicine, University Hospital, Pisa, Italy
| |
Collapse
|
43
|
Fotoohi AK, Karim H, Lafolie P, Pohanka A, Östervall J, Hatschek T, Vitols S. Pronounced Interindividual But Not Intraindividual Variation in Tamoxifen and Metabolite Levels in Plasma During Adjuvant Treatment of Women With Early Breast Cancer. Ther Drug Monit 2016; 38:239-45. [DOI: 10.1097/ftd.0000000000000257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
ARGALÁCSOVÁ S, SLANAŘ O, VÍTEK P, TESAŘOVÁ P, BAKHOUCHE H, DRAŽĎÁKOVÁ M, BARTOŠOVÁ O, ZIMA T, PERTUŽELKA L. Contribution of ABCB1 and CYP2D6 Genotypes to the Outcome of Tamoxifen Adjuvant Treatment in Premenopausal Women With Breast Cancer. Physiol Res 2015; 64:S539-47. [DOI: 10.33549/physiolres.933234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent pre-clinical evidence suggests that the active metabolite of tamoxifen, endoxifen, is a substrate for efflux pump P-glycoprotein. The aim of our study was to evaluate, if the polymoprhisms within ABCB1 gene alter tamoxifen adjuvant treatment efficacy in premenopausal women. Totally 71 premenopausal women with estrogen receptor positive breast cancer indicated for tamoxifen adjuvant treatment were followed retrospectively for median period of 56 months. The gentic polymorphisms of CYP2D6 and ABCB1 were analyzed and potential covariates as tumor grading, staging, age at the diagnosis, comedication, quantitative positivity of ER or PR were also evaluated. Cox proportional-hazards regression model indicated that patients carrying at least one variant allele in ABCB1 rs1045642 had significantly longer time to event survival compared to wild type subjects. Non-significant trend was noted for better treatment outcome of patients carrying at least one variant allele in the SNP rs2032582, while for the CYP2D6 polymorphism poor metabolizer phenotype resulted in worse outcome in comparison to extensive metabolizers subjects with HR of 4.04 (95 % CI 0.31-52.19). Similarly, patients using CYP2D6 inhibitors had non-significantly shorter time-to-event as compared to never users resulting in hazard ratio of 2.06 (95 % CI 0.40-10.63). ABCB1 polymorphisms may affect outcome of tamoxifen adjuvant treatment in premenopausal breast cancer patiens. This factor should be taken into account in addition to the CYP2D6 polymorphism or phenotypic inhibition of CYP2D6 activity.
Collapse
Affiliation(s)
| | - O. SLANAŘ
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General Teaching Hospital, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Haque R, Shi J, Schottinger JE, Ahmed SA, Cheetham TC, Chung J, Avila C, Kleinman K, Habel LA, Fletcher SW, Kwan ML. Tamoxifen and Antidepressant Drug Interaction in a Cohort of 16,887 Breast Cancer Survivors. J Natl Cancer Inst 2015; 108:djv337. [PMID: 26631176 DOI: 10.1093/jnci/djv337] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/14/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Controversy persists about whether certain antidepressants reduce tamoxifen's effectiveness on lowering breast cancer recurrence. We investigated whether taking tamoxifen and antidepressants (in particular, paroxetine) concomitantly is associated with an increased risk of recurrence or contralateral breast cancer. METHODS We examined 16 887 breast cancer survivors (TNM stages 0-II) diagnosed between 1996 and 2007 and treated with tamoxifen in two California health plans. Women were followed-up through December 31, 2009, for subsequent breast cancer. The main exposure was the percent of days of overlap when both tamoxifen and an antidepressant (paroxetine, fluoxetine, other selective serotonin reuptake inhibitors, tricyclics, and other classes) were used. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using multivariable Cox regression models with time-varying medication variables. RESULTS Of the 16 887 women, half (n = 8099) used antidepressants and 2946 women developed subsequent breast cancer during the 14-year study period. We did not find a statistically significant increased risk of subsequent breast cancer in women who concurrently used paroxetine and tamoxifen. For 25%, 50%, and 75% increases in percent overlap days between paroxetine and tamoxifen, hazard ratios were 1.06 (95% CI = 0.98 to 1.14, P = .09), 1.13 (95% CI = 0.98 to 1.30, P = .09), and 1.20 (95% CI = 0.97 to 1.49, P = .09), respectively, in the first year of tamoxifen treatment but were not statistically significant. Hazard ratios decreased to 0.94 (95% CI = 0.81 to 1.10, P = .46), 0.89 (95% CI = 0.66 to 1.20, P = .46), and 0.85 (95% CI = 0.54 to 1.32, P = .46) by the fifth year (all non-statistically significantly). Absolute subsequent breast cancer rates were similar among women who used paroxetine concomitantly with tamoxifen vs tamoxifen-only users. For the other antidepressants, we again found no such associations. CONCLUSIONS Using the comprehensive electronic health records of insured patients, we did not observe an increased risk of subsequent breast cancer in women who concurrently used tamoxifen and antidepressants, including paroxetine.
