1
|
Kamalabadi-Farahani M, Kia V, Dylami S, Atashi A. Integrins linked kinase and focal adhesion kinase as the key signaling mediators of vascular mimicry in metastatic breast tumor cells. BMC Res Notes 2024; 17:282. [PMID: 39354559 PMCID: PMC11445843 DOI: 10.1186/s13104-024-06953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVE In highly aggressive malignant cancers including breast cancer, vasculogenic mimicry (VM) is the potential of tumor cells to generate a vascular channel network for delivering blood to tumor cells. Detection of genes involved in this process is critical to designing targeted therapy against breast cancer metastasis. In this study, we evaluated the roles of FAK and ILK in the progression of VM in metastatic breast tumor cells. RESULTS Primary (4T1T), and highly metastatic (4T1B and 4T1L) breast tumor cells were isolated from cancerous mice. The potential of cancer cells to organize themselves into vascular-like structures (VM) has been evaluated with in vitro assessment. The expression of ILK and FAK were examined using real-time polymerase chain reaction. We confirmed the high ability of metastatic tumor cells in vascular-like structure formation. In molecular analysis, our data showed that ILK and FAK expression was significantly elevated in metastatic breast tumor cells. These results indicated that the higher potential of metastatic tumor cells in vascular-like structure formation may be related to higher expression of ILK and FAK. Analysis of molecular features of metastatic tumor cells could be utilized to create a targeted therapeutic strategy against metastasis in breast cancer.
Collapse
Affiliation(s)
| | - Vahid Kia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Sadegh Dylami
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
2
|
Osuala KO, Chalasani A, Aggarwal N, Ji K, Moin K. Paracrine Activation of STAT3 Drives GM-CSF Expression in Breast Carcinoma Cells, Generating a Symbiotic Signaling Network with Breast Carcinoma-Associated Fibroblasts. Cancers (Basel) 2024; 16:2910. [PMID: 39199680 PMCID: PMC11353178 DOI: 10.3390/cancers16162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 09/01/2024] Open
Abstract
This study evaluated the paracrine signaling between breast carcinoma-associated fibroblasts (CAFs) and breast cancer (BCa) cells. Resolving cell-cell communication in the BCa tumor microenvironment (TME) will aid the development of new therapeutics. Here, we utilized our patented TAME (tissue architecture and microenvironment engineering) 3D culture microphysiological system, which is a suitable pathomimetic avatar for the study of the BCa TME. We cultured in 3D BCa cells and CAFs either alone or together in cocultures and found that when cocultured, CAFs enhanced the invasive characteristics of tumor cells, as shown by increased proliferation and spread of tumor cells into the surrounding matrix. Secretome analysis from 3D cultures revealed a relatively high secretion of IL-6 by CAFs. A marked increase in the secretion of granulocyte macrophage-colony stimulating factor (GM-CSF) when carcinoma cells and CAFs were in coculture was also observed. We theorized that the CAF-secreted IL-6 functions in a paracrine manner to induce GM-CSF expression and secretion from carcinoma cells. This was confirmed by evaluating the activation of STAT3 and gene expression of GM-CSF in carcinoma cells exposed to CAF-conditioned media (CAF-CM). In addition, the treatment of CAFs with BCa cell-CM yielded a brief upregulation of GM-CSF followed by a marked decrease, indicating a tightly regulated control of GM-CSF in CAFs. Secretion of IL-6 from CAFs drives the activation of STAT3 in BCa cells, which in turn drives the expression and secretion of GM-CSF. As a result, CAFs exposed to BCa cell-secreted GM-CSF upregulate inflammation-associated genes such as IL-6, IL-6R and IL-8, thereby forming a positive feedback loop. We propose that the tight regulation of GM-CSF in CAFs may be a novel regulatory pathway to target for disrupting the CAF:BCa cell symbiotic relationship. These data provide yet another piece of the cell-cell communication network governing the BCa TME.
Collapse
Affiliation(s)
- Kingsley O. Osuala
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Twelve Biosciences Research & Development, Kalamazoo, MI 49009, USA
| | - Anita Chalasani
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| | - Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA;
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Kamiar Moin
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| |
Collapse
|
3
|
Navasatli SA, Vahdati SN, Arjmand TF, Mohammadi far M, Behboudi H. New insight into the role of the ADAM protease family in breast carcinoma progression. Heliyon 2024; 10:e24805. [PMID: 38317965 PMCID: PMC10839977 DOI: 10.1016/j.heliyon.2024.e24805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Protease and adhesion molecules play a very emphasized role in the occurrence or progression of metastasis in many types of cancers. In this context, a molecule that contains both protease and adhesion functions play a crucial role in metastasis. ADAMs (a disintegrin and metalloprotease) are molecules with this special characteristic. Recently, a lot of attention has been attracted to various ADAM molecules and researchers have tried to elucidate the role of ADAMs in breast cancer occurrence and progression. Disrupting ADAMs protease and adhesion capabilities can lead to the discovery of worthy therapeutic targets in breast cancer treatment. In this review, we intend to discuss the mechanism of action of various ADAM molecules, their relation to pathogenic processes of breast cancer, and their potential as possible targets for breast cancer treatment.
Collapse
Affiliation(s)
- Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Tahura Fayeghi Arjmand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Mohammadi far
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Basak M, Narisepalli S, Salunkhe SA, Tiwari S, Chitkara D, Mittal A. Macrophage derived Exosomal Docetaxel (Exo-DTX) for pro-metastasis suppression: QbD driven formulation development, validation, in-vitro and pharmacokinetic investigation. Eur J Pharm Biopharm 2024; 195:114175. [PMID: 38185191 DOI: 10.1016/j.ejpb.2024.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Exosomes, biogenic nano-vesicles, are renowned for their ability to encapsulate diverse payloads, however the systematic development and validation of exosomal formulation with significant biological implications have been overlooked. Herein, we developed and validated Exo-DTX, a QbD-driven optimized RAW 264.7 cell derived exosomal anti-cancer formulation of docetaxel (DTX) and evaluate its anti-metastatic and apoptotic efficacy in TNBC 4T1 cells. RAW264.7-derived exosomes were having particle size (112.5 ± 21.48 nm) and zeta-potential (-10.268 ± 3.66 mV) with polydispersity (PDI:0.256 ± 0.03). The statistical optimization of exosomes (200 μg) with Exo: DTX ratio 4:1 confirmed encapsulation of 23.60 ± 1.54 ng DTX/ µg exosomes. Exo-DTX (∼189 nm, -11.03 mV) with 100 ng/ml DTX as payload exhibited ∼5 folds' improvement in IC50 of DTX and distinct cytoskeletal deformation in TNBC 4T1 cells. It also has shown enormous Filamentous actin (F-actin) degradation and triggered apoptosis explained Exo-DTX's effective anti-migratory impact with just 2.6 ± 6.33 % wound closure and 4.56 ± 1.38 % invasion. The western blot confirmed that Exo-DTX downregulated migratory protein EGFR and β1-integrin but raised cleaved caspase 3/caspase 3 (CC3/C3) ratio and BAX/BCL-2 ratio by about 2.70 and 4.04 folds respectively. The naive RAW 264.7 exosomes also contributed positively towards the effect of Exo-DTX formulation by suppressing β1-integrin expression and increasing the CC3/C3 ratio in TNBC 4T1 cells as well. Additionally, significant improvement in PK parameters of Exo-DTX was observed in comparison to Taxotere, 6-folds and 3.04-folds improved t1/2 and Vd, proving the translational value of Exo-DTX formulation. Thus, the Exo-DTX so formulated proved beneficial in controlling the aggressiveness of TNBC wherein, naive exosomes also demonstrated beneficial synergistic anti-proliferative effect in 4T1.
