1
|
Nightingale R, Reehorst CM, Vukelic N, Papadopoulos N, Liao Y, Guleria S, Bell C, Vaillant F, Paul S, Luk IY, Dhillon AS, Jenkins LJ, Morrow RJ, Jackling FC, Chand AL, Chisanga D, Chen Y, Williams DS, Anderson RL, Ellis S, Meikle PJ, Shi W, Visvader JE, Pal B, Mariadason JM. Ehf controls mammary alveolar lineage differentiation and is a putative suppressor of breast tumorigenesis. Dev Cell 2024; 59:1988-2004.e11. [PMID: 38781975 DOI: 10.1016/j.devcel.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The transcription factor EHF is highly expressed in the lactating mammary gland, but its role in mammary development and tumorigenesis is not fully understood. Utilizing a mouse model of Ehf deletion, herein, we demonstrate that loss of Ehf impairs mammary lobuloalveolar differentiation at late pregnancy, indicated by significantly reduced levels of milk genes and milk lipids, fewer differentiated alveolar cells, and an accumulation of alveolar progenitor cells. Further, deletion of Ehf increased proliferative capacity and attenuated prolactin-induced alveolar differentiation in mammary organoids. Ehf deletion also increased tumor incidence in the MMTV-PyMT mammary tumor model and increased the proliferative capacity of mammary tumor organoids, while low EHF expression was associated with higher tumor grade and poorer outcome in luminal A and basal human breast cancers. Collectively, these findings establish EHF as a non-redundant regulator of mammary alveolar differentiation and a putative suppressor of mammary tumorigenesis.
Collapse
Affiliation(s)
- Rebecca Nightingale
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Natalia Vukelic
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Nikolaos Papadopoulos
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Shalini Guleria
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Caroline Bell
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - François Vaillant
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Amardeep S Dhillon
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Riley J Morrow
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Felicity C Jackling
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Ashwini L Chand
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yunshun Chen
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Department of Pathology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sarah Ellis
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
2
|
Ortiz JR, Lewis SM, Ciccone M, Chatterjee D, Henry S, Siepel A, Dos Santos CO. Single-Cell Transcription Mapping of Murine and Human Mammary Organoids Responses to Female Hormones. J Mammary Gland Biol Neoplasia 2024; 29:3. [PMID: 38289401 PMCID: PMC10827859 DOI: 10.1007/s10911-023-09553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
Collapse
Affiliation(s)
| | - Steven M Lewis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michael Ciccone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | - Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adam Siepel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | |
Collapse
|
3
|
Ren S, Bai F, Schnell V, Stanko C, Ritsch M, Schenk T, Barth E, Marz M, Wang B, Pei XH, Bierhoff H. PAPAS promotes differentiation of mammary epithelial cells and suppresses breast carcinogenesis. Cell Rep 2024; 43:113644. [PMID: 38180837 DOI: 10.1016/j.celrep.2023.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Extensive remodeling of the female mammary epithelium during development and pregnancy has been linked to cancer susceptibility. The faithful response of mammary epithelial cells (MECs) to hormone signaling is key to avoiding breast cancer development. Here, we show that lactogenic differentiation of murine MECs requires silencing of genes encoding ribosomal RNA (rRNA) by the antisense transcript PAPAS. Accordingly, knockdown of PAPAS derepresses rRNA genes, attenuates the response to lactogenic hormones, and induces malignant transformation. Restoring PAPAS levels in breast cancer cells reduces tumorigenicity and lung invasion and activates many interferon-regulated genes previously linked to metastasis suppression. Mechanistically, PAPAS transcription depends on R-loop formation at the 3' end of rRNA genes, which is repressed by RNase H1 and replication protein A (RPA) overexpression in breast cancer cells. Depletion of PAPAS and upregulation of RNase H1 and RPA in human breast cancer underpin the clinical relevance of our findings.
Collapse
Affiliation(s)
- Sijia Ren
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Feng Bai
- Department of Pathology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Viviane Schnell
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Clara Stanko
- Department of Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Muriel Ritsch
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Tino Schenk
- Department of Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Emanuel Barth
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Manja Marz
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen 518060, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
4
|
Monteiro FL, Góis A, Direito I, Melo T, Neves B, Alves MI, Batista I, Domingues MDR, Helguero LA. Inhibiting SETD7 methyl-transferase activity impairs differentiation, lipid metabolism and lactogenesis in mammary epithelial cells. FEBS Lett 2023; 597:2656-2671. [PMID: 37723127 DOI: 10.1002/1873-3468.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/18/2023] [Accepted: 07/21/2023] [Indexed: 09/20/2023]
Abstract
SETD7 (SET7/9, KMT7) is a lysine methyltransferase that targets master regulators of cell proliferation and differentiation. Here, the impact of inhibiting SETD7 catalytic activity on mammary epithelial cell differentiation was studied by focusing on genes associated with epithelial differentiation, lactogenesis, and lipid metabolism in HC11 and EpH4 cell lines. Setd7 mRNA and protein levels were induced upon lactogenic differentiation in both cell lines. Inhibition of SETD7 activity by the compound (R)-PFI-2 increased cell proliferation and downregulated E-cadherin, beta-catenin, lactoferrin, insulin-like growth factor binding protein 5, and beta-casein levels. In addition, inhibition of SETD7 activity affected the lipid profile and altered the mRNA expression of the phospholipid biosynthesis-related genes choline phosphotransferase 1, and ethanolamine-phosphate cytidylyltransferase. Altogether, the results suggest that inhibiting SETD7 catalytic activity impairs mammary epithelial and lactogenic differentiation.
Collapse
Affiliation(s)
- Fátima Liliana Monteiro
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - André Góis
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Inês Direito
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, Mass Spectrometry Centre & LAQV-REQUIMTE, University of Aveiro, Portugal
| | - Bruna Neves
- Department of Chemistry, Mass Spectrometry Centre & LAQV-REQUIMTE, University of Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Mariana I Alves
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | - Inês Batista
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| | | | - Luisa A Helguero
- Institute of Biomedicine (IBIMED), Department of Medical Sciences (DCM), Universidade de Aveiro, Portugal
| |
Collapse
|
5
|
Ortiz JR, Lewis SM, Ciccone MF, Chatterjee D, Henry S, Siepel A, Dos Santos CO. Single-cell transcription mapping of murine and human mammary organoids responses to female hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559971. [PMID: 37808747 PMCID: PMC10557705 DOI: 10.1101/2023.09.28.559971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
Collapse
|
6
|
Ahmad W, Panicker NG, Akhlaq S, Gull B, Baby J, Khader TA, Rizvi TA, Mustafa F. Global Down-regulation of Gene Expression Induced by Mouse Mammary Tumor Virus (MMTV) in Normal Mammary Epithelial Cells. Viruses 2023; 15:v15051110. [PMID: 37243196 DOI: 10.3390/v15051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) is a betaretrovirus that causes breast cancer in mice. The mouse mammary epithelial cells are the most permissive cells for MMTV, expressing the highest levels of virus upon infection and being the ones later transformed by the virus due to repeated rounds of infection/superinfection and integration, leading eventually to mammary tumors. The aim of this study was to identify genes and molecular pathways dysregulated by MMTV expression in mammary epithelial cells. Towards this end, mRNAseq was performed on normal mouse mammary epithelial cells stably expressing MMTV, and expression of host genes was analyzed compared with cells in its absence. The identified differentially expressed genes (DEGs) were grouped on the basis of gene ontology and relevant molecular pathways. Bioinformatics analysis identified 12 hub genes, of which 4 were up-regulated (Angp2, Ccl2, Icam, and Myc) and 8 were down-regulated (Acta2, Cd34, Col1a1, Col1a2, Cxcl12, Eln, Igf1, and Itgam) upon MMTV expression. Further screening of these DEGs showed their involvement in many diseases, especially in breast cancer progression when compared with available data. Gene Set Enrichment Analysis (GSEA) identified 31 molecular pathways dysregulated upon MMTV expression, amongst which the PI3-AKT-mTOR was observed to be the central pathway down-regulated by MMTV. Many of the DEGs and 6 of the 12 hub genes identified in this study showed expression profile similar to that observed in the PyMT mouse model of breast cancer, especially during tumor progression. Interestingly, a global down-regulation of gene expression was observed, where nearly 74% of the DEGs in HC11 cells were repressed by MMTV expression, an observation similar to what was observed in the PyMT mouse model during tumor progression, from hyperplasia to adenoma to early and late carcinomas. Comparison of our results with the Wnt1 mouse model revealed further insights into how MMTV expression could lead to activation of the Wnt1 pathway independent of insertional mutagenesis. Thus, the key pathways, DEGs, and hub genes identified in this study can provide important clues to elucidate the molecular mechanisms involved in MMTV replication, escape from cellular anti-viral response, and potential to cause cell transformation. These data also validate the use of the MMTV-infected HC11 cells as an important model to study early transcriptional changes that could lead to mammary cell transformation.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), UAE University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, UAE University, Al Ain 15551, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry & Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates (UAE) University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), UAE University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