Collapse
Affiliation(s)
- Reina Haque
- Affiliations of authors:Kaiser Permanente Southern California , Pasadena CA (RH, JS, JES, SAA, TCC, JC, CA); Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston MA (KK, SWF); Kaiser Permanente Northern California , Oakland, CA (LAH)
| | - Jiaxiao Shi
- Affiliations of authors:Kaiser Permanente Southern California , Pasadena CA (RH, JS, JES, SAA, TCC, JC, CA); Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston MA (KK, SWF); Kaiser Permanente Northern California , Oakland, CA (LAH)
| | - Joanne E Schottinger
- Affiliations of authors:Kaiser Permanente Southern California , Pasadena CA (RH, JS, JES, SAA, TCC, JC, CA); Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston MA (KK, SWF); Kaiser Permanente Northern California , Oakland, CA (LAH)
| | - Syed A Ahmed
- Affiliations of authors:Kaiser Permanente Southern California , Pasadena CA (RH, JS, JES, SAA, TCC, JC, CA); Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston MA (KK, SWF); Kaiser Permanente Northern California , Oakland, CA (LAH)
| | - T Craig Cheetham
- Affiliations of authors:Kaiser Permanente Southern California , Pasadena CA (RH, JS, JES, SAA, TCC, JC, CA); Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston MA (KK, SWF); Kaiser Permanente Northern California , Oakland, CA (LAH)
| | - Joanie Chung
- Affiliations of authors:Kaiser Permanente Southern California , Pasadena CA (RH, JS, JES, SAA, TCC, JC, CA); Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston MA (KK, SWF); Kaiser Permanente Northern California , Oakland, CA (LAH)
| | - Chantal Avila
- Affiliations of authors:Kaiser Permanente Southern California , Pasadena CA (RH, JS, JES, SAA, TCC, JC, CA); Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston MA (KK, SWF); Kaiser Permanente Northern California , Oakland, CA (LAH)
| | - Ken Kleinman
- Affiliations of authors:Kaiser Permanente Southern California , Pasadena CA (RH, JS, JES, SAA, TCC, JC, CA); Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston MA (KK, SWF); Kaiser Permanente Northern California , Oakland, CA (LAH)
| | - Laurel A Habel
- Affiliations of authors:Kaiser Permanente Southern California , Pasadena CA (RH, JS, JES, SAA, TCC, JC, CA); Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston MA (KK, SWF); Kaiser Permanente Northern California , Oakland, CA (LAH)
| | - Suzanne W Fletcher
- Affiliations of authors:Kaiser Permanente Southern California , Pasadena CA (RH, JS, JES, SAA, TCC, JC, CA); Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston MA (KK, SWF); Kaiser Permanente Northern California , Oakland, CA (LAH)
| | - Marilyn L Kwan
- Affiliations of authors:Kaiser Permanente Southern California , Pasadena CA (RH, JS, JES, SAA, TCC, JC, CA); Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston MA (KK, SWF); Kaiser Permanente Northern California , Oakland, CA (LAH)
| |
Collapse
|
46
|
Khan S, Fagerholm R, Rafiq S, Tapper W, Aittomäki K, Liu J, Blomqvist C, Eccles D, Nevanlinna H. Polymorphism at 19q13.41 Predicts Breast Cancer Survival Specifically after Endocrine Therapy. Clin Cancer Res 2015; 21:4086-4096. [PMID: 25964295 PMCID: PMC4574404 DOI: 10.1158/1078-0432.ccr-15-0296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/30/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Although most patients with estrogen receptor (ER)-positive breast cancer benefit from endocrine therapies, a significant proportion do not. Our aim was to identify inherited genetic variations that might predict survival among patients receiving adjuvant endocrine therapies. EXPERIMENTAL DESIGN We performed a meta-analysis of two genome-wide studies; Helsinki Breast Cancer Study, 805 patients, with 240 receiving endocrine therapy and Prospective study of Outcomes in Sporadic versus Hereditary breast cancer, 536 patients, with 155 endocrine therapy patients, evaluating 486,478 single-nucleotide polymorphisms (SNP). The top four associations from the endocrine treatment subgroup were further investigated in two independent datasets totaling 5,011 patients, with 3,485 receiving endocrine therapy. RESULTS