Collapse
Affiliation(s)
- Moumita Basak
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Saibhargav Narisepalli
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Shubham A Salunkhe
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Swasti Tiwari
- Molecular Medicine and Biotechnology Division, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India.
| |
Collapse
|
5
|
Javid H, Oryani MA, Rezagholinejad N, Esparham A, Tajaldini M, Karimi‐Shahri M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med 2024; 13:e6800. [PMID: 38349028 PMCID: PMC10832341 DOI: 10.1002/cam4.6800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024] Open
Abstract
RGD peptide can be found in cell adhesion and signaling proteins, such as fibronectin, vitronectin, and fibrinogen. RGD peptides' principal function is to facilitate cell adhesion by interacting with integrin receptors on the cell surface. They have been intensively researched for use in biotechnology and medicine, including incorporation into biomaterials, conjugation to medicinal molecules or nanoparticles, and labeling with imaging agents. RGD peptides can be utilized to specifically target cancer cells and the tumor vasculature by engaging with these integrins, improving drug delivery efficiency and minimizing adverse effects on healthy tissues. RGD-functionalized drug carriers are a viable option for cancer therapy as this focused approach has demonstrated promise in the future. Writing a review on the RGD peptide can significantly influence how drugs are developed in the future by improving our understanding of the peptide, finding knowledge gaps, fostering innovation, and making drug design easier.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory SciencesVarastegan Institute for Medical SciencesMashhadIran
- Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Esparham
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research CenterGolestan University of Medical SciencesGorganIran
| | - Mehdi Karimi‐Shahri
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Pathology, School of MedicineGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
6
|
Mieczkowski K, Popeda M, Lesniak D, Sadej R, Kitowska K. FGFR2 Controls Growth, Adhesion and Migration of Nontumorigenic Human Mammary Epithelial Cells by Regulation of Integrin β1 Degradation. J Mammary Gland Biol Neoplasia 2023; 28:9. [PMID: 37191822 DOI: 10.1007/s10911-023-09537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The role of fibroblast growth factor receptor 2 (FGFR2), an important mediator of stromal paracrine and autocrine signals, in mammary gland morphogenesis and breast cancer has been extensively studied over the last years. However, the function of FGFR2 signalling in the initiation of mammary epithelial oncogenic transformation remains elusive. Here, FGFR2-dependent behaviour of nontumorigenic model of mammary epithelial cells was studied. In vitro analyses demonstrated that FGFR2 regulates epithelial cell communication with extracellular matrix (ECM) proteins. Silencing of FGFR2 significantly changed the phenotype of cell colonies in three-dimensional cultures, decreased integrins α2, α5 and β1 protein levels and affected integrin-driven processes, such as cell adhesion and migration. More detailed analysis revealed the FGFR2 knock-down-induced proteasomal degradation of integrin β1. Analysis of RNA-seq databases showed significantly decreased FGFR2 and ITGB1 mRNA levels in breast tumour samples, when compared to non-transformed tissues. Additionally, high risk healthy individuals were found to have disrupted correlation profiles of genes associated with FGFR2 and integrin signalling, cell adhesion/migration and ECM remodelling. Taken together, our results strongly suggest that FGFR2 loss with concomitant integrin β1 degradation is responsible for deregulation of epithelial cell-ECM interactions and this process may play an important role in the initiation of mammary gland epithelial tumorigenesis.
Collapse
Affiliation(s)
- Kamil Mieczkowski
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Marta Popeda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Dagmara Lesniak
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Kamila Kitowska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
7
|
Das S, Kundu M, Hassan A, Parekh A, Jena BC, Mundre S, Banerjee I, Yetirajam R, Das CK, Pradhan AK, Das SK, Emdad L, Mitra P, Fisher PB, Mandal M. A novel computational predictive biological approach distinguishes Integrin β1 as a salient biomarker for breast cancer chemoresistance. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166702. [PMID: 37044238 DOI: 10.1016/j.bbadis.2023.166702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chemoresistance is a primary cause of breast cancer treatment failure, and protein-protein interactions significantly contribute to chemoresistance during different stages of breast cancer progression. In pursuit of novel biomarkers and relevant protein-protein interactions occurring during the emergence of breast cancer chemoresistance, we used a computational predictive biological (CPB) approach. CPB identified associations of adhesion molecules with proteins connected with different breast cancer proteins associated with chemoresistance. This approach identified an association of Integrin β1 (ITGB1) with chemoresistance and breast cancer stem cell markers. ITGB1 activated the Focal Adhesion Kinase (FAK) pathway promoting invasion, migration, and chemoresistance in breast cancer by upregulating Erk phosphorylation. FAK also activated Wnt/Sox2 signaling, which enhanced self-renewal in breast cancer. Activation of the FAK pathway by ITGB1 represents a novel mechanism linked to breast cancer chemoresistance, which may lead to novel therapies capable of blocking breast cancer progression by intervening in ITGB1-regulated signaling pathways.
Collapse
Affiliation(s)
- Subhayan Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Moumita Kundu
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Atif Hassan
- Department of Computer Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Aditya Parekh
- Anant National University, Ahmedabad, Gujarat, India
| | - Bikash Ch Jena
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Swati Mundre
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Indranil Banerjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; School of Pharmacy, Sister Nivedita University (Techno India Group), Kolkata, West Bengal, India
| | - Rajesh Yetirajam
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Chandan K Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Pralay Mitra
- Department of Computer Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
8
|
Bao L, Festa F, Hirschler-Laszkiewicz I, Keefer K, Wang HG, Cheung JY, Miller BA. The human ion channel TRPM2 modulates migration and invasion in neuroblastoma through regulation of integrin expression. Sci Rep 2022; 12:20544. [PMID: 36446940 PMCID: PMC9709080 DOI: 10.1038/s41598-022-25138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Transient receptor potential channel TRPM2 is highly expressed in many cancers and involved in regulation of key physiological processes including mitochondrial function, bioenergetics, and oxidative stress. In Stage 4 non-MYCN amplified neuroblastoma patients, high TRPM2 expression is associated with worse outcome. Here, neuroblastoma cells with high TRPM2 expression demonstrated increased migration and invasion capability. RNA sequencing, RT-qPCR, and Western blotting demonstrated that the mechanism involved significantly greater expression of integrins α1, αv, β1, and β5 in cells with high TRPM2 expression. Transcription factors HIF-1α, E2F1, and FOXM1, which bind promoter/enhancer regions of these integrins, were increased in cells with high TRPM2 expression. Subcellular fractionation confirmed high levels of α1, αv, and β1 membrane localization and co-immunoprecipitation confirmed the presence of α1β1, αvβ1, and αvβ5 complexes. Inhibitors of α1β1, αvβ1, and αvβ5 complexes significantly reduced migration and invasion in cells highly expressing TRPM2, confirming their functional role. Increased pAktSer473 and pERKThr202/Tyr204, which promote migration through mechanisms including integrin activation, were found in cells highly expressing TRPM2. TRPM2 promotes migration and invasion in neuroblastoma cells with high TRPM2 expression through modulation of integrins together with enhancing cell survival, negatively affecting patient outcome and providing rationale for TRPM2 inhibition in anti-neoplastic therapy.
Collapse
Affiliation(s)
- Lei Bao
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Fernanda Festa
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Iwona Hirschler-Laszkiewicz
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Kerry Keefer
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Hong-Gang Wang
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Departments of Pharmacology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| | - Joseph Y. Cheung
- grid.62560.370000 0004 0378 8294Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Barbara A. Miller
- grid.29857.310000 0001 2097 4281Departments of Pediatrics, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033 USA
| |
Collapse
|
9
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev 2022; 14:517-543. [PMID: 35528034 PMCID: PMC9043145 DOI: 10.1007/s12551-022-00944-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the presence of mechanical factors have led to the organ-on-a-chip platforms. Moreover, microfluidic systems have also been exploited for capturing and characterization of circulating tumor cells (CTCs) that provide crucial information on the metastatic behavior of a tumor. We present a comprehensive review of the recent developments in the application of microfluidics-based systems for analysis and understanding of the metastasis cascade from a wider perspective.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Leyla Kermanshah
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Abouali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hanieh Mohammad Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Yari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
11
|
Baiula M, Cirillo M, Martelli G, Giraldi V, Gasparini E, Anelli AC, Spampinato SM, Giacomini D. Selective Integrin Ligands Promote Cell Internalization of the Antineoplastic Agent Fluorouracil. ACS Pharmacol Transl Sci 2021; 4:1528-1542. [PMID: 34661072 PMCID: PMC8506610 DOI: 10.1021/acsptsci.1c00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 02/08/2023]
Abstract
Drug conjugates consisting of an antineoplastic drug and a targeting receptor ligand could be effective to overcome the heavy side effects of unselective anticancer agents. To address this need, we report here the results of a project aimed to study agonist and antagonist integrin ligands as targeting head of molecular cargoes for the selective delivery of 5-fluorouracil (5-FU) to cancer or noncancer cells. Initially, two fluorescent β-lactam-based integrin ligands were synthesized and tested for an effective and selective internalization mediated by α4β1 or α5β1 integrins in Jurkat and K562 cells, respectively. No cellular uptake was observed for both fluorescent compounds in HEK293 noncancerous control cells. Afterward, three conjugates composed of the β-lactam-based integrin ligand, suitable linkers, and 5-FU were realized. The best compound E, acting as α5β1 integrin agonist, is able to selectively deliver 5-FU into tumor cells, successfully leading to cancer cell death.
