1
|
Population-Based Estimates of the Age-Specific Cumulative Risk of Breast Cancer for Pathogenic Variants in CHEK2: Findings from the Australian Breast Cancer Family Registry. Cancers (Basel) 2021; 13:cancers13061378. [PMID: 33803639 PMCID: PMC8003064 DOI: 10.3390/cancers13061378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/03/2023] Open
Abstract
Simple Summary It is well established that women who carry pathogenic CHEK2 variants have about a 3-fold increased risk of developing breast cancer. CHEK2 is now commonly included in genetic tests for breast cancer predisposition and increasingly used to inform the clinical management of women who are identified to carry pathogenic variants. Important information for counselling these women includes knowing how breast cancer risk, due to having a pathogenic variant in CHEK2, changes over a woman’s lifetime. This information is currently not well established. By conducting a population-based case-control-family study of pathogenic CHEK2 variants we aimed to provide this information and estimated the penetrance (age-specific cumulative risk) of breast cancer to be 18% (95% CI 11–30%) to age 60 years and 33% (95% CI 21–48%) to age 80 years. These findings provide new and important information for the clinical management of breast cancer risk for women carrying pathogenic variants in CHEK2. Abstract Case-control studies of breast cancer have consistently shown that pathogenic variants in CHEK2 are associated with about a 3-fold increased risk of breast cancer. Information about the recurrent protein-truncating variant CHEK2 c.1100delC dominates this estimate. There have been no formal estimates of age-specific cumulative risk of breast cancer for all CHEK2 pathogenic (including likely pathogenic) variants combined. We conducted a population-based case-control-family study of pathogenic CHEK2 variants (26 families, 1071 relatives) and estimated the age-specific cumulative risk of breast cancer using segregation analysis. The estimated hazard ratio for carriers of pathogenic CHEK2 variants (combined) was 4.9 (95% CI 2.5–9.5) relative to non-carriers. The HR for carriers of the CHEK2 c.1100delC variant was estimated to be 3.5 (95% CI 1.02–11.6) and the HR for carriers of all other CHEK2 variants combined was estimated to be 5.7 (95% CI 2.5–12.9). The age-specific cumulative risk of breast cancer was estimated to be 18% (95% CI 11–30%) and 33% (95% CI 21–48%) to age 60 and 80 years, respectively. These findings provide important information for the clinical management of breast cancer risk for women carrying pathogenic variants in CHEK2.
Collapse
|
2
|
Schmidt AY, Hansen TVO, Ahlborn LB, Jønson L, Yde CW, Nielsen FC. Next-Generation Sequencing-Based Detection of Germline Copy Number Variations in BRCA1/BRCA2: Validation of a One-Step Diagnostic Workflow. J Mol Diagn 2017; 19:809-816. [PMID: 28822785 DOI: 10.1016/j.jmoldx.2017.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/23/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Genetic testing of BRCA1/2 includes screening for single nucleotide variants and small insertions/deletions and for larger copy number variations (CNVs), primarily by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). With the advent of next-generation sequencing (NGS), it has become feasible to provide CNV information and sequence data using a single platform. We report the use of NGS gene panel sequencing on the Illumina MiSeq platform and JSI SeqPilot SeqNext software to call germline CNVs in BRCA1 and BRCA2. For validation 18 different BRCA1/BRCA2 CNVs previously identified by MLPA in 48 Danish breast and/or ovarian cancer families were analyzed. Moreover, 120 patient samples previously determined as negative for BRCA1/BRCA2 CNVs by MLPA were included in the analysis. Comparison of the NGS data with the data from MLPA revealed that the sensitivity was 100%, whereas the specificity was 95%. Taken together, this study validates a one-step bioinformatics work-flow to call germline BRCA1/2 CNVs using data obtained by NGS of a breast cancer gene panel. The work-flow represents a robust and easy-to-use method for full BRCA1/2 screening, which can be easily implemented in routine diagnostic testing and adapted to genes other than BRCA1/2.