7
|
Furth PA, Wang W, Kang K, Rooney BL, Keegan G, Muralidaran V, Wong J, Shearer C, Zou X, Flaws JA. Overexpression of Estrogen Receptor α in Mammary Glands of Aging Mice Is Associated with a Proliferative Risk Signature and Generation of Estrogen Receptor α-Positive Mammary Adenocarcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:103-120. [PMID: 36464513 PMCID: PMC9768686 DOI: 10.1016/j.ajpath.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022]
Abstract
Age is a risk factor for human estrogen receptor-positive breast cancer, with highest prevalence following menopause. While transcriptome risk profiling is available for human breast cancers, it is not yet developed for prognostication for primary or secondary breast cancer development utilizing at-risk breast tissue. Both estrogen receptor α (ER) and aromatase overexpression have been linked to human breast cancer. Herein, conditional genetically engineered mouse models of estrogen receptor 1 (Esr1) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) were used to show that induction of Esr1 overexpression just before or with reproductive senescence and maintained through age 30 months resulted in significantly higher prevalence of estrogen receptor-positive adenocarcinomas than CYP19A1 overexpression. All adenocarcinomas tested showed high percentages of ER+ cells. Mammary cancer development was preceded by a persistent proliferative transcriptome risk signature initiated within 1 week of transgene induction that showed parallels to the Prosigna/Prediction Analysis of Microarray 50 human prognostic signature for early-stage human ER+ breast cancer. CYP19A1 mice also developed ER+ mammary cancers, but histology was more divided between adenocarcinoma and adenosquamous, with one ER- adenocarcinoma. Results demonstrate that, like humans, generation of ER+ adenocarcinoma in mice was facilitated by aging mice past the age of reproductive senescence. Esr1 overexpression was associated with a proliferative estrogen pathway-linked signature that preceded appearance of ER+ mammary adenocarcinomas.
Collapse
Affiliation(s)
- Priscilla A Furth
- Department of Oncology, Georgetown University, Washington, District of Columbia; Department of Medicine, Georgetown University, Washington, District of Columbia.
| | - Weisheng Wang
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Keunsoo Kang
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
| | - Brendan L Rooney
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Grace Keegan
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Vinona Muralidaran
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Justin Wong
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Charles Shearer
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Xiaojun Zou
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
8
|
Bartlett AP, Harman RM, Weiss JR, Van de Walle GR. Establishment and characterization of equine mammary organoids using a method translatable to other non-traditional model species. Development 2022; 149:274742. [DOI: 10.1242/dev.200412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mammary organoid (MaO) models are only available for a few traditional model organisms, limiting our ability to investigate mammary gland development and cancer across mammals. This study established equine mammary organoids (EqMaOs) from cryopreserved mammary tissue, in which mammary tissue fragments were isolated and embedded into a 3D matrix to produce EqMaOs. We evaluated viability, proliferation and budding capacity of EqMaOs at different time points during culture, showing that although the number of proliferative cells decreased over time, viability was maintained and budding increased. We further characterized EqMaOs based on expression of stem cell, myoepithelial and luminal markers, and found that EqMaOs expressed these markers throughout culture and that a bilayered structure as seen in vivo was recapitulated. We used the milk-stimulating hormone prolactin to induce milk production, which was verified by the upregulation of milk proteins, most notably β-casein. Additionally, we showed that our method is also applicable to additional non-traditional mammalian species, particularly domesticated animals such as cats, pigs and rabbits. Collectively, MaO models across species will be a useful tool for comparative developmental and cancer studies.
Collapse
Affiliation(s)
- Arianna P. Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer R. Weiss
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Vallone SA, Solá MG, Schere-Levy C, Meiss RP, Hermida GN, Chodosh LA, Kordon EC, Hynes NE, Gattelli A. Aberrant RET expression impacts on normal mammary gland post-lactation transition enhancing cancer potential. Dis Model Mech 2022; 15:274874. [PMID: 35044452 PMCID: PMC8990024 DOI: 10.1242/dmm.049286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
RET is a receptor tyrosine kinase with oncogenic potential in the mammary epithelium. Several receptors with oncogenic activity in the breast are known to participate in specific developmental stages. We found that RET is differentially expressed during mouse mammary gland development: RET is present in lactation and its expression dramatically decreases in involution, the period during which the lactating gland returns to a quiescent state after weaning. Based on epidemiological and pre-clinical findings, involution has been described as tumor promoting. Using the Ret/MTB doxycycline-inducible mouse transgenic system, we show that sustained expression of RET in the mammary epithelium during the post-lactation transition to involution is accompanied by alterations in tissue remodeling and an enhancement of cancer potential. Following constitutive Ret expression, we observed a significant increase in neoplastic lesions in the post-involuting versus the virgin mammary gland. Furthermore, we show that abnormal RET overexpression during lactation promotes factors that prime involution, including premature activation of Stat3 signaling and, using RNA sequencing, an acute-phase inflammatory signature. Our results demonstrate that RET overexpression negatively affects the normal post-lactation transition. Summary: We show that RET activation stimulates Stat3 signaling in mammary epithelial cell culture and in vivo during post-lactation transition, demonstrating that the RET receptor participates in the post-lactation transition priming tumorigenesis.
Collapse
Affiliation(s)
- Sabrina A. Vallone
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Martín García Solá
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Carolina Schere-Levy
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Roberto P. Meiss
- Academia Nacional de Medicina de Buenos Aires, Av. Gral. Las Heras 3092, C1425ASU CABA, Buenos Aires, Argentina
| | - Gladys N. Hermida
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Biología de Anfibios-Histología Animal, Facultad de Ciencias Exactas y Naturales (FCEN), Buenos Aires, Argentina
| | - Lewis A. Chodosh
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania (Upenn), 614 BRB II/III, 421 Curie Blvd, Philadelphia, USA
| | - Edith C. Kordon
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, CH-4058 Basel, Switzerland
- University of Basel, CH-4002 Basel, Switzerland
| | - Albana Gattelli
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| |
Collapse
|
10
|
Mantziou S, Markopoulos G, Thrasyvoulou S, Noutsopoulos D, Gkartziou F, Vartholomatos G, Tzavaras T. Tinzaparin inhibits VL30 retrotransposition induced by oxidative stress and/or VEGF in HC11 mouse progenitor mammary cells: Association between inhibition of cancer stem cell proliferation and mammosphere disaggregation. Oncol Rep 2021; 46:241. [PMID: 34558648 PMCID: PMC8485018 DOI: 10.3892/or.2021.8192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Tinzaparin is an anticoagulant and antiangiogenic drug with inhibitory properties against tumor growth. VEGF stimulates angiogenesis, while an association between reactive oxygen species (ROS) and angiogenesis is involved in tumor progression. The present study aimed to investigate the effect of tinzaparin on VL30 retrotransposition-positive mouse HC11 mammary stem-like epithelial cells, previously reported to be associated with induced mammosphere/cancer stem cell (CSC) generation and tumorigenesis. Under 24 h serum starvation, 15.2% nominal retrotransposition frequency was increased to 29%. Additionally, while treatment with 3–12 ng/ml VEGF further induced retrotransposition frequency in a dose-dependent manner (up to 40.3%), pre-incubation with tinzaparin (2 IU/ml) for 0.5–4 h reduced this frequency to 18.3% in a time-dependent manner, confirmed by analogous results in NIH3T3 fibroblasts. Treatment with 10–40 pg/ml glucose oxidase (GO) for 24 h induced HC11 cell retrotransposition in a dose-dependent manner (up to 82.5%), while a 3 h pre-incubation with tinzaparin (1 or 2 IU/ml) elicited a 13.5 or 25.5% reduction in retrotransposition, respectively. Regarding tumorigenic VL30 retrotransposition-positive HC11 cells, treatment with 2 IU/ml tinzaparin for 5 days reduced proliferation rate in a time-dependent manner (up to ~55%), and after 3 weeks, disaggregated soft agar-formed foci, as well as low-adherent mammospheres, producing single mesenchymal-like cells with a ~50% reduced retrotransposition. With respect to the VL30 retrotransposition mechanism: While 12 ng/ml VEGF increased the level of VL30 and endogenous reverse transcriptase (enRT) transcripts ~1.41- and ~1.16-fold, respectively, subsequent tinzaparin treatment reduced both endogenous/ROS- and VEGF-induced levels 1.15- and 0.40-fold (VL30) and 0.60- and 0.52-fold (enRT), respectively. To the best of our knowledge, these data demonstrate for the first time, the novel inhibition activity of tinzaparin against ROS- and VEGF-induced VL30 retrotransposition, and the proliferation and/or aggregation of mouse HC11 mammosphere/tumor-initiating CSCs, thus contributing to the inhibition of VL30 retrotransposition-induced primary tumor growth.