A meta-analysis identified a common SNP rs8113308, mapped to 19q13.41, associating with reduced survival among endocrine-treated patients [hazard ratio (HR), 1.69; 95% confidence interval (CI), 1.37-2.07; P = 6.34 × 10(-7)] and improved survival among ER-negative patients, with a similar trend in ER-positive cases not receiving endocrine therapy. In a multivariate analysis adjusted for conventional prognostic factors, we found a significant interaction between the rs8113308 and endocrine treatment, indicating a predictive, treatment-specific effect of the SNP rs8113308 on breast cancer survival, with the per-allele HR for interaction 2.16 (95% CI, 1.30-3.60; Pinteraction = 0.003) and HR = 7.77 (95% CI, 0.93-64.71) for the homozygous genotype carriers. A biologic rationale is suggested by in silico functional analyses. CONCLUSIONS Our findings suggest carrying the rs8113308 rare allele may identify patients who will not benefit from adjuvant endocrine treatment.
Collapse
Affiliation(s)
- Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sajjad Rafiq
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Hants, UK
| | - William Tapper
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Hants, UK
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital and Genome Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, 60 Biopolis St, Singapore
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, Helsinki, Finland
| | - Diana Eccles
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Hants, UK
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
47
|
Abreu M, Gomes M, Menezes F, Afonso N, Abreu P, Medeiros R, Pereira D, Lopes C. CYP2D6*4 polymorphism: A new marker of response to hormonotherapy in male breast cancer? Breast 2015; 24:481-6. [DOI: 10.1016/j.breast.2015.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/13/2015] [Accepted: 04/19/2015] [Indexed: 12/01/2022] Open
|
48
|
Göthlin Eremo A, Tina E, Wegman P, Stål O, Fransén K, Fornander T, Wingren S. HER4 tumor expression in breast cancer patients randomized to treatment with or without tamoxifen. Int J Oncol 2015; 47:1311-20. [PMID: 26238412 DOI: 10.3892/ijo.2015.3108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
Abstract
The human epidermal growth factor receptor (HER) 4 is a relative of HER2 and has been associated to endocrine breast cancer and prediction of tamoxifen response. In addition to PI3K/Akt and MAPK pathway activation, ligand binding to HER4 triggers proteolytic cleavage and release of an intracellular receptor domain (4ICD) with signaling properties. The aim of the present study was to analyze HER4 protein expression and intracellular localization in breast cancer tissue from patients randomized to treatment with or without adjuvant tamoxifen. To investigate HER4 expression and localization in response to estradiol (E2) and 4-hydroxytamoxifen (4-OHT) exposure, we also performed in vitro studies. Cytoplasmic, nuclear and membrane expression of HER4 protein was evaluated by immunohistochemical staining in tumor tissue from 912 breast cancer patients. Three different breast epithelia cancer cell lines were exposed to E2 and 4-OHT and mRNA expression was analyzed using qPCR. Further, nuclear and cytoplasmic proteins were separated and analyzed with western blotting. We found an association between nuclear HER4 protein expression and ER-positivity (P=0.004). Furthermore, significant association was found between cytoplasmic HER4 and ER-negativity (P<0.0005), PgR-negativity (P<0.0005), tumor size >20 mm (P=0.001) and HER2-negativity (P=0.008). However, no overall significance of HER4 on recurrence-free survival was found. After E2 exposure, HER4 mRNA and protein expression had decreased in two cell lines in vitro yet no changes in nuclear or cytoplasmic protein fractions were seen. In conclusion, nuclear HER4 seem to be co-located with ER, however, we did not find support for overall HER4 expression in independently predicting response of tamoxifen treatment. The possible influence of separate isoforms was not tested and future studies may further evaluate HER4 significance.