Collapse
Affiliation(s)
- Ane Y Schmidt
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas V O Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lise B Ahlborn
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Jønson
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christina W Yde
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran 2016; 30:369. [PMID: 27493913 PMCID: PMC4972064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/22/2016] [Indexed: 11/08/2022] Open
Abstract
Many factors including genetic, environmental, and acquired are involved in breast cancer development across various societies. Among all of these factors in families with a history of breast cancer throughout several generations, genetics, like predisposing genes to develop this disease, should be considered more. Early detection of mutation carriers in these genes, in turn, can play an important role in its prevention. Because this disease has a high prevalence in half of the global population, female screening of reported mutations in predisposing genes, which have been seen in breast cancer patients, seems necessary. In this review, a number of mutations in two predisposing genes (BRCA1 and BRCA2) that occurred in patients with a family history was investigated. We studied published articles about mutations in genes predisposed to breast cancer between 2000 and 2015. We then summarized and classified reported mutations in these two genes to recommend some exons which have a high potential to mutate. According to previous studies, exons have been reported as most mutated exons presented in this article. Considering the large size and high cost of screening all exons in these two genes in patients with a family history, especially in developing countries, the results of this review article can be beneficial and helpful in the selection of exon to screen for patients with this disease.
Collapse
Affiliation(s)
- Amir Mehrgou
- 1 MSc Student, Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mansoureh Akouchekian
- 2 Assistant Professor, Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. , ,(Corresponding author) Assistant Professor, Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. ,
| |
Collapse
|
4
|
Second primary breast cancer in BRCA1 and BRCA2 mutation carriers: 10-year cumulative incidence in the Breast Cancer Family Registry. Breast Cancer Res Treat 2015; 151:653-60. [PMID: 25975955 DOI: 10.1007/s10549-015-3419-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
BReast CAncer genes 1 and 2 (BRCA1 and BRCA2) mutation carriers diagnosed with breast cancer are at increased risk of developing a second primary breast cancer. Data from high-risk clinics may be subject to different biases which can cause both over and underestimation of this risk. Using data from a large multi-institutional family registry we estimated the 10-year cumulative risk of second primary breast cancer including more complete testing information on family members. We prospectively followed 800 women diagnosed with breast cancer from the Breast Cancer Family Registry (BCFR) who were carriers of a BRCA1 or BRCA2 pathogenic mutation or a variant of unknown clinical significance. In order to limit survival and ascertainment bias, cases were limited to those diagnosed with a first primary breast cancer from 1994 to 2001 and enrolled in the BCFR within 3 years after their cancer diagnosis. We excluded women enrolled after being diagnosed with a second breast cancer. We calculated 10-year incidence of second primary breast cancers. The 10-year incidence of a second primary breast cancer was highest in BRCA1 mutation carriers (17 %; 95 % CI 11-25 %), with even higher estimates in those first diagnosed under the age of 40 (21 %; 95 % CI 13-34 %). Lower rates were found in BRCA2 mutation carriers (7 %; 95 % CI 3-15 %) and women with a variant of unknown clinical significance (6 %; 95 % CI 4-9 %). Whereas the cumulative 10-year incidence of second primary breast cancer is high in BRCA1 mutation carriers, the estimates in BRCA2 mutation carriers and women with variants of unknown clinical significance are similar to those reported in women with sporadic breast cancer.
Collapse
|
5
|
Dagan E, Gershoni-Baruch R, Kurolap A, Goldberg Y, Fried G. “I Do Not Want My Baby to Suffer as I Did”; Prenatal and Preimplantation Genetic Diagnosis for BRCA1/2 Mutations: A Case Report and Genetic Counseling Considerations. Genet Test Mol Biomarkers 2014; 18:461-6. [DOI: 10.1089/gtmb.2013.0513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Efrat Dagan
- Department of Nursing, University of Haifa, Haifa, Israel
- Institute of Human Genetics, Rambam Health Care Campus, Haifa, Israel
| | - Ruth Gershoni-Baruch
- Institute of Human Genetics, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Alina Kurolap
- Institute of Human Genetics, Rambam Health Care Campus, Haifa, Israel
| | - Yael Goldberg
- Obstetrics and Gynecological Ultrasound Unit, Carmel Medical Center, Haifa, Israel
| | - Georgeta Fried
- Ruth and Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
- Oncology Institute, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
6
|
Karami F, Mehdipour P. A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. BIOMED RESEARCH INTERNATIONAL 2013; 2013:928562. [PMID: 24312913 PMCID: PMC3838820 DOI: 10.1155/2013/928562] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 02/05/2023]
Abstract
Breast cancer (BC) is the most common cancer of women all over the world. BRCA1 and BRCA2 gene mutations comprise the most important genetic susceptibility of BC. Except for few common mutations, the spectrum of BRCA1 and BRCA2 mutations is heterogeneous in diverse populations. 185AGdel and 5382insC are the most important BRCA1 and BRCA2 alterations which have been encountered in most of the populations. After those Ashkenazi founder mutations, 300T>G also demonstrated sparse frequency in African American and European populations. This review affords quick access to the most frequent alterations among various populations which could be helpful in BRCA screening programs.