Collapse
Affiliation(s)
- Monica Baiula
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Martina Cirillo
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Martelli
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | - Elisa Gasparini
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | - Santi Mario Spampinato
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Daria Giacomini
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
12
|
Chen H, Luo T, He S, Sa G. Regulatory mechanism of oral mucosal rete peg formation. J Mol Histol 2021; 52:859-868. [PMID: 34463917 DOI: 10.1007/s10735-021-10016-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/26/2021] [Indexed: 01/17/2023]
Abstract
Rete pegs are finger-like structures that are formed during the development and wound healing process of the skin and oral mucosa, and they provide better mechanical resistance and nutritional supply between the epithelium and dermis. An increasing number of studies have shown that rete pegs have physiological functions, such as resisting bacterial invasion, body fluid loss, and other harmful changes, which indicate that rete pegs are important structures in natural skin and oral mucosa. Although a great deal of progress has been made in scaffold materials and construction methods for tissue-engineered skin and oral mucosa in recent years, construction of the oral mucosa with functional rete pegs remains a major challenge. In this review, we summarized current research on the progress on formation of rete pegs in human oral mucosa as well as its molecular basis and regulatory mechanism, which might provide new ideas for functional construction of tissue-engineered skin and oral mucosa.
Collapse
Affiliation(s)
- Heng Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Tianhao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Sangang He
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
| | - Guoliang Sa
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
| |
Collapse
|
13
|
Liu H, Wang H, Chen D, Gu C, Huang J, Mi K. Endoplasmic reticulum stress inhibits 3D Matrigel-induced vasculogenic mimicry of breast cancer cells via TGF-β1/Smad2/3 and β-catenin signaling. FEBS Open Bio 2021; 11:2607-2618. [PMID: 34320274 PMCID: PMC8409287 DOI: 10.1002/2211-5463.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/21/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular stress condition involving disturbance in the folding capacity of the ER caused by endogenous and exogenous factors. ER stress signaling pathways affect tumor malignant growth, angiogenesis and progression, and promote the antitumor effects of certain drugs. However, the impact of ER stress on the vasculogenic mimicry (VM) phenotype of cancer cells has not been well addressed. VM is a phenotype that mimics vasculogenesis by forming patterned tubular networks, which are related to stemness and aggressive behaviors of cancer cells. In this study, we used tunicamycin (TM), the unfolded protein response (UPR)-activating agent, to induce ER stress in aggressive triple-negative MDA-MB-231 breast cancer cells, which exhibit a VM phenotype in 3D Matrigel cultures. TM-induced ER stress was able to inhibit the VM phenotype. In addition to the tumor spheroid phenotype observed upon inhibiting the VM phenotype, we observed alterations in glycosylation of integrin β1, loss of VE-cadherin and a decrease in stem cell marker Bmi-1. Further study revealed decreased activated transforming growth factor β1, Smad2/3, Phospho-Smad2 and β-catenin. β-Catenin knockdown markedly inhibited the VM phenotype and resulted in the loss of VE-cadherin. The data suggest that the activation of ER stress inhibited VM phenotype formation of breast cancer cells via both the transforming growth factor β1/Smad2/3 and β-catenin signaling pathways. The discovery of prospective regulatory mechanisms involved in ER stress and VM in breast cancer could lead to more precisely targeted therapies that inhibit vessel formation and affect tumor progression.
Collapse
Affiliation(s)
- Huifen Liu
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hao Wang
- Breast SurgerySichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Dan Chen
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cuirong Gu
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jianming Huang
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Kun Mi
- Radiation Oncology Key Laboratory of Sichuan ProvinceSichuan Cancer Hospital & InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
14
|
Sencan S, Tanriover M, Ulasli M, Karakas D, Ozpolat B. UV radiation resistance-associated gene (UVRAG) promotes cell proliferation, migration, invasion by regulating cyclin-dependent kinases (CDK) and integrin-β/Src signaling in breast cancer cells. Mol Cell Biochem 2021; 476:2075-2084. [PMID: 33515382 DOI: 10.1007/s11010-021-04063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023]
Abstract
Breast cancer is a highly heterogeneous group of human cancer with distinct genetic, biological and clinicopathological features. Triple-negative breast cancer (TNBC) is the most aggressive and metastatic type of breast cancer and associated with poor patient survival. However, the role of UV Radiation Resistance-Associated Gene (UVRAG) in TNBC remains unknown. Here, we report that UVRAG is highly upregulated in all TNBC cells and its knockdown leads to the inhibition of cell proliferation, colony formation and progression of cell cycle, which is associated with and reduced expression of cell cycle related protein expression, including Cyclin A2, B1, D1, cdc2 and cdk6 in TNBC cells. Inhibition of UVRAG also suppressed cell motility, migration and invasion of TNBC cells by inhibition of Integrin β1 and β3 and Src activity. Our findings suggest for the first time that UVRAG expression contributes to proliferation, cell cycle progression, motility/migration and invasion of TNBC cells. Thus, targeting UVRAG could be a potential strategy in breast cancer especially against TNBC.
Collapse
Affiliation(s)
- Sevide Sencan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA.,Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mine Tanriover
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Mustafa Ulasli
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Didem Karakas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA. .,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Hou J, Yan D, Liu Y, Huang P, Cui H. The Roles of Integrin α5β1 in Human Cancer. Onco Targets Ther 2020; 13:13329-13344. [PMID: 33408483 PMCID: PMC7781020 DOI: 10.2147/ott.s273803] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cell adhesion to the extracellular matrix has important roles in tissue integrity and human health. Integrins are heterodimeric cell surface receptors that are composed by two non-covalently linked alpha and beta subunits that mainly participate in the interaction of cell-cell adhesion and cell-extracellular matrix and regulate cell motility, adhesion, differentiation, migration, proliferation, etc. In mammals, there have been eighteen α subunits and 8 β subunits and so far 24 distinct types of αβ integrin heterodimers have been identified in humans. Integrin α5β1, also known as the fibronectin receptor, is a heterodimer with α5 and β1 subunits and has emerged as an essential mediator in many human carcinomas. Integrin α5β1 alteration is closely linked to the progression of several types of human cancers, including cell proliferation, angiogenesis, tumor metastasis, and cancerogenesis. In this review, we will introduce the functions of integrin α5β1 in cancer progression and also explore its regulatory mechanisms. Additionally, the potential clinical applications as a target for cancer imaging and therapy are discussed. Collectively, the information reviewed here may increase the understanding of integrin α5β1 as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Du Yan
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400716, People's Republic of China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| |
Collapse
|
16
|
Zondler L, Herich S, Kotte P, Körner K, Schneider-Hohendorf T, Wiendl H, Schwab N, Zarbock A. MCAM/CD146 Signaling via PLCγ1 Leads to Activation of β 1-Integrins in Memory T-Cells Resulting in Increased Brain Infiltration. Front Immunol 2020; 11:599936. [PMID: 33381120 PMCID: PMC7767877 DOI: 10.3389/fimmu.2020.599936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis is a chronic auto-inflammatory disease of the central nervous system affecting patients worldwide. Neuroinflammation in multiple sclerosis is mainly driven by peripheral immune cells which invade the central nervous system and cause neurodegenerative inflammation. To enter the target tissue, immune cells have to overcome the endothelium and transmigrate into the tissue. Numerous molecules mediate this process and, as they determine the tissue invasiveness of immune cells, display great therapeutic potential. Melanoma cell adhesion molecule (MCAM) is a membrane-anchored glycoprotein expressed by a subset of T-cells and MCAM+ T-cells have been shown to contribute to neuroinflammation in multiple sclerosis. The role of the MCAM molecule for brain invasion, however, remained largely unknown. In order to investigate the role of the MCAM molecule on T-cells, we used different in vitro and in vivo assays, including ex vivo flow chambers, biochemistry and microscopy experiments of the mouse brain. We demonstrate that MCAM directly mediates adhesion and that the engagement of MCAM induces intracellular signaling leading to β1-integrin activation on human T-cells. Furthermore, we show that MCAM engagement triggers the phosphorylation of PLCγ1 which is required for integrin activation and thus amplification of the cellular adhesive potential. To confirm the physiological relevance of our findings in vivo, we demonstrate that MCAM plays an important role in T-cell recruitment into the mouse brain. In conclusion, our data demonstrate that MCAM expressed on T-cells acts as an adhesion molecule and a signaling receptor that may trigger β1-integrin activation via PLCγ1 upon engagement.