Collapse
Affiliation(s)
- Anna Göthlin Eremo
- Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Elisabet Tina
- Clinical Research Centre, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Pia Wegman
- Department of Clinical Genetics, University Hospital, SE-581 85 Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE-581 85 Linköping, Sweden
| | - Karin Fransén
- Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Tommy Fornander
- Department of Oncology, Karolinska University Hospital, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Sten Wingren
- Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
49
|
Ribeiro MPC, Santos AE, Custódio JBA. Rethinking tamoxifen in the management of melanoma: New answers for an old question. Eur J Pharmacol 2015; 764:372-378. [PMID: 26165763 DOI: 10.1016/j.ejphar.2015.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/18/2022]
Abstract
The use of the antiestrogen tamoxifen in melanoma therapy is controversial due to the unsuccessful outcomes and a still rather unclarified mechanism of action. It seemed that the days of tamoxifen in malignant melanoma therapy were close to an end, but new evidence may challenge this fate. On one hand, it is now believed that metabolism is a major determinant of tamoxifen clinical outcomes in breast cancer patients, which is a variable that has yet to be tested in melanoma patients, since the tamoxifen active metabolite endoxifen demonstrated superior cytostatic activity over the parent drug in melanoma cells; on the other hand, new evidence has emerged regarding estrogen-mediated signaling in melanoma cells, including the methylation of the estrogen receptor-α gene promoter and the expression of the G protein coupled estrogen receptor. The expression of estrogen receptor-α and G protein coupled estrogen receptor, as well as the cytochrome P450 (CYP) 2D6 genotype, may be used as predictive biomarkers to select the patients that may respond to antiestrogens based on specific traits of their tumors. This review focused on these new evidences and how they may contribute to shed new light on this long-lasting controversy, as well as their possible implications for future investigations.
Collapse
Affiliation(s)
- Mariana P C Ribeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - José B A Custódio
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
50
|
Jager NGL, Linn SC, Schellens JHM, Beijnen JH. Tailored Tamoxifen Treatment for Breast Cancer Patients: A Perspective. Clin Breast Cancer 2015; 15:241-4. [PMID: 25997856 DOI: 10.1016/j.clbc.2015.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/01/2015] [Accepted: 04/16/2015] [Indexed: 11/20/2022]
Abstract
Tamoxifen, an endocrine agent, is widely used in the treatment of estrogen receptor-positive breast cancer. It has greatly reduced disease recurrence and mortality rates of breast cancer patients, however, not all patients benefit from tamoxifen treatment because in approximately 25% to 30% of the patients the disease recurs. Many researchers have sought to find factors associated with endocrine treatment outcome in the past years, however, this quest has not been finished. In this article, we focus on a factor that might influence outcome of tamoxifen treatment: interpatient variability in tamoxifen pharmacokinetics. In recent years it has become clear that tamoxifen undergoes extensive metabolism and that some of the formed metabolites are much more pharmacologically active than tamoxifen itself. Despite the wide interpatient variability in tamoxifen pharmacokinetics and pharmacodynamics, all patients receive a standard dose of 20 mg tamoxifen per day. Different approaches can be pursued to individualize tamoxifen dosing: genotyping, phenotyping, and therapeutic drug monitoring. Therapeutic drug monitoring seems to be the most direct and promising approach, however, further clinical research is warranted to establish the added value of individual dosing in tamoxifen treatment optimization.
Collapse
Affiliation(s)
- Nynke G L Jager
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands.
| | - Sabine C Linn
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Utrecht Institute of Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands; Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Utrecht Institute of Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|