Collapse
Affiliation(s)
- Stefania Mantziou
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios Markopoulos
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Soteroula Thrasyvoulou
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Noutsopoulos
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Foteini Gkartziou
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios Vartholomatos
- Molecular Biology Unit, Hematology Laboratory, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Theodore Tzavaras
- Laboratory of General Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
11
|
Han Y, Sanford L, Simpson DM, Dowell RD, Palmer AE. Remodeling of Zn 2+ homeostasis upon differentiation of mammary epithelial cells. Metallomics 2021; 12:346-362. [PMID: 31950952 DOI: 10.1039/c9mt00301k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Zinc is the second most abundant transition metal in humans and an essential nutrient required for growth and development of newborns. During lactation, mammary epithelial cells differentiate into a secretory phenotype, uptake zinc from blood circulation, and export it into mother's milk. At the cellular level, many zinc-dependent cellular processes, such as transcription, metabolism of nutrients, and proliferation are involved in the differentiation of mammary epithelial cells. Using mouse mammary epithelial cells as a model system, we investigated the remodeling of zinc homeostasis during differentiation induced by treatment with the lactogenic hormones cortisol and prolactin. RNA-Seq at different stages of differentiation revealed changes in global gene expression, including genes encoding zinc-dependent proteins and regulators of zinc homeostasis. Increases in mRNA levels of three zinc homeostasis genes, Slc39a14 (ZIP14) and metallothioneins (MTs) I and II were induced by cortisol but not by prolactin. The cortisol-induced increase was partially mediated by the nuclear glucocorticoid receptor signaling pathway. An increase in the cytosolic labile Zn2+ pool was also detected in lactating mammary cells, consistent with upregulation of MTs. We found that the zinc transporter ZIP14 was important for the expression of a major milk protein, whey acid protein (WAP), as knockdown of ZIP14 dramatically decreased WAP mRNA levels. In summary, our study demonstrated remodeling of zinc homeostasis upon differentiation of mammary epithelial cells resulting in changes in cytosolic Zn2+ and differential expression of zinc homeostasis genes, and these changes are important for establishing the lactation phenotype.
Collapse
Affiliation(s)
- Yu Han
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lynn Sanford
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - David M Simpson
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO 80303, USA. and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
12
|
Morato A, Martignani E, Miretti S, Baratta M, Accornero P. External and internal EGFR-activating signals drive mammary epithelial cells proliferation and viability. Mol Cell Endocrinol 2021; 520:111081. [PMID: 33181234 DOI: 10.1016/j.mce.2020.111081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
During puberty, the mammary gland undergoes an intense growth, dependent on the interplay between the Epidermal Growth Factor Receptor (EGFR) in the stroma and different mammary epithelial receptors. We hypothesize that EGFR expressed in the mammary epithelium also has a role in puberty and the epithelial cells can self-sustain by EGFR-mediated autocrine signaling. We adopted mammary cell lines from different species, as in vitro model for the epithelium, and we observed that EGFR-signaling positively affects their survival and proliferation. Once deprived of external growth factors, mammary cells still showed strong Erk 1/2 phosphorylation, abolished upon EGFR inhibition, coupled with a further reduction in survival and proliferation. Based on gene expression analysis, three EGFR-ligands (AREG, EREG and HBEGF) are likely to mediate this autocrine signaling. In conclusion, internal EGFR-activating signals sustain mammary epithelial cell proliferation and survival in vitro.
Collapse
Affiliation(s)
- Alessia Morato
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Eugenio Martignani
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy.
| |
Collapse
|
13
|
Thrasyvoulou S, Vartholomatos G, Markopoulos G, Noutsopoulos D, Mantziou S, Gkartziou F, Papageorgis P, Charchanti A, Kouklis P, Constantinou AI, Tzavaras T. VL30 retrotransposition is associated with induced EMT, CSC generation and tumorigenesis in HC11 mouse mammary stem‑like epithelial cells. Oncol Rep 2020; 44:126-138. [PMID: 32377731 PMCID: PMC7251778 DOI: 10.3892/or.2020.7596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Retrotransposons copy their sequences via an RNA intermediate, followed by reverse transcription into cDNA and random insertion, into a new genomic locus. New retrotransposon copies may lead to cell transformation and/or tumorigenesis through insertional mutagenesis. Methylation is a major defense mechanism against retrotransposon RNA expression and retrotransposition in differentiated cells, whereas stem cells are relatively hypo-methylated. Epithelial-to-mesenchymal transition (EMT), which transforms normal epithelial cells into mesenchymal-like cells, also contributes to tumor progression and tumor metastasis. Cancer stem cells (CSCs), a fraction of undifferentiated tumor-initiating cancer cells, are reciprocally related to EMT. In the present study, the outcome of long terminal repeat (LTR)-Viral-Like 30 (VL30) retrotransposition was examined in mouse mammary stem-like/progenitor HC11 epithelial cells. The transfection of HC11 cells with a VL30 retrotransposon, engineered with an EGFP-based retrotransposition cassette, elicited a higher retrotransposition frequency in comparison to differentiated J3B1A and C127 mouse mammary cells. Fluorescence microscopy and PCR analysis confirmed the specificity of retrotransposition events. The differentiated retrotransposition-positive cells retained their epithelial morphology, while the respective HC11 cells acquired mesenchymal features associated with the loss of E-cadherin, the induction of N-cadherin, and fibronectin and vimentin protein expression, as well as an increased transforming growth factor (TGF)-β1, Slug, Snail-1 and Twist mRNA expression. In addition, they were characterized by cell proliferation in low serum, and the acquisition of CSC-like properties indicated by mammosphere formation under anchorage-independent conditions. Mammospheres exhibited an increased Nanog and Oct4 mRNA expression and a CD44+/CD24−/low antigenic phenotype, as well as self-renewal and differentiation capacity, forming mammary acini-like structures. DNA sequencing analysis of retrotransposition-positive HC11 cells revealed retrotransposed VL30 copies integrated at the vicinity of EMT-, cancer type- and breast cancer-related genes. The inoculation of these cells into Balb/c mice produced cytokeratin-positive tumors containing pancytokeratin-positive cells, indicative of cell invasion features. On the whole, the findings of the present study demonstrate, for the first time, to the best of our knowledge, that stem-like epithelial HC11 cells are amenable to VL30 retrotransposition associated with the induction of EMT and CSC generation, leading to tumorigenesis.