Collapse
Affiliation(s)
- Lisa Zondler
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Sebastian Herich
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Petra Kotte
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Katharina Körner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol 2020; 114:113-125. [PMID: 33187835 DOI: 10.1016/j.semcdb.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The mammary gland is dynamically remodelled during its postnatal development and the reproductive cycles. This inherent plasticity has been suggested to increase the susceptibility of the organ to carcinogenesis. Morphological changes in the mammary epithelium involve cell proliferation, differentiation, apoptosis, and migration which, in turn, are affected by cell adhesion to the extracellular matrix (ECM). Integrin adhesion receptors function in the sensing of the biochemical composition, patterning and mechanical properties of the ECM surrounding the cells, and strongly influence cell fate. This review aims to summarize the existing literature on how different aspects of integrin-mediated adhesion and mechanosensing, including ECM composition; stiffness and topography; integrin expression patterns; focal adhesion assembly; dynamic regulation of the actin cytoskeleton; and nuclear mechanotransduction affect mammary gland development, function and homeostasis. As the mechanical properties of a complex tissue environment are challenging to replicate in vitro, emphasis has been placed on studies conducted in vivo or using organoid models. Outright, these studies indicate that mechanosensing also contributes to the regulation of mammary gland morphogenesis in multiple ways.
Collapse
|
18
|
Cho Y, Yu SJ, Kim J, Ko UH, Park EY, Choung JS, Choi G, Kim D, Lee E, Im SG, Shin JH. Remodeling of Adhesion Network within Cancer Spheroids via Cell–Polymer Interaction. ACS Biomater Sci Eng 2020; 6:5632-5644. [DOI: 10.1021/acsbiomaterials.0c00977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seung Jung Yu
- KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jiwon Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ung Hyun Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Eun Young Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin Seung Choung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Goro Choi
- KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Daehyun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Eunjung Lee
- KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sung Gap Im
- KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Hasan M, Browne E, Guarinoni L, Darveau T, Hilton K, Witt-Enderby PA. Novel Melatonin, Estrogen, and Progesterone Hormone Therapy Demonstrates Anti-Cancer Actions in MCF-7 and MDA-MB-231 Breast Cancer Cells. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223420924634. [PMID: 32636633 PMCID: PMC7318814 DOI: 10.1177/1178223420924634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022]
Abstract
A novel melatonin, estrogen, and progesterone hormone therapy was developed as a safe bio-identical alternative hormone therapy for menopausal women based on the Women’s Health Initiative findings that PremPro™ increased breast cancer risk and mortality of all types of breast cancer in postmenopausal women. For HER2 breast cancer, melatonin, estrogen, and progesterone delayed tumor onset and reduced tumor incidence in neu female mice. For other breast cancers, its actions are unknown. In this study, melatonin, estrogen, and progesterone hormone therapy were assessed in human ER+ (MCF-7) and triple negative breast cancer (MDA-MB-231) cells, and found to decrease proliferation and migration of both breast cancer lines. Inhibition of MEK1/2 and 5 using PD98059 and BIX02189, respectively, inhibited proliferation and migration in MDA-MB-231 cells and proliferation in MCF-7 cells; however, when combined with melatonin, estrogen, and progesterone, BIX02189 blocked melatonin, estrogen, and progesterone–mediated inhibition of migration in MCF-7 cells and induced Elf-5. For MDA-MB-231 cells, BIX02189 combined with melatonin, estrogen, and progesterone inhibited proliferation and increased pERK1/2 and β1-INTEGRIN; levels of pERK5 remained low/nearly absent in both breast cancer lines. These findings demonstrate novel anti-cancer actions of melatonin, estrogen, and progesterone in ER+ and triple negative breast cancer cells through intricate MEK1/2- and MEK5-associated signaling cascades that favor anti-proliferation and anti-migration.
Collapse
Affiliation(s)
- Mahmud Hasan
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Erin Browne
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Laura Guarinoni
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Travis Darveau
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Katherine Hilton
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Bayer SV, Grither WR, Brenot A, Hwang PY, Barcus CE, Ernst M, Pence P, Walter C, Pathak A, Longmore GD. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. eLife 2019; 8:45508. [PMID: 31144616 PMCID: PMC6555593 DOI: 10.7554/elife.45508] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Biomechanical changes in the tumor microenvironment influence tumor progression and metastases. Collagen content and fiber organization within the tumor stroma are major contributors to biomechanical changes (e., tumor stiffness) and correlated with tumor aggressiveness and outcome. What signals and in what cells control collagen organization within the tumors, and how, is not fully understood. We show in mouse breast tumors that the action of the collagen receptor DDR2 in CAFs controls tumor stiffness by reorganizing collagen fibers specifically at the tumor-stromal boundary. These changes were associated with lung metastases. The action of DDR2 in mouse and human CAFs, and tumors in vivo, was found to influence mechanotransduction by controlling full collagen-binding integrin activation via Rap1-mediated Talin1 and Kindlin2 recruitment. The action of DDR2 in tumor CAFs is thus critical for remodeling collagen fibers at the tumor-stromal boundary to generate a physically permissive tumor microenvironment for tumor cell invasion and metastases.
Collapse
Affiliation(s)
- Samantha Vh Bayer
- ICCE Institute, Washington University, St Louis, United States.,Department of Cell Biology and Physiology, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| | - Whitney R Grither
- ICCE Institute, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States.,Department of Biochemistry, Washington University, St Louis, United States
| | - Audrey Brenot
- ICCE Institute, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| | - Priscilla Y Hwang
- ICCE Institute, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| | - Craig E Barcus
- ICCE Institute, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| | - Melanie Ernst
- ICCE Institute, Washington University, St Louis, United States.,Department of Biochemistry, Washington University, St Louis, United States
| | - Patrick Pence
- ICCE Institute, Washington University, St Louis, United States
| | - Christopher Walter
- Department of Mechanical Engineering, Washington University, St Louis, United States
| | - Amit Pathak
- Department of Mechanical Engineering, Washington University, St Louis, United States
| | - Gregory D Longmore
- ICCE Institute, Washington University, St Louis, United States.,Department of Cell Biology and Physiology, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| |
Collapse
|
21
|
Cruz da Silva E, Dontenwill M, Choulier L, Lehmann M. Role of Integrins in Resistance to Therapies Targeting Growth Factor Receptors in Cancer. Cancers (Basel) 2019; 11:cancers11050692. [PMID: 31109009 PMCID: PMC6562376 DOI: 10.3390/cancers11050692] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Integrins contribute to cancer progression and aggressiveness by activating intracellular signal transduction pathways and transducing mechanical tension forces. Remarkably, these adhesion receptors share common signaling networks with receptor tyrosine kinases (RTKs) and support their oncogenic activity, thereby promoting cancer cell proliferation, survival and invasion. During the last decade, preclinical studies have revealed that integrins play an important role in resistance to therapies targeting RTKs and their downstream pathways. A remarkable feature of integrins is their wide-ranging interconnection with RTKs, which helps cancer cells to adapt and better survive therapeutic treatments. In this context, we should consider not only the integrins expressed in cancer cells but also those expressed in stromal cells, since these can mechanically increase the rigidity of the tumor microenvironment and confer resistance to treatment. This review presents some of these mechanisms and outlines new treatment options for improving the efficacy of therapies targeting RTK signaling.