Collapse
Affiliation(s)
- Fatemeh Karami
- Department of Medical Genetics, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran
| | - Parvin Mehdipour
- Department of Medical Genetics, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran
- *Parvin Mehdipour:
| |
Collapse
|
7
|
Brewster BL, Rossiello F, French JD, Edwards SL, Wong M, Wronski A, Whiley P, Waddell N, Chen X, Bove B, Hopper JL, John EM, Andrulis I, Daly M, Volorio S, Bernard L, Peissel B, Manoukian S, Barile M, Pizzamiglio S, Verderio P, Spurdle AB, Radice P, Godwin AK, Southey MC, Brown MA, Peterlongo P. Identification of fifteen novel germline variants in the BRCA1 3'UTR reveals a variant in a breast cancer case that introduces a functional miR-103 target site. Hum Mutat 2012; 33:1665-75. [PMID: 22753153 DOI: 10.1002/humu.22159] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/20/2012] [Indexed: 01/05/2023]
Abstract
Mutations in the BRCA1 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intron-exon boundaries, precluding the identification of mutations in noncoding and untranslated regions (UTR). As 3'UTR mutations can influence cancer susceptibility by altering protein and microRNA (miRNA) binding regions, we screened the BRCA1 3'UTR for mutations in a large series of BRCA-mutation negative, population and clinic-based breast cancer cases, and controls. Fifteen novel BRCA1 3'UTR variants were identified, the majority of which were unique to either cases or controls. Using luciferase reporter assays, three variants found in cases, c.* 528G>C, c.* 718A>G, and c.* 1271T>C and four found in controls, c.* 309T>C, c.* 379G>A, c.* 823C>T, and c.* 264C>T, reduced 3'UTR activity (P < 0.02), whereas two variants found in cases, c.* 291C>T and c.* 1139G>T, increased 3'UTR activity (P < 0.01). Three case variants, c.* 718A>G, c.* 800T>C, and c.* 1340_1342delTGT, were predicted to create new miRNA binding sites and c.* 1340_1342delTGT caused a reduction (25%, P = 0.0007) in 3'UTR reporter activity when coexpressed with the predicted targeting miRNA, miR-103. This is the most comprehensive identification and analysis of BRCA1 3'UTR variants published to date.
Collapse
Affiliation(s)
- Brooke L Brewster
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Luo Y, Bolund L, Sørensen CB. Pig gene knockout by rAAV-mediated homologous recombination: comparison of BRCA1 gene knockout efficiency in Yucatan and Göttingen fibroblasts with slightly different target sequences. Transgenic Res 2011; 21:671-6. [PMID: 22020980 DOI: 10.1007/s11248-011-9563-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 09/19/2011] [Indexed: 12/30/2022]
Abstract
In this study, we compared the gene targeting efficiencies of two rAAV-BRCA1 KO targeting constructs in Yucatan and Göttingen minipig fibroblasts. The homology arms of the constructs consisted exclusively of exonic sequences amplified by PCR from Yucatan genomic DNA. The sequences were identical to those of the reference porcine genome of a Duroc sow (Ensembl Susscrofa 9) and the BRCA1 gene of the Landrace breed (NCBI acc. no. AB271921). Surprisingly, we found that the very efficient gene targeting observed for Yucatan fibroblasts (35% targeting efficiency) was completely absent using either of the two constructs in Göttingen fibroblasts. Sequencing of the relevant BRCA1 exon 11 region (~2 kb) in the Göttingen minipig revealed three single nucleotide differences in the sequence targeted by the left homology arm of the construct (0.3% of the bases) and three or seven in the two right homology regions (0.3 or 0.7% of the bases, respectively). Construction of a novel rAAV-BRCA1 targeting vector based on the Göttingen genomic DNA sequence re-established gene targeting although the efficiency was somewhat lower than that observed for Yucatan fibroblasts. These BRCA1 KO Göttingen fibroblast clones have been used as nuclear donor cells for somatic cell nuclear transfer to generate a Göttingen BRCA1 KO pig model as previously done with the Yucatan breed. The present study illustrates that even a few mismatches present in the homology arms of an efficient rAAV-targeting construct can completely abolish gene targeting by homologous recombination emphasizing the importance of using isogenic DNA even for creating targeting constructs consisting of exon sequences only.
Collapse
Affiliation(s)
- Yonglun Luo
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark,
| | | | | |
Collapse
|