Collapse
Affiliation(s)
- Soteroula Thrasyvoulou
- Laboratory of General Biology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios Vartholomatos
- Laboratory of Hematology, Unit of Molecular Biology, University Hospital of Ioannina, 45110 Ioannina, Greece
| | - Georgios Markopoulos
- Laboratory of General Biology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Noutsopoulos
- Laboratory of General Biology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Stefania Mantziou
- Laboratory of General Biology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Foteini Gkartziou
- Laboratory of General Biology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Papageorgis
- Biological Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Antonia Charchanti
- Laboratory of Anatomy‑Histology‑Embryology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Panos Kouklis
- Laboratory of General Biology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Andreas I Constantinou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Theodore Tzavaras
- Laboratory of General Biology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
14
|
Stewart TA, Davis FM. A Primary Cell and Organoid Platform for Evaluating Pharmacological Responses in Mammary Epithelial Cells. ACS Pharmacol Transl Sci 2020; 3:63-75. [PMID: 32259089 PMCID: PMC7088941 DOI: 10.1021/acsptsci.9b00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 12/31/2022]
Abstract
An essential process in predicting the in vivo pharmacological activity of a candidate molecule involves the evaluation of target responses using established model systems. While these models largely comprise immortalized cells, which are often serially passaged as monolayers on uniformly stiff substrates and are modified to overexpress one or more components of the pathway-of-interest, the importance of cell identity, heterogeneity, and three-dimensional (3D) context to target response is gaining increasing attention. Here, we assess intracellular calcium responses in mouse mammary epithelial cells in three distinct model systems: 3D primary organoids, 2D primary epithelial cells, and 2D immortalized cells. Specifically, we assess intracellular calcium responses to a number of extracellular signals implicated in the regulation of basal (or myoepithelial) cell function. These findings provide further insights into cell type and context-specific pharmacological responses in mammary epithelial cells and highlight the opportunities and challenges in the adoption of architecturally complex and heterogeneous in vitro assays in pharmacological research.
Collapse
Affiliation(s)
- Teneale A. Stewart
- Mater
Research-The University of Queensland, Faculty of Medicine, Brisbane, Queensland 4102, Australia
- Translational
Research Institute, Brisbane, Queensland 4102, Australia
| | - Felicity M. Davis
- Mater
Research-The University of Queensland, Faculty of Medicine, Brisbane, Queensland 4102, Australia
- Translational
Research Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
15
|
Singh R, Bassett E, Chakravarti A, Parthun MR. Replication-dependent histone isoforms: a new source of complexity in chromatin structure and function. Nucleic Acids Res 2019; 46:8665-8678. [PMID: 30165676 PMCID: PMC6158624 DOI: 10.1093/nar/gky768] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Replication-dependent histones are expressed in a cell cycle regulated manner and supply the histones necessary to support DNA replication. In mammals, the replication-dependent histones are encoded by a family of genes that are located in several clusters. In humans, these include 16 genes for histone H2A, 22 genes for histone H2B, 14 genes for histone H3, 14 genes for histone H4 and 6 genes for histone H1. While the proteins encoded by these genes are highly similar, they are not identical. For many years, these genes were thought to encode functionally equivalent histone proteins. However, several lines of evidence have emerged that suggest that the replication-dependent histone genes can have specific functions and may constitute a novel layer of chromatin regulation. This Survey and Summary reviews the literature on replication-dependent histone isoforms and discusses potential mechanisms by which the small variations in primary sequence between the isoforms can alter chromatin function. In addition, we summarize the wealth of data implicating altered regulation of histone isoform expression in cancer.
Collapse
Affiliation(s)
- Rajbir Singh
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Emily Bassett
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Wang J, Aydoğdu E, Mukhopadhyay S, Helguero LA, Williams C. A miR-206 regulated gene landscape enhances mammary epithelial differentiation. J Cell Physiol 2019; 234:22220-22233. [PMID: 31069797 PMCID: PMC6767383 DOI: 10.1002/jcp.28789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
miR‐206 is known to suppress breast cancer. However, while it is expressed in mammary stem cells, its function in such nontumor cells is not well understood. Here, we explore the role of miR‐206 in undifferentiated, stem‐like mammary cells using the murine mammary differentiation model HC11, genome‐wide gene expression analysis, and functional assays. We describe the miR‐206‐regulated gene landscape and propose a network whereby miR‐206 suppresses tumor development. We functionally demonstrate that miR‐206 in nontumor stem‐like cells induces a G1–S cell cycle arrest, and reduces colony formation and epithelial‐to‐mesenchymal transition markers. Finally, we show that addition of miR‐206 accelerates the mammary differentiation process along with related accumulation of lipids. We conclude that miR‐206 impacts a network of signaling pathways, and acts as a regulator of proliferation, stemness, and mammary cell differentiation in nontumor stem‐like mammary cells. Our study provides a broad insight into the breast cancer suppressive functions of miR‐206.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas.,Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratories, Stockholm, Sweden
| | - Eylem Aydoğdu
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Srijita Mukhopadhyay
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas
| | - Luisa A Helguero
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratories, Stockholm, Sweden
| |
Collapse
|
17
|
Comprehensive profiling of transcriptional networks specific for lactogenic differentiation of HC11 mammary epithelial stem-like cells. Sci Rep 2018; 8:11777. [PMID: 30082875 PMCID: PMC6079013 DOI: 10.1038/s41598-018-30122-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
The development of mammary gland as a lactogenic tissue is a highly coordinated multistep process. The epithelial cells of lactiferous tubules undergo profound changes during the developmental window of puberty, pregnancy, and lactation. Several hormones including estrogen, progesterone, glucocorticoids and prolactin act in concert, and orchestrate the development of mammary gland. Understanding the gene regulatory networks that coordinate proliferation and differentiation of HC11 Mammary Epithelial stem-like Cells (MEC) under the influence of lactogenic hormones is critical for elucidating the mechanism of lactogenesis in detail. In this study, we analyzed transcriptome profiles of undifferentiated MEC (normal) and compared them with Murine Embryonic Stem Cells (ESC) using next-generation mRNA sequencing. Further, we analyzed the transcriptome output during lactogenic differentiation of MEC following treatment with glucocorticoids (primed state) and both glucocorticoids and prolactin together (prolactin state). We established stage-specific gene regulatory networks in ESC and MEC (normal, priming and prolactin states). We validated the top up-and downregulated genes in each stage of differentiation of MEC by RT-PCR and found that they are comparable with that of RNA-seq data. HC11 MEC display decreased expression of Pou5f1 and Sox2, which is crucial for the differentiation of MEC, which otherwise ensure pluripotency to ESC. Cited4 is induced during priming and is involved in milk secretion. MEC upon exposure to both glucocorticoids and prolactin undergo terminal differentiation, which is associated with the expression of several genes, including Xbp1 and Cbp that are required for cell growth and differentiation. Our study also identified differential expression of transcription factors and epigenetic regulators in each stage of lactogenic differentiation. We also analyzed the transcriptome data for the pathways that are selectively activated during lactogenic differentiation. Further, we found that selective expression of chromatin modulators (Dnmt3l, Chd9) in response to glucocorticoids suggests a highly coordinated stage-specific lactogenic differentiation of MEC.
Collapse
|
18
|
Zhang Y, Xu B, Zhang XP. Effects of miRNAs on functions of breast cancer stem cells and treatment of breast cancer. Onco Targets Ther 2018; 11:4263-4270. [PMID: 30100733 PMCID: PMC6065473 DOI: 10.2147/ott.s165156] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is one of the most common malignancies for women, which accounts for 30% of all female malignancies. The formation of breast cancer stem cells (BCSCs) is attributed to the acquisition of stemness of tumor cells. With self-renewal potential, these stem cells are insensitive to either radiotherapy or chemotherapy but are significant in regulating tumor behaviors and drug resistance. MicroRNA (miRNA) is a kind of noncoding small RNA for negatively regulating gene expressions. Research findings suggest that many miRNAs specifically regulate the expression of target genes and signal pathways of BCSCs. They play an important role in self-renewal, growth, and metastasis of breast cancer cells as potential targets for treating breast cancer. These signal pathways include phosphatase and tensin homolog deleted on chromosome 10-phosphatidylinositol 3-kinase/Akt, Wnt/β-catenin, Notch, and so on. This paper reviews the progress of research about miRNAs in self-renewal, metastasis, epithelial-mesenchymal transition and metastasis, mediation of resistance to chemotherapies, and treatment of breast cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bin Xu
- Department of Surgery, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xi-Ping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China,
| |
Collapse
|
19
|
Tocci JM, Felcher CM, García Solá ME, Goddio MV, Zimberlin MN, Rubinstein N, Srebrow A, Coso OA, Abba MC, Meiss RP, Kordon EC. R-spondin3 Is Associated with Basal-Progenitor Behavior in Normal and Tumor Mammary Cells. Cancer Res 2018; 78:4497-4511. [PMID: 29748375 DOI: 10.1158/0008-5472.can-17-2676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/09/2018] [Accepted: 04/30/2018] [Indexed: 11/16/2022]
Abstract
R-spondin3 (RSPO3) is a member of a family of secreted proteins that enhance Wnt signaling pathways in diverse processes, including cancer. However, the role of RSPO3 in mammary gland and breast cancer development remains unclear. In this study, we show that RSPO3 is expressed in the basal stem cell-enriched compartment of normal mouse mammary glands but is absent from committed mature luminal cells in which exogenous RSPO3 impairs lactogenic differentiation. RSPO3 knockdown in basal-like mouse mammary tumor cells reduced canonical Wnt signaling, epithelial-to-mesenchymal transition-like features, migration capacity, and tumor formation in vivo Conversely, RSPO3 overexpression, which was associated with some LGR and RUNX factors, highly correlated with the basal-like subtype among patients with breast cancer. Thus, we identified RSPO3 as a novel key modulator of breast cancer development and a potential target for treatment of basal-like breast cancers.Significance: These findings identify RSPO3 as a potential therapetuic target in basal-like breast cancers.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/16/4497/F1.large.jpg Cancer Res; 78(16); 4497-511. ©2018 AACR.