Collapse
Affiliation(s)
- Elisabete Cruz da Silva
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Monique Dontenwill
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Laurence Choulier
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Maxime Lehmann
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
22
|
Ramovs V, Secades P, Song JY, Thijssen B, Kreft M, Sonnenberg A. Absence of integrin α3β1 promotes the progression of HER2-driven breast cancer in vivo. Breast Cancer Res 2019; 21:63. [PMID: 31101121 PMCID: PMC6525362 DOI: 10.1186/s13058-019-1146-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HER2-driven breast cancer is correlated with poor prognosis, especially during its later stages. Numerous studies have shown the importance of the integrin α3β1 during the initiation and progression of breast cancer; however, its role in this disease is complex and often opposite during different stages and in different types of tumors. In this study, we aim to elucidate the role of integrin α3β1 in a genetically engineered mouse model of HER2-driven mammary tumorigenesis. METHODS To investigate the role of α3β1 in HER2-driven tumorigenesis in vivo, we generated a HER2-driven MMTV-cNeu mouse model of mammary tumorigenesis with targeted deletion of Itga3 (Itga3 KO mice). We have further used several established triple-negative and HER2-overexpressing human mammary carcinoma cell lines and generated ITGA3-knockout cells to investigate the role of α3β1 in vitro. Invasion of cells was assessed using Matrigel- and Matrigel/collagen I-coated Transwell assays under static or interstitial fluid flow conditions. The role of α3β1 in initial adhesion to laminin and collagen was assessed using adhesion assays and immunofluorescence. RESULTS Tumor onset in mice was independent of the presence of α3β1. In contrast, the depletion of α3β1 reduced the survival of mice and increased tumor growth and vascularization. Furthermore, Itga3 KO mice were significantly more likely to develop lung metastases and had an increased metastatic burden compared to WT mice. In vitro, the deletion of ITGA3 caused a significant increase in the cellular invasion of HER2-overexpressing SKBR3, AU565, and BT474 cells, but not of triple-negative MDA-MB-231. This invasion suppressing function of α3β1 in HER2-driven cells depended on the composition of the extracellular matrix and the interstitial fluid flow. CONCLUSION Downregulation of α3β1 in a HER2-driven mouse model and in HER2-overexpressing human mammary carcinoma cells promotes progression and invasiveness of tumors. The invasion-suppressive role of α3β1 was not observed in triple-negative mammary carcinoma cells, illustrating the tumor type-specific and complex function of α3β1 in breast cancer.
Collapse
Affiliation(s)
- Veronika Ramovs
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pablo Secades
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bram Thijssen
- Oncode Institute and Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Figueroa CD, Molina L, Bhoola KD, Ehrenfeld P. Overview of tissue kallikrein and kallikrein-related peptidases in breast cancer. Biol Chem 2019; 399:937-957. [PMID: 29885274 DOI: 10.1515/hsz-2018-0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
The kallikrein family comprises tissue kallikrein and 14 kallikrein-related peptidases (KLKs) recognized as a subgroup of secreted trypsin- or chymotrypsin-like serine proteases. KLKs are expressed in many cellular types where they regulate important physiological activities such as semen liquefaction, immune response, neural development, blood pressure, skin desquamation and tooth enamel formation. Tissue kallikrein, the oldest member and kinin-releasing enzyme, and KLK3/PSA, a tumor biomarker for prostate cancer are the most prominent components of the family. Additionally, other KLKs have shown an abnormal expression in neoplasia, particularly in breast cancer. Thus, increased levels of some KLKs may increase extracellular matrix degradation, invasion and metastasis; other KLKs modulate cell growth, survival and angiogenesis. On the contrary, KLKs can also inhibit angiogenesis and produce tumor suppression. However, there is a lack of knowledge on how KLKs are regulated in tumor microenvironment by molecules present at the site, namely cytokines, inflammatory mediators and growth factors. Little is known about the signaling pathways that control expression/secretion of KLKs in breast cancer, and further how activation of PAR receptors may contribute to functional activity in neoplasia. A better understanding of these molecular events will allow us to consider KLKs as relevant therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Department of Science, Universidad San Sebastián, sede De la Patagonia, Puerto Montt, Chile
| | - Kanti D Bhoola
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Centro de Investigaciones del Sistema Nervioso (CISNe), Valdivia, Chile, e-mail:
| |
Collapse
|
24
|
Jandrey EHF, Moura RP, Andrade LNS, Machado CL, Campesato LF, Leite KRM, Inoue LT, Asprino PF, da Silva APM, de Barros ACSD, Carvalho A, de Lima VC, Carraro DM, Brentani HP, da Cunha IW, Soares FA, Parmigiani RB, Chammas R, Camargo AA, Costa ÉT. NDRG4 promoter hypermethylation is a mechanistic biomarker associated with metastatic progression in breast cancer patients. NPJ Breast Cancer 2019; 5:11. [PMID: 30963110 PMCID: PMC6450950 DOI: 10.1038/s41523-019-0106-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/11/2019] [Indexed: 01/27/2023] Open
Abstract
The risk of developing metastatic disease in breast cancer patients is traditionally predictable based on the number of positive axillary lymph nodes, complemented with additional clinicopathological factors. However, since lymph node-negative patients have a 20-30% probability of developing metastatic disease, lymph node information alone is insufficient to accurately assess individual risk. Molecular approaches, such as multigene expression panels, analyze a set of cancer-related genes that more accurately predict the early risk of metastasis and the treatment response. Here, we present N-Myc downstream-regulated gene 4 (NDRG4) epigenetic silencing as a mechanistic biomarker of metastasis in ductal invasive breast tumors. While aberrant NDRG4 DNA hypermethylation is significantly associated with the development of metastatic disease, downregulation of NDRG4 transcription and protein expression is functionally associated with enhanced lymph node adhesion and cell mobility. Here, we show that epigenetic silencing of NDRG4 modulates integrin signaling by assembling β1-integrins into large punctate clusters at the leading edge of tumor cells to promote an "adhesive switch," decreasing cell adhesion to fibronectin and increasing cell adhesion and migration towards vitronectin, an important component of human lymph nodes. Taken together, our functional and clinical observations suggest that NDRG4 is a potential mechanistic biomarker in breast cancer that is functionally associated with metastatic disease.
Collapse
Affiliation(s)
| | | | - Luciana N. S. Andrade
- Laboratório de Oncologia Experimental, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP Brazil
| | - Camila L. Machado
- Laboratório de Oncologia Experimental, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP Brazil
| | | | | | - Lilian T. Inoue
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP Brazil
| | - Paula F. Asprino
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP Brazil
| | | | | | | | - Vladmir C. de Lima
- Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Fundação Antônio Prudente, São Paulo, SP Brazil
| | - Dirce M. Carraro
- Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Fundação Antônio Prudente, São Paulo, SP Brazil
| | - Helena P. Brentani
- LIM23-Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | | | | - Roger Chammas
- Laboratório de Oncologia Experimental, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP Brazil
| | - Anamaria A. Camargo
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP Brazil
- Ludwig Institute for Cancer Research (LICR), São Paulo, Brazil
| | - Érico T. Costa
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP Brazil
- Ludwig Institute for Cancer Research (LICR), São Paulo, Brazil
| |
Collapse
|
25
|
ADAM8 in invasive cancers: links to tumor progression, metastasis, and chemoresistance. Clin Sci (Lond) 2019; 133:83-99. [PMID: 30635388 DOI: 10.1042/cs20180906] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022]
Abstract
Ectodomain shedding of extracellular and membrane proteins is of fundamental importance for cell-cell communication in neoplasias. A Disintegrin And Metalloproteinase (ADAM) proteases constitute a family of multifunctional, membrane-bound proteins with traditional sheddase functions. Their protumorigenic potential has been attributed to both, essential (ADAM10 and ADAM17) and 'dispensable' ADAM proteases (ADAM8, 9, 12, 15, and 19). Of specific interest in this review is the ADAM proteinase ADAM8 that has been identified as a significant player in aggressive malignancies including breast, pancreatic, and brain cancer. High expression levels of ADAM8 are associated with invasiveness and predict a poor patient outcome, indicating a prognostic and diagnostic potential of ADAM8. Current knowledge of substrates and interaction partners gave rise to the hypothesis that ADAM8 dysregulation affects diverse processes in tumor biology, attributable to different functional cores of the multidomain enzyme. Proteolytic degradation of extracellular matrix (ECM) components, cleavage of cell surface proteins, and subsequent release of soluble ectodomains promote cancer progression via induction of angiogenesis and metastasis. Moreover, there is increasing evidence for significance of a non-proteolytic function of ADAM8. With the disintegrin (DIS) domain ADAM8 binds integrins such as β1 integrin, thereby activating integrin signaling pathways. The cytoplasmic domain is critical for that activation and involves focal adhesion kinase (FAK), extracellular regulated kinase (ERK1/2), and protein kinase B (AKT/PKB) signaling, further contributing to cancer progression and mediating chemoresistance against first-line therapies. This review highlights the remarkable effects of ADAM8 in tumor biology, concluding that pharmacological inhibition of ADAM8 represents a promising therapeutic approach not only for monotherapy, but also for combinatorial therapies.
Collapse
|
26
|
Stojanović N, Dekanić A, Paradžik M, Majhen D, Ferenčak K, Ruščić J, Bardak I, Supina C, Tomicic MT, Christmann M, Osmak M, Ambriović-Ristov A. Differential Effects of Integrin αv Knockdown and Cilengitide on Sensitization of Triple-Negative Breast Cancer and Melanoma Cells to Microtubule Poisons. Mol Pharmacol 2018; 94:1334-1351. [DOI: 10.1124/mol.118.113027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 01/03/2023] Open
|
27
|
Zhou Y, Zhang Y, He W, Wang J, Peng F, Huang L, Zhao S, Deng W. Rapid Regeneration and Reuse of Silica Columns from PCR Purification and Gel Extraction Kits. Sci Rep 2018; 8:12870. [PMID: 30150610 PMCID: PMC6110862 DOI: 10.1038/s41598-018-30316-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/24/2018] [Indexed: 11/29/2022] Open
Abstract
Silica columns from PCR purification and gel extraction kits are widely used in laboratories worldwide to assist in gene cloning. However, the use of these columns can generate plastic waste that has an environmental impact due to their one-off design and massive consumption. Thus, it is important to develop a novel method that can reduce the utilization of silica columns but not affect research efficiency. In this study, various chemical and nonchemical reagents were used to eliminate residual DNA within used columns from PCR purification and gel extraction kits. We show that phosphoric acid is the most effective reagent among those tested to remove DNA contamination from used columns. Columns regenerated using 1 M phosphoric acid have a DNA purification capability that is comparable to that of fresh columns. We demonstrate that silica columns can be regenerated and reused a minimum of five times. The lab-made buffers are compatible with the regenerated columns for DNA purification, and DNA that is prepared with the regenerated columns can be used for gene cloning without affecting the gene cloning efficiency. Thus, the use of this novel method greatly reduces the production of laboratory waste and benefits numerous laboratories worldwide.
Collapse
Affiliation(s)
- Ying Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yang Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wei He
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Feixia Peng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Liyun Huang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
28
|
Tharp KM, Weaver VM. Modeling Tissue Polarity in Context. J Mol Biol 2018; 430:3613-3628. [PMID: 30055167 DOI: 10.1016/j.jmb.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/27/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
Polarity is critical for development and tissue-specific function. However, the acquisition and maintenance of tissue polarity is context dependent. Thus, cell and tissue polarity depend on cell adhesion which is regulated by the cytoskeleton and influenced by the biochemical composition of the extracellular microenvironment and modified by biomechanical cues within the tissue. These biomechanical cues include fluid flow induced shear stresses, cell-density and confinement-mediated compression, and cellular actomyosin tension intrinsic to the tissue or induced in response to morphogens or extracellular matrix stiffness. Here, we discuss how extracellular matrix stiffness and fluid flow influence cell-cell and cell-extracellular matrix adhesion and alter cytoskeletal organization to modulate cell and tissue polarity. We describe model systems that when combined with state of the art molecular screens and high-resolution imaging can be used to investigate how force modulates cell and tissue polarity.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
29
|
Moritz MNDO, Eustáquio LMS, Micocci KC, Nunes ACC, Dos Santos PK, de Castro Vieira T, Selistre-de-Araujo HS. Alternagin-C binding to α 2β 1 integrin controls matrix metalloprotease-9 and matrix metalloprotease-2 in breast tumor cells and endothelial cells. J Venom Anim Toxins Incl Trop Dis 2018; 24:13. [PMID: 29713337 PMCID: PMC5917863 DOI: 10.1186/s40409-018-0150-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/05/2018] [Indexed: 01/17/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are key players in tumor progression, helping tumor cells to modify their microenvironment, which allows cell migration to secondary sites. The role of integrins, adhesion receptors that connect cells to the extracellular matrix, in MMP expression and activity has been previously suggested. However, the mechanisms by which integrins control MMP expression are not completely understood. Particularly, the role of α2β1 integrin, one of the major collagen I receptors, in MMP activity and expression has not been studied. Alternagin-C (ALT-C), a glutamate-cysteine-aspartate-disintegrin from Bothrops alternatus venom, has high affinity for an α2β1 integrin. Herein, we used ALT-C as a α2β1 integrin ligand to study the effect of ALT-C on MMP-9 and MMP-2 expression as well as on tumor cells, fibroblats and endothelial cell migration. Methods ALT-C was purified by two steps of gel filtration followed by anion exchange chromatography. The α2β1 integrin binding properties of ALT-C, its dissociation constant (Kd) relative to this integrin and to collagen I (Col I) were determined by surface plasmon resonance. The effects of ALT-C (10, 40, 100 and 1000 nM) in migration assays were studied using three human cell lines: human fibroblasts, breast tumor cell line MDA-MB-231, and microvascular endothelial cells HMEC-1, considering cells found in the tumor microenvironment. ALT-C effects on MMP-9 and MMP-2 expression and activity were analyzed by quantitative PCR and gelatin zymography, respectively. Focal adhesion kinase activation was determined by western blotting. Results Our data demonstrate that ALT-C, after binding to α2β1 integrin, acts by two distinct mechanisms against tumor progression, depending on the cell type: in tumor cells, ALT-C decreases MMP-9 and MMP-2 contents and activity, but increases focal adhesion kinase phosphorylation and transmigration; and in endothelial cells, ALT-C inhibits MMP-2, which is necessary for tumor angiogenesis. ALT-C also upregulates c-Myc mRNA level, which is related to tumor suppression. Conclusion These results demonstrate that α2β1 integrin controls MMP expression and reveal this integrin as a target for the development of antiangiogenic and antimetastatic therapies. Electronic supplementary material The online version of this article (10.1186/s40409-018-0150-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lívia Mara Santos Eustáquio
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Kelli Cristina Micocci
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Ana Carolina Caetano Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Patty Karina Dos Santos
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Tamires de Castro Vieira
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | | |
Collapse
|
30
|
Hong KS, Jeon EY, Chung SS, Kim KH, Lee RA. Epidermal growth factor-mediated Rab25 pathway regulates integrin β1 trafficking in colon cancer. Cancer Cell Int 2018. [PMID: 29515334 PMCID: PMC5836438 DOI: 10.1186/s12935-018-0526-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Integrins play a critical role in carcinogenesis. Integrin β1 localization is regulated by the guanosine-5′-triphosphate hydrolase Rab25 and integrin β1 levels are elevated in the serum of colon cancer patients; thus, the present study examined the effects of epidermal growth factor (EGF) and Rab25 on integrin β1 localization in colon cancer cells. Methods HCT116 human colon cancer cells were treated with increasing concentrations of EGF, and cell proliferation and protein expression were monitored by MTT and western blot analyses, respectively. Cell fractionation was performed to determine integrin β1 localization in the membrane and cytosol. Integrin β1 extracellular shedding was monitored by enzyme-linked immunosorbent assays (ELISAs) with culture supernatants from stimulated cells. HCT116 cells were transfected with Rab25-specific siRNA to determine the significance of Rab25 in integrin β1 trafficking in the presence of EGF. Results Total integrin β1 expression increased in response to EGF and subsequently decreased at 24 h post-stimulation. A similar decrease was observed in purified membrane fractions, whereas no changes were observed in cytosolic levels. ELISAs using media from stimulated cell cultures demonstrated increased integrin β1 levels corresponding to the decrease observed in membrane fractions, suggesting that EGF induces integrin receptor shedding. EGF stimulation in Rab25-knockdown cells resulted in integrin β1 accumulation in the membrane, suggesting that Rab25 promotes integrin endocytosis. Conclusions Integrin β1 is shed from colon cancer cells in response to EGF stimulation in a Rab25-dependent manner. These results further the present understanding of the role of integrin β1 in colon cancer progression.