Collapse
Affiliation(s)
- Johanna M Tocci
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Carla M Felcher
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Martín E García Solá
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - María Victoria Goddio
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - María Noel Zimberlin
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Natalia Rubinstein
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Anabella Srebrow
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Omar A Coso
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Martín C Abba
- Basic and Applied Immunological Research Center, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Roberto P Meiss
- Department of Pathology, Institute of Oncology Studies, National Academy of Medicine, Buenos Aires, Argentina
| | - Edith C Kordon
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
20
|
Sornapudi TR, Nayak R, Guthikonda PK, Kethavath S, Yellaboina S, Kurukuti S. RNA sequencing of murine mammary epithelial stem-like cells (HC11) undergoing lactogenic differentiation and its comparison with embryonic stem cells. BMC Res Notes 2018; 11:241. [PMID: 29642945 PMCID: PMC5896049 DOI: 10.1186/s13104-018-3351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Understanding of transcriptional networks specifying HC11 murine mammary epithelial stem cell-like cells (MEC) in comparison with embryonic stem cells (ESCs) and their rewiring, under the influence of glucocorticoids (GC) and prolactin (PRL) hormones, is critical for elucidating the mechanism of lactogenesis. In this data note, we provide RNA sequencing data from murine MECs and ESCs, MECs treated with steroid hormone alone and in combination with PRL. This data could help in understanding temporal dynamics of mRNA transcription that impact the process of lactogenesis associated with mammary gland development. Further integration of these data sets with existing datasets of cells derived from various stages of mammary gland development and different types of breast tumors, should pave the way for effective prognosis and to develop therapies for breast cancer. DATA DESCRIPTION We have generated RNA-sequencing data representing steady-state levels of mRNAs from murine ESCs, normal MECs (N), MECs primed (P) with hydrocortisone (HC) alone and in combination with PRL hormone by using Illumina sequencing platform. We have generated ~ 58 million reads for ESCs with an average length of ~ 100 nt and an average 115 million good quality mapped reads with an average length of ~ 150 nt for different stages of MECs differentiation.
Collapse
Affiliation(s)
- Trinadha Rao Sornapudi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Rakhee Nayak
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Prashanth Kumar Guthikonda
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Srinivas Kethavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Sailu Yellaboina
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Sciences, University of Hyderabad Campus, Hyderabad, 500046, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
21
|
Mießler KS, Vitzthum C, Markov AG, Amasheh S. Basolateral pressure challenges mammary epithelial cell monolayer integrity, in vitro. Cytotechnology 2017; 70:567-576. [PMID: 28852895 DOI: 10.1007/s10616-017-0130-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Mammary gland epithelium is physiologically exposed to variations of hydrostatic pressure due to accumulation of milk and removal by suckling and mechanical milking. Integrity of the mammary gland epithelium primarily relies on the tight junction. To analyze pressure-induced effects on the tight junction, we established a modified Ussing chamber and tested the hypothesis if hydrostatic pressure on the basal side of the epithelium is able to affect barrier properties in a mammary epithelial cell model, in vitro. Therefore, a conventional Ussing chamber was modified by an additional tube system to apply hydrostatic pressure. Monolayers of the mammary epithelial cell line HC11 were mounted in the modified Ussing chambers and incubated with increasing basal hydrostatic pressure. Transepithelial resistance and short circuit current were recorded and compared to controls. Hydrostatic pressure was stably applied and incubation steps of 30 min were technically feasible, leading to a decrease of transepithelial resistance and an increase of short circuit current in all monolayers. In a series of experiments simulating the physiological exposure time by short intervals of 5 min, these electrophysiological findings were also observed, and monolayer integrity was not significantly perturbed as analyzed by fluorescence immunohistochemistry selectively staining tight junction proteins. Moreover, electrophysiology demonstrated reversibility of effects. In conclusion, the modified Ussing chamber is an adequate method to analyze the effects of hydrostatic pressure on epithelial cell monolayers, in vitro. Both, the reduction of transepithelial resistance and the increase of short circuit current may be interpreted as protective reactions.
Collapse
Affiliation(s)
- Katharina S Mießler
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Constanze Vitzthum
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Alexander G Markov
- Department of General Physiology, St. Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, Russia, 199034
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
22
|
The histone H2A isoform Hist2h2ac is a novel regulator of proliferation and epithelial–mesenchymal transition in mammary epithelial and in breast cancer cells. Cancer Lett 2017; 396:42-52. [DOI: 10.1016/j.canlet.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 01/11/2023]
|
23
|
Riester M, Wu HJ, Zehir A, Gönen M, Moreira AL, Downey RJ, Michor F. Distance in cancer gene expression from stem cells predicts patient survival. PLoS One 2017; 12:e0173589. [PMID: 28333954 PMCID: PMC5363813 DOI: 10.1371/journal.pone.0173589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
The degree of histologic cellular differentiation of a cancer has been associated with prognosis but is subjectively assessed. We hypothesized that information about tumor differentiation of individual cancers could be derived objectively from cancer gene expression data, and would allow creation of a cancer phylogenetic framework that would correlate with clinical, histologic and molecular characteristics of the cancers, as well as predict prognosis. Here we utilized mRNA expression data from 4,413 patient samples with 7 diverse cancer histologies to explore the utility of ordering samples by their distance in gene expression from that of stem cells. A differentiation baseline was obtained by including expression data of human embryonic stem cells (hESC) and human mesenchymal stem cells (hMSC) for solid tumors, and of hESC and CD34+ cells for liquid tumors. We found that the correlation distance (the degree of similarity) between the gene expression profile of a tumor sample and that of stem cells orients cancers in a clinically coherent fashion. For all histologies analyzed (including carcinomas, sarcomas, and hematologic malignancies), patients with cancers with gene expression patterns most similar to that of stem cells had poorer overall survival. We also found that the genes in all undifferentiated cancers of diverse histologies that were most differentially expressed were associated with up-regulation of specific oncogenes and down-regulation of specific tumor suppressor genes. Thus, a stem cell-oriented phylogeny of cancers allows for the derivation of a novel cancer gene expression signature found in all undifferentiated forms of diverse cancer histologies, that is competitive in predicting overall survival in cancer patients compared to previously published prediction models, and is coherent in that gene expression was associated with up-regulation of specific oncogenes and down-regulation of specific tumor suppressor genes associated with regulation of the multicellular state.
Collapse
Affiliation(s)
- Markus Riester
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States of America
| | - Hua-Jun Wu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States of America
| | - Ahmet Zehir
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
| | - Andre L. Moreira
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
| | - Robert J. Downey
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY United States of America
- * E-mail: (RJD); (FM)
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States of America
- * E-mail: (RJD); (FM)
| |
Collapse
|
24
|
Simon M, Mesmar F, Helguero L, Williams C. Genome-wide effects of MELK-inhibitor in triple-negative breast cancer cells indicate context-dependent response with p53 as a key determinant. PLoS One 2017; 12:e0172832. [PMID: 28235006 PMCID: PMC5325553 DOI: 10.1371/journal.pone.0172832] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive, highly recurrent breast cancer subtype, affecting approximately one-fifth of all breast cancer patients. Subpopulations of treatment-resistant cancer stem cells within the tumors are considered to contribute to disease recurrence. A potential druggable target for such cells is the maternal embryonic leucine-zipper kinase (MELK). MELK expression is upregulated in mammary stem cells and in undifferentiated cancers, where it correlates with poor prognosis and potentially mediates treatment resistance. Several MELK inhibitors have been developed, of which one, OTSSP167, is currently in clinical trials. In order to better understand how MELK and its inhibition influence TNBC, we verified its anti-proliferative and apoptotic effects in claudin-low TNBC cell lines MDA-MB-231 and SUM-159 using MTS assays and/or trypan blue viability assays together with analysis of PARP cleavage. Then, using microarrays, we explored which genes were affected by OTSSP167. We demonstrate that different sets of genes are regulated in MDA-MB-231 and SUM-159, but in both cell lines genes involved in cell cycle, mitosis and protein metabolism and folding were regulated. We identified p53 (TP53) as a potential upstream regulator of the regulated genes. Using western blot we found that OTSSP167 downregulates mutant p53 in all tested TNBC cell lines (MDA-MB-231, SUM-159, and BT-549), but upregulates wild-type p53 in the luminal A subtype MCF-7 cell line. We propose that OTSSP167 might have context-dependent or off-target effects, but that one consistent mechanism of action could involve the destabilization of mutant p53.
Collapse
Affiliation(s)
- Marisa Simon
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Texas, United States of America
| | - Fahmi Mesmar
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Texas, United States of America
| | - Luisa Helguero
- Institute for Research in Biomedicine, Department of Biosciences, University of Aveiro, Aveiro, Portugal
| | - Cecilia Williams
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Texas, United States of America
- Division of Proteomics, SciLifeLab, School of Biotechnology, KTH – Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
25
|
Rooney N, Riggio AI, Mendoza-Villanueva D, Shore P, Cameron ER, Blyth K. Runx Genes in Breast Cancer and the Mammary Lineage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:353-368. [PMID: 28299668 DOI: 10.1007/978-981-10-3233-2_22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A full understanding of RUNX gene function in different epithelial lineages has been thwarted by the lethal phenotypes observed when constitutively knocking out these mammalian genes. However temporal expression of the Runx genes throughout the different phases of mammary gland development is indicative of a functional role in this tissue. A few studies have emerged describing how these genes impact on the fate of mammary epithelial cells by regulating lineage differentiation and stem/progenitor cell potential, with implications for the transformed state. The importance of the RUNX/CBFβ core factor binding complex in breast cancer has very recently been highlighted with both RUNX1 and CBFβ appearing in a comprehensive gene list of predicted breast cancer driver mutations. Nonetheless, the evidence to date shows that the RUNX genes can have dualistic outputs with respect to promoting or constraining breast cancer phenotypes, and that this may be aligned to individual subtypes of the clinical disease. We take this opportunity to review the current literature on RUNX and CBFβ in the normal and neoplastic mammary lineage while appreciating that this is likely to be the tip of the iceberg in our knowledge.
Collapse
Affiliation(s)
- Nicholas Rooney
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | | | | | - Paul Shore
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ewan R Cameron
- School of Veterinary Medicine, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
26
|
He L, Gu J, Lim LY, Yuan ZX, Mo J. Nanomedicine-Mediated Therapies to Target Breast Cancer Stem Cells. Front Pharmacol 2016; 7:313. [PMID: 27679576 PMCID: PMC5020043 DOI: 10.3389/fphar.2016.00313] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo-/radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. “Smart” nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer.
Collapse
Affiliation(s)
- Lili He
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest University for Nationalities Chengdu, China
| | - Lee Y Lim
- Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA, Australia
| | - Zhi-Xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Jingxin Mo
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education Guangzhou, China
| |
Collapse
|
27
|
Ferrari N, Riggio AI, Mason S, McDonald L, King A, Higgins T, Rosewell I, Neil JC, Smalley MJ, Sansom OJ, Morris J, Cameron ER, Blyth K. Runx2 contributes to the regenerative potential of the mammary epithelium. Sci Rep 2015; 5:15658. [PMID: 26489514 PMCID: PMC4614940 DOI: 10.1038/srep15658] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Although best known for its role in bone development and associated structures the transcription factor RUNX2 is expressed in a wide range of lineages, including those of the mammary gland. Previous studies have indicated that Runx2 can regulate aspects of mammary cell function and influence the properties of cancer cells. In this study we investigate the role of Runx2 in the mammary stem/progenitor population and its relationship with WNT signalling. Results show that RUNX2 protein is differentially expressed throughout embryonic and adult development of the murine mammary gland with high levels of expression in mammary stem-cell enriched cultures. Importantly, functional analysis reveals a role for Runx2 in mammary stem/progenitor cell function in in vitro and in vivo regenerative assays. Furthermore, RUNX2 appears to be associated with WNT signalling in the mammary epithelium and is specifically upregulated in mouse models of WNT-driven breast cancer. Overall our studies reveal a novel function for Runx2 in regulating mammary epithelial cell regenerative potential, possibly acting as a downstream target of WNT signalling.
Collapse
Affiliation(s)
- Nicola Ferrari
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Alessandra I. Riggio
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Susan Mason
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Laura McDonald
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Ayala King
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Theresa Higgins
- Cancer Research UK London Research Institute, Lincoln’s Inn Fields, London, WC2A 3LY
| | - Ian Rosewell
- Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD
| | - James C. Neil
- University of Glasgow, Garscube Estate, Bearsden, Glasgow, G61 1QH
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, CF24 4HQ
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Joanna Morris
- University of Glasgow, Garscube Estate, Bearsden, Glasgow, G61 1QH
| | - Ewan R. Cameron
- University of Glasgow, Garscube Estate, Bearsden, Glasgow, G61 1QH
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| |
Collapse
|
28
|
Tsouko E, Wang J, Frigo DE, Aydoğdu E, Williams C. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesis 2015; 36:1051-60. [PMID: 26088362 DOI: 10.1093/carcin/bgv087] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 06/15/2015] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by aggressiveness and affects 10-20% of breast cancer patients. Since TNBC lacks expression of ERα, PR and HER2, existing targeted treatments are not effective and the survival is poor. In this study, we demonstrate that the tumor suppressor microRNA miR-200a directly regulates the oncogene EPH receptor A2 (EPHA2) and modulates TNBC migration. We show that EPHA2 expression is correlated with poor survival specifically in basal-like breast cancer and that its expression is repressed by miR-200a through direct interaction with the 3'UTR of EPHA2. This regulation subsequently affects the downstream activation of AMP-activated protein kinase (AMPK) and results in decreased cell migration of TNBC. We establish that miR-200a directs cell migration in a dual manner; in addition to regulating the well-characterized E-cadherin pathway it also regulates a EPHA2 pathway. The miR-200a-EPHA2 axis is a novel mechanism highlighting the possibility of utilizing miR-200a delivery to target TNBC metastases.
Collapse
Affiliation(s)
- Efrosini Tsouko
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA
| | - Jun Wang
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA
| | - Daniel E Frigo
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA, Genomic Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA and
| | - Eylem Aydoğdu
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA, Present address: Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Cecilia Williams
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd., Houston, TX 77204, USA, Science for Life Laboratory, School of Biotechnology, KTH - Royal Institute of Technology, 171 21 Stockholm, Sweden
| |
Collapse
|
29
|
Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields. Cell Signal 2015; 27:889-98. [DOI: 10.1016/j.cellsig.2015.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/08/2015] [Indexed: 01/18/2023]
|
30
|
miR-206 inhibits cell migration through direct targeting of the actin-binding protein coronin 1C in triple-negative breast cancer. Mol Oncol 2014; 8:1690-702. [PMID: 25074552 DOI: 10.1016/j.molonc.2014.07.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 12/31/2022] Open
Abstract
Patients with triple-negative breast cancer (TNBC) have an overall poor prognosis, which is primarily due to a high metastatic capacity of these tumors. Novel therapeutic approaches to target the signaling pathways that promote metastasis are desirable, in order to improve the outcome for these patients. A loss of function of a microRNA, miR-206, is related to increased metastasis potential in breast cancers but the mechanism is not known. In this study, we show that miR-206 was decreased in TNBC clinical tumor samples and cell lines whereas one of its predicted targets, actin-binding protein CORO1C, was increased. Expression of miR-206 significantly reduced proliferation and migration while repressing CORO1C mRNA and protein levels. We demonstrate that miR-206 interacts with the 3'-untranslated region (3'-UTR) of CORO1C and regulates this gene post-transcriptionally. This post-transcriptional regulation was dependent on two miR-206-binding sites within the 3'-UTR of CORO1C and was relieved by mutations of corresponding sites. Further, silencing of CORO1C reduced tumor cell migration and affected the actin skeleton and cell morphology, similar to miR-206 expression, but did not reduce proliferation. In accordance with this, overexpression of CORO1C rescued the inhibitory effect of miR-206 on cell migration. Our findings suggest that miR-206 represses tumor cell migration through direct targeting of CORO1C in TNBC cells which modulates the actin filaments. This pathway is a novel mechanism that offers a mechanistic basis through which the metastatic potential of TNBC tumors could be targeted.