Collapse
Affiliation(s)
- Kyung Sook Hong
- 1Department of Surgery and Critical Care Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Eun-Young Jeon
- 2Ewha Medical Research Institute, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Soon Sup Chung
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Kwang Ho Kim
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Ryung-Ah Lee
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget 2018; 7:48093-48106. [PMID: 27344177 PMCID: PMC5217003 DOI: 10.18632/oncotarget.10137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
32
|
MDA-9/Syntenin (SDCBP) modulates small GTPases RhoA and Cdc42 via transforming growth factor β1 to enhance epithelial-mesenchymal transition in breast cancer. Oncotarget 2018; 7:80175-80189. [PMID: 27863394 PMCID: PMC5348312 DOI: 10.18632/oncotarget.13373] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is one of the decisive steps regulating cancer invasion and metastasis. However, the molecular mechanisms underlying this transition require further clarification. MDA-9/syntenin (SDCBP) expression is elevated in breast cancer patient samples as well as cultured breast cancer cells. Silencing expression of MDA-9 in mesenchymal metastatic breast cancer cells triggered a change in cell morphology in both 2D- and 3D-cultures to a more epithelial-like phenotype, along with changes in EMT markers, cytoskeletal rearrangement and decreased invasion. Conversely, over expressing MDA-9 in epithelial non-metastatic breast cancer cells instigated a change in morphology to a more mesenchymal phenotype with corresponding changes in EMT markers, cytoskeletal rearrangement and an increase in invasion. We also found that MDA-9 upregulated active levels of known modulators of EMT, the small GTPases RhoA and Cdc42, via TGFβ1. Reintroducing TGFβ1 in MDA-9 silenced cells restored active RhoA and cdc42 levels, modulated cytoskeletal rearrangement and increased invasion. We further determined that MDA-9 interacts with TGFβ1 via its PDZ1 domain. Finally, in vivo studies demonstrated that silencing the expression of MDA-9 resulted in decreased lung metastasis and TGFβ1 re-expression partially restored lung metastases. Our findings provide evidence for the relevance of MDA-9 in mediating EMT in breast cancer and support the potential of MDA-9 as a therapeutic target against metastatic disease.
Collapse
|
33
|
Tian T, Li CL, Fu X, Wang SH, Lu J, Guo H, Yao Y, Nan KJ, Yang YJ. β1 integrin-mediated multicellular resistance in hepatocellular carcinoma through activation of the FAK/Akt pathway. J Int Med Res 2018; 46:1311-1325. [PMID: 29332411 PMCID: PMC6091828 DOI: 10.1177/0300060517740807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective To explore the role and mechanism of β1 integrin in the regulation of multicellular drug resistance in hepatocellular carcinoma (HCC). Methods This in vitro study used a liquid overlay technique to obtain multicellular spheroids of two human HCC cell lines, HepG2 and Bel-7402. The morphology of the spheroids was observed by optical and electron microscopy. The effects of exposure to 5-fluorouracil (5-FU) and cisplatin (CDDP) on cell proliferation and the induction of apoptosis were assessed in monolayer cells and multicellular spheroids. The levels of β1 integrin and the effects on the focal adhesion kinase (FAK)/protein kinase B (Akt) pathway were evaluated using Western blot analysis, immunofluorescence and flow cytometry. The role of β1 integrin was confirmed by using an inhibitory antibody. Results Cell proliferation inhibition and cell apoptosis induced by 5-FUl and CDDP were abrogated in multicellular spheroids compared with monolayer cells. There were high levels of β1 integrin in multicellular spheroids. β1 integrin inhibitory antibody prevented the formation of multicellular spheroids, coupled with a significant increase in proliferation inhibition and apoptosis induction. β1 integrin inhibitory antibody effectively suppressed activation of both FAK and Akt in multicellular spheroids. Conclusions β1 integrin mediated multicellular drug resistance through the FAK/Akt pathway in HCC spheroids.
Collapse
Affiliation(s)
- Tao Tian
- 1 Department of Oncology, 162799 First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Chun-Li Li
- 1 Department of Oncology, 162799 First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Xiao Fu
- 1 Department of Oncology, 162799 First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Shu-Hong Wang
- 1 Department of Oncology, 162799 First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Jun Lu
- 2 Clinical Research Centre, 162799 First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Hui Guo
- 1 Department of Oncology, 162799 First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Yu Yao
- 1 Department of Oncology, 162799 First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Ke-Jun Nan
- 1 Department of Oncology, 162799 First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi Province, China
| | - Yu-Juan Yang
- 3 Third Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
34
|
Velez DO, Tsui B, Goshia T, Chute CL, Han A, Carter H, Fraley SI. 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat Commun 2017; 8:1651. [PMID: 29162797 PMCID: PMC5698427 DOI: 10.1038/s41467-017-01556-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 09/29/2017] [Indexed: 12/31/2022] Open
Abstract
The topographical organization of collagen within the tumor microenvironment has been implicated in modulating cancer cell migration and independently predicts progression to metastasis. Here, we show that collagen matrices with small pores and short fibers, but not Matrigel, trigger a conserved transcriptional response and subsequent motility switch in cancer cells resulting in the formation of multicellular network structures. The response is not mediated by hypoxia, matrix stiffness, or bulk matrix density, but rather by matrix architecture-induced β1-integrin upregulation. The transcriptional module associated with network formation is enriched for migration and vasculogenesis-associated genes that predict survival in patient data across nine distinct tumor types. Evidence of this gene module at the protein level is found in patient tumor slices displaying a vasculogenic mimicry (VM) phenotype. Our findings link a collagen-induced migration program to VM and suggest that this process may be broadly relevant to metastatic progression in solid human cancers. Extracellular matrix plays a central role in driving cancer development. Here the authors using an in vitro approach show that confining collagen architectures induce fast and persistent cell migration and the formation of multicellular network structures linked to vascular mimicry observed in tumours from patients.
Collapse
Affiliation(s)
- D O Velez
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - B Tsui
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - T Goshia
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - C L Chute
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - A Han
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - H Carter
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - S I Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA. .,Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Veeravarmal V, Austin RD, Nagini S, Nassar MHM. Expression of β1integrin in normal epithelium, oral submucous fibrosis and oral squamous cell carcinoma. Pathol Res Pract 2017; 214:273-280. [PMID: 29113685 DOI: 10.1016/j.prp.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/02/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION AND AIMS The possible reason suggested for epithelial atrophy in oral submucous fibrosis (OSMF) is ischemia. Dysregulation in the epithelial proliferation and maturation is also thought to be a cause. The β1 integrin identifies the oral epithelial stem cells. The changes induced by the arecanut on these cells may result in epithelial alterations. The aim of this study is to evaluate the stem cells distribution and percentage by assessing the β1 integrin expression. MATERIALS AND METHODS The study included normal oral mucosa (15 cases) and disease group (97 cases). The disease group was further subdivided into early (29 cases), moderate (34 cases), advanced OSMF (18 cases) and oral squamous cell carcinoma(OSCC) associated with OSMF (16 cases). The tissues were stained for β1 integrin antibodies. The positive cells and staining intensities were analysed to determine the staining index, and statistically evaluated using KW test statistics. RESULTS β1 integrin was observed in retepegs region and the percentage of positive cells was 14%- 30% in the control. In OSMF, the β1 integrin positivity was observed in basal and suprabasal layers, and the percentage was ranged from 2%-71%. β1 integrin expression in OSCC was observed both in central and peripheral cells and ranged from 17%-85%. On comparison, the difference in staining index among normal, OSMF and carcinomas was significant at p<0.01. The stem cells percentage was increased both in OSMF and carcinomas. The non-dysplastic epithelium of OSMF with severe atrophy showed lowest percentage. It is inferred that absence of stem cells and proliferation may attribute for the atrophy.
Collapse
Affiliation(s)
- Veeran Veeravarmal
- Department of Oral and Maxillofacial Pathology, Rajah Muthaih Dental College and Hospital, Annamalai University, Annamalai Nagar, Chidhambaram, Tamil Nadu, India.
| | - Ravi David Austin
- Department of Oral Medicine and Radiology, Rajah Muthaih Dental College and Hospital, Annamalai University, Annamalai Nagar, Chidhambaram, Tamil Nadu, India.
| | - Siddavaram Nagini
- Department of Biochemistry and Bio-Technology, Annamalai University, Annamalai Nagar, India.
| | - Mohamed Hanifa Mohamed Nassar
- Department of Oral and Maxillofacial Pathology, Rajah Muthaih Dental College and Hospital, Annamalai University, Annamalai Nagar, Chidhambaram, Tamil Nadu, India.
| |
Collapse
|
36
|
Theret L, Jeanne A, Langlois B, Hachet C, David M, Khrestchatisky M, Devy J, Hervé E, Almagro S, Dedieu S. Identification of LRP-1 as an endocytosis and recycling receptor for β1-integrin in thyroid cancer cells. Oncotarget 2017; 8:78614-78632. [PMID: 29108253 PMCID: PMC5667986 DOI: 10.18632/oncotarget.20201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
LRP-1 is a large endocytic receptor mediating the clearance of various molecules from the extracellular matrix. LRP-1 was reported to control focal adhesion turnover to optimize the adhesion-deadhesion balance to support invasion. To better understand how LRP-1 coordinates cell-extracellular matrix interface, we explored its ability to regulate cell surface integrins in thyroid carcinomas. Using an antibody approach, we demonstrated that β1-integrin levels were increased at the plasma membrane under LRP1 silencing or upon RAP treatment, used as LRP-1 antagonist. Our data revealed that LRP-1 binds with both inactive and active β1-integrin conformations and identified the extracellular ligand-binding domains II or IV of LRP-1 as sufficient to bind β1-integrin. Using a recombinant β1-integrin, we demonstrated that LRP-1 acts as a regulator of β1-integrin intracellular traffic. Moreover, RAP or LRP-1 blocking antibodies decreased up to 36% the number of β1-integrin-containing endosomes. LRP-1 blockade did not significantly affect the levels of β1-integrin-containing lysosomes while decreasing localization of β1-integrin within Rab-11 positive vesicles. Overall, we identified an original molecular process in which LRP-1 acts as a main regulator of β1-integrin internalization and recycling in thyroid cancer cells.
Collapse
Affiliation(s)
- Louis Theret
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Albin Jeanne
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France.,SATT Nord, Lille, France
| | - Benoit Langlois
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Cathy Hachet
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Marion David
- VECT-HORUS SAS, Faculté de Médecine Secteur Nord, Marseille, France
| | | | - Jérôme Devy
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Emonard Hervé
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Sébastien Almagro
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
37
|
Mokhtari MJ, Koohpeima F, Mohammadi H. A comparison inhibitory effects of cisplatin and MNPs-PEG-cisplatin on the adhesion capacity of bone metastatic breast cancer. Chem Biol Drug Des 2017; 90:618-628. [DOI: 10.1111/cbdd.12985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/01/2017] [Accepted: 03/11/2017] [Indexed: 12/25/2022]
Affiliation(s)
| | - Fatemeh Koohpeima
- Department of Operative Dentistry; School of Dentistry; Shiraz University of Medical Sciences; Shiraz Iran
| | - Hadi Mohammadi
- Young Researchers and Elite Club; Kermanshah Branch; Islamic Azad University; Kermanshah Iran
| |
Collapse
|
38
|
Ye DJ, Kwon YJ, Shin S, Baek HS, Shin DW, Chun YJ. Induction of Integrin Signaling by Steroid Sulfatase in Human Cervical Cancer Cells. Biomol Ther (Seoul) 2017; 25:321-328. [PMID: 27956712 PMCID: PMC5424643 DOI: 10.4062/biomolther.2016.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/02/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
Steroid sulfatase (STS) is an enzyme responsible for the hydrolysis of aryl and alkyl sulfates. STS plays a pivotal role in the regulation of estrogens and androgens that promote the growth of hormone-dependent tumors, such as those of breast or prostate cancer. However, the molecular function of STS in tumor growth is still not clear. To elucidate the role of STS in cancer cell proliferation, we investigated whether STS is able to regulate the integrin signaling pathway. We found that overexpression of STS in HeLa cells increases the protein and mRNA levels of integrin β1 and fibronectin, a ligand of integrin α5β1. Dehydroepiandrosterone (DHEA), one of the main metabolites of STS, also increases mRNA and protein expression of integrin β1 and fibronectin. Further, STS expression and DHEA treatment enhanced phosphorylation of focal adhesion kinase (FAK) at the Tyr 925 residue. Moreover, increased phosphorylation of ERK at Thr 202 and Tyr 204 residues by STS indicates that STS activates the MAPK/ERK pathway. In conclusion, these results suggest that STS expression and DHEA treatment may enhance MAPK/ERK signaling through up-regulation of integrin β1 and activation of FAK.
Collapse
Affiliation(s)
- Dong-Jin Ye
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Won Shin
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
39
|
Gueder N, Allan G, Telliez MS, Hague F, Fernandez JM, Sanchez-Fernandez EM, Ortiz-Mellet C, Ahidouch A, Ouadid-Ahidouch H. sp2
-Iminosugar α-glucosidase inhibitor 1-C
-octyl-2-oxa-3-oxocastanospermine specifically affected breast cancer cell migration through Stim1, β1-integrin, and FAK signaling pathways. J Cell Physiol 2017; 232:3631-3640. [DOI: 10.1002/jcp.25832] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Nahla Gueder
- Laboratory of Cellular and Molecular Physiology (EA 4667); SFR CAP-SANTE (FED 4132), UFR of Sciences; Amiens France
| | - Ghada Allan
- Laboratory of Cellular and Molecular Physiology (EA 4667); SFR CAP-SANTE (FED 4132), UFR of Sciences; Amiens France
| | - Marie-Sophie Telliez
- Laboratory of Cellular and Molecular Physiology (EA 4667); SFR CAP-SANTE (FED 4132), UFR of Sciences; Amiens France
| | - Frédéric Hague
- Laboratory of Cellular and Molecular Physiology (EA 4667); SFR CAP-SANTE (FED 4132), UFR of Sciences; Amiens France
| | - José M. Fernandez
- Instituto de Investigaciones Químicas (IIQ); CSIC-Universidad de Sevilla, Americo Vespucio 49; Isla de la Cartuja, Sevilla Spain
| | | | - Carmen Ortiz-Mellet
- Facultad de Química, Departamento de Química Orgánica; Universidad de Sevilla; Sevilla Spain
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology (EA 4667); SFR CAP-SANTE (FED 4132), UFR of Sciences; Amiens France
- Faculty of Sciences; Department of Biology, Ibn Zohr University; Agadir Morocco
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology (EA 4667); SFR CAP-SANTE (FED 4132), UFR of Sciences; Amiens France
| |
Collapse
|
40
|
Apoorva F, Tian YF, Pierpont TM, Bassen DM, Cerchietti L, Butcher JT, Weiss RS, Singh A. Award Winner in the Young Investigator Category, 2017 Society for Biomaterials Annual Meeting and Exposition, Minneapolis, MN, April 05-08, 2017: Lymph node stiffness-mimicking hydrogels regulate human B-cell lymphoma growth and cell surface receptor expr. J Biomed Mater Res A 2017; 105:1833-1844. [DOI: 10.1002/jbm.a.36031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
Affiliation(s)
- F.N.U. Apoorva
- Sibley School of Mechanical and Aerospace Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Ye F. Tian
- Sibley School of Mechanical and Aerospace Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Timothy M. Pierpont
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University; Ithaca New York
| | - David M. Bassen
- Meinig School of Biomedical Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology; Weill Cornell Medical College of Cornell University; New York New York
| | - Jonathan T. Butcher
- Meinig School of Biomedical Engineering; College of Engineering, Cornell University; Ithaca New York
| | - Robert S. Weiss
- Department of Biomedical Sciences; College of Veterinary Medicine, Cornell University; Ithaca New York
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering; College of Engineering, Cornell University; Ithaca New York
- Meinig School of Biomedical Engineering; College of Engineering, Cornell University; Ithaca New York
| |
Collapse
|
41
|
Hamurcu Z, Kahraman N, Ashour A, Ozpolat B. FOXM