Collapse
|
31
|
Dória ML, Ribeiro AS, Wang J, Cotrim CZ, Domingues P, Williams C, Domingues MR, Helguero LA. Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival. FASEB J 2014; 28:4247-64. [PMID: 24970396 DOI: 10.1096/fj.14-249672] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work combined gene and protein expression, gas chromatography-flame ionization detector, and hydrophilic interaction liquid chromatography-tandem mass spectrometry to compare lipid metabolism changes in undifferentiated/proliferating vs. functionally differentiated mammary epithelial cells (MECs) and to study their correlation to breast cancer survival. Sixty-eight genes involved in lipid metabolism were changed in MEC differentiation. Differentiated cells showed induction of Elovl6 (2-fold), Scd1 (4-fold), and Fads2 (2-fold), which correlated with increased levels of C16:1 n-7 and C18:1 n-9 (1.5-fold), C20:3 n-6 (2.5-fold), and C20:4 n-6 (6-fold) fatty acids (FAs) and more phospholipids (PLs) containing these species. Further, increased expression (2- to 3-fold) of genes in phosphatidylethanolamine (PE) de novo biosynthesis resulted in a 20% PE increase. Proliferating/undifferentiated cells showed higher C16:0 (1.7-fold) and C18:2 n-6 (4.2-fold) levels and more PLs containing C16:0 FAs [PC(16:0/16:1), PG(16:0/18:2), PG(16:0/18:1), and SM(16:0/18:0)]. Kaplan-Meier analysis of data from 3455 patients with breast cancer disclosed a positive correlation for 59% of genes expressed in differentiated MECs with better survival. PE biosynthesis and FA oxidation correlated with better prognosis in patients with breast cancer, including the basal-like subtype. Therefore, genes involved in mammary gland FA and PL metabolism and their resulting molecular species reflect the cellular proliferative ability and differentiation state and deserve further studies as potential markers of breast cancer progression
Collapse
Affiliation(s)
- M Luisa Dória
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Ana S Ribeiro
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Jun Wang
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Cândida Z Cotrim
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Pedro Domingues
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Cecilia Williams
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - M Rosário Domingues
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| | - Luisa A Helguero
- Mass Spectrometry Centre, Organic Chemistry and Natural Products Research Unit, Department of Chemistry, Universidade de Aveiro, Campus de Santiago, Aveiro, Portugal; and
| |
Collapse
|
32
|
Watanabe K, Villarreal-Ponce A, Sun P, Salmans ML, Fallahi M, Andersen B, Dai X. Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Dev Cell 2014; 29:59-74. [PMID: 24735879 DOI: 10.1016/j.devcel.2014.03.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/17/2014] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
Abstract
Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition [EMT]). However, how epithelial plasticity is kept in check in epithelial cells during tissue development and regeneration remains to be fully understood. Here we show that restricting the EMT of mammary epithelial cells by transcription factor Ovol2 is required for proper morphogenesis and regeneration. Deletion of Ovol2 blocks mammary ductal morphogenesis, depletes stem and progenitor cell reservoirs, and leads epithelial cells to undergo EMT in vivo to become nonepithelial cell types. Ovol2 directly represses myriad EMT inducers, and its absence switches response to TGF-β from growth arrest to EMT. Furthermore, forced expression of the repressor isoform of Ovol2 is able to reprogram metastatic breast cancer cells from a mesenchymal to an epithelial state. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity in development and cancer.
Collapse
Affiliation(s)
- Kazuhide Watanabe
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael L Salmans
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Magid Fallahi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
33
|
SAP domain-dependent Mkl1 signaling stimulates proliferation and cell migration by induction of a distinct gene set indicative of poor prognosis in breast cancer patients. Mol Cancer 2014; 13:22. [PMID: 24495796 PMCID: PMC3933235 DOI: 10.1186/1476-4598-13-22] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 01/30/2014] [Indexed: 12/12/2022] Open
Abstract
Background The main cause of death of breast cancer patients is not the primary tumor itself but the metastatic disease. Identifying breast cancer-specific signatures for metastasis and learning more about the nature of the genes involved in the metastatic process would 1) improve our understanding of the mechanisms of cancer progression and 2) reveal new therapeutic targets. Previous studies showed that the transcriptional regulator megakaryoblastic leukemia-1 (Mkl1) induces tenascin-C expression in normal and transformed mammary epithelial cells. Tenascin-C is known to be expressed in metastatic niches, is highly induced in cancer stroma and promotes breast cancer metastasis to the lung. Methods Using HC11 mammary epithelial cells overexpressing different Mkl1 constructs, we devised a subtractive transcript profiling screen to identify the mechanism by which Mkl1 induces a gene set co-regulated with tenascin-C. We performed computational analysis of the Mkl1 target genes and used cell biological experiments to confirm the effect of these gene products on cell behavior. To analyze whether this gene set is prognostic of accelerated cancer progression in human patients, we used the bioinformatics tool GOBO that allowed us to investigate a large breast tumor data set linked to patient data. Results We discovered a breast cancer-specific set of genes including tenascin-C, which is regulated by Mkl1 in a SAP domain-dependent, serum response factor-independent manner and is strongly implicated in cell proliferation, cell motility and cancer. Downregulation of this set of transcripts by overexpression of Mkl1 lacking the SAP domain inhibited cell growth and cell migration. Many of these genes are direct Mkl1 targets since their promoter-reporter constructs were induced by Mkl1 in a SAP domain-dependent manner. Transcripts, most strongly reduced in the absence of the SAP domain were mechanoresponsive. Finally, expression of this gene set is associated with high-proliferative poor-outcome classes in human breast cancer and a strongly reduced survival rate for patients independent of tumor grade. Conclusions This study highlights a crucial role for the transcriptional regulator Mkl1 and its SAP domain during breast cancer progression. We identified a novel gene set that correlates with bad prognosis and thus may help in deciding the rigor of therapy.
Collapse
|
34
|
D'Ippolito E, Iorio MV. MicroRNAs and triple negative breast cancer. Int J Mol Sci 2013; 14:22202-20. [PMID: 24284394 PMCID: PMC3856060 DOI: 10.3390/ijms141122202] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a very aggressive tumor subtype, which still lacks specific markers for an effective targeted therapy. Despite the common feature of negativity for the three most relevant receptors (ER, PgR and HER2), TNBC is a very heterogeneous disease where different subgroups can be recognized, and both gene and microRNA profiling studies have recently been carried out to dissect the different molecular entities. Moreover, several microRNAs playing a crucial role in triple negative breast cancer biology have been identified, providing the experimental basis for a possible therapeutic application. Indeed, the causal involvement of microRNAs in breast cancer and the possible use of these small noncoding RNA molecules as biomarkers has been extensively studied with promising results. Their application as therapeutic tools might represent an innovative approach, especially for a tumor subgroup still lacking an efficient and specific therapy such as TNBC. In this review, we summarize our knowledge on the most important microRNAs described in TNBC.
Collapse
Affiliation(s)
- Elvira D'Ippolito
- Start Up Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, Milan 20133, Italy.
| | | |
Collapse
|
35
|
Horch RE, Boos AM, Quan Y, Bleiziffer O, Detsch R, Boccaccini AR, Alexiou C, Sun J, Beier JP, Arkudas A. Cancer research by means of tissue engineering--is there a rationale? J Cell Mol Med 2013; 17:1197-206. [PMID: 24118692 PMCID: PMC4159017 DOI: 10.1111/jcmm.12130] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/14/2013] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering (TE) has evoked new hopes for the cure of organ failure and tissue loss by creating functional substitutes in the laboratory. Besides various innovations in the context of Regenerative Medicine (RM), TE also provided new technology platforms to study mechanisms of angiogenesis and tumour cell growth as well as potentially tumour cell spreading in cancer research. Recent advances in stem cell technology--including embryonic and adult stem cells and induced pluripotent stem cells--clearly show the need to better understand all relevant mechanisms to control cell growth when such techniques will be administered to patients. Such TE-Cancer research models allow us to investigate the interactions that occur when replicating physiological and pathological conditions during the initial phases of replication, morphogenesis, differentiation and growth under variable given conditions. Tissue microenvironment has been extensively studied in many areas of TE and it plays a crucial role in cell signalling and regulation of normal and malignant cell functions. This article is intended to give an overview on some of the most recent developments and possible applications of TE and RM methods with regard to the improvement of cancer research with TE platforms. The synthesis of TE with innovative methods of molecular biology and stem-cell technology may help investigate and potentially modulate principal phenomena of tumour growth and spreading, as well as tumour-related angiogenesis. In the future, these models have the potential to investigate the optimal materials, culture conditions and material structure to propagate tumour growth.
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany; Emerging Fields Initiative, FAU Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ferrari N, McDonald L, Morris JS, Cameron ER, Blyth K. RUNX2 in mammary gland development and breast cancer. J Cell Physiol 2013; 228:1137-42. [PMID: 23169547 DOI: 10.1002/jcp.24285] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022]
Abstract
Runx2 is best known as an essential factor in osteoblast differentiation and bone development but, like many other transcription factors involved in development, is known to operate over a much wider tissue range. Our understanding of these other aspects of Runx2 function is still at a relatively early stage and the importance of its role in cell fate decisions and lineage maintenance in non-osseous tissues is only beginning to emerge. One such tissue is the mammary gland, where Runx2 is known to be expressed and participate in the regulation of mammary specific genes. Furthermore, differential and temporal expression of this gene is observed during mammary epithelial differentiation in vivo, strongly indicative of an important functional role. Although the precise nature of that role remains elusive, preliminary evidence hints at possible involvement in the regulation of mammary stem and/or progenitor cells. As with many genes important in regulating cell fate, RUNX2 has also been linked to metastatic cancer where in some established breast cell lines, retention of expression is associated with a more invasive phenotype. More recently, expression analysis has been extended to primary breast cancers where high levels of RUNX2 align with a specific subtype of the disease. That RUNX2 expression correlates with the so called "Triple Negative" subtype is particularly interesting given the known cross talk between Runx2 and estrogen receptor signaling pathways. This review summaries our current understanding of Runx2 in mammary gland development and cancer, and postulates a role that may link both these processes.
Collapse
Affiliation(s)
- Nicola Ferrari
- The Beatson Institute for Cancer Research, Bearsden, Glasgow, UK
| | | | | | | | | |
Collapse
|
37
|
Church PC, Goscinski A, Lefèvre C. EXP-PAC: providing comparative analysis and storage of next generation gene expression data. Genomics 2012; 100:8-13. [PMID: 22609187 DOI: 10.1016/j.ygeno.2012.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 01/02/2023]
Abstract
Microarrays and more recently RNA sequencing has led to an increase in available gene expression data. How to manage and store this data is becoming a key issue. In response we have developed EXP-PAC, a web based software package for storage, management and analysis of gene expression and sequence data. Unique to this package is SQL based querying of gene expression data sets, distributed normalization of raw gene expression data and analysis of gene expression data across experiments and species. This package has been populated with lactation data in the international milk genomic consortium web portal (http://milkgenomics.org/). Source code is also available which can be hosted on a Windows, Linux or Mac APACHE server connected to a private or public network (http://mamsap.it.deakin.edu.au/~pcc/Release/EXP_PAC.html).
Collapse
Affiliation(s)
- Philip C Church
- School of Information Technology, Faculty of Science and Technology, Deakin University, Geelong VIC 3127, Australia.
| | | | | |
Collapse
|
38
|
Aydoğdu E, Katchy A, Tsouko E, Lin CY, Haldosén LA, Helguero L, Williams C. MicroRNA-regulated gene networks during mammary cell differentiation are associated with breast cancer. Carcinogenesis 2012; 33:1502-11. [PMID: 22562546 DOI: 10.1093/carcin/bgs161] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) play pivotal roles in stem cell biology, differentiation and oncogenesis and are of high interest as potential breast cancer therapeutics. However, their expression and function during normal mammary differentiation and in breast cancer remain to be elucidated. In order to identify which miRNAs are involved in mammary differentiation, we thoroughly investigated miRNA expression during functional differentiation of undifferentiated, stem cell-like, murine mammary cells using two different large-scale approaches followed by qPCR. Significant changes in expression of 21 miRNAs were observed in repeated rounds of mammary cell differentiation. The majority, including the miR-200 family and known tumor suppressor miRNAs, was upregulated during differentiation. Only four miRNAs, including oncomiR miR-17, were downregulated. Pathway analysis indicated complex interactions between regulated miRNA clusters and major pathways involved in differentiation, proliferation and stem cell maintenance. Comparisons with human breast cancer tumors showed the gene profile from the undifferentiated, stem-like stage clustered with that of poor-prognosis breast cancer. A common nominator in these groups was the E2F pathway, which was overrepresented among genes targeted by the differentiation-induced miRNAs. A subset of miRNAs could further discriminate between human non-cancer and breast cancer cell lines, and miR-200a/miR-200b, miR-146b and miR-148a were specifically downregulated in triple-negative breast cancer cells. We show that miR-200a/miR-200b can inhibit epithelial-mesenchymal transition (EMT)-characteristic morphological changes in undifferentiated, non-tumorigenic mammary cells. Our studies propose EphA2 as a novel and important target gene for miR-200a. In conclusion, we present evidentiary data on how miRNAs are involved in mammary cell differentiation and indicate their related roles in breast cancer.
Collapse
Affiliation(s)
- Eylem Aydoğdu
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
INTRODUCTION Cervical cancer is the second most common cancer affecting women worldwide. It is characterized by chromosomal aberrations and alteration in the expression levels of many cell cycle regulatory proteins. MYBL2 is a member of the MYB proto-oncogene family that encodes DNA binding proteins. These proteins are involved in cell proliferation and control of cellular differentiation. MATERIALS AND METHODS Four established cervical cancer cell lines were examined and compared with normal cervix using gene expression profiling and comparative genomic hybridization, and results were correlated to identify potential novel cervical cancer biomarkers. Results were validated using TaqMan polymerase chain reaction, and the potential role of MYBL2 as a clinical biomarker was then evaluated by immunohistochemistry on 30 tissue samples. RESULTS MYBL2 was found to be overexpressed in the cervical cancer cell lines by gene expression profiling, and this result was confirmed using TaqMan polymerase chain reaction. Analysis of comparative genomic hybridization data indicated that chromosome 20q13.1, which encodes the MYBL2 gene, was amplified in the human papillomavirus (HPV) type 16-positive CaSki and SiHa cell lines but not in the HPV-18-positive HeLa or HPV-negative C33A cell lines. DISCUSSION Although MYBL2 staining was predominantly absent in normal cervical epithelium, strong staining (score of 2 or 3) was identified in all cases of cervical intraepithelial neoplasia, cervical glandular intraepithelial neoplasia, and invasive cancer on immunohistochemistry. In addition, strong staining of a population of diffusely scattered single cells is identified. We postulate that these may represent so-called cancer stem-like cells.
Collapse
|
40
|
|
41
|
Hynes NE, Stoelzle T. Key signalling nodes in mammary gland development and cancer: Myc. Breast Cancer Res 2010; 11:210. [PMID: 19849814 PMCID: PMC2790850 DOI: 10.1186/bcr2406] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Myc has been intensely studied since its discovery more than 25 years ago. Insight has been gained into Myc's function in normal physiology, where its role appears to be organ specific, and in cancer where many mechanisms contribute to aberrant Myc expression. Numerous signals and pathways converge on Myc, which in turn acts on a continuously growing number of identified targets, via transcriptional and nontranscriptional mechanisms. This review will concentrate on Myc as a signaling mediator in the mammary gland, discussing its regulation and function during normal development, as well as its activation and roles in breast cancer.
Collapse
Affiliation(s)
- Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
42
|
Cancer stem cells in breast cancer and metastasis. Breast Cancer Res Treat 2009; 118:241-54. [DOI: 10.1007/s10549-009-0524-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/22/2009] [Indexed: 12/21/2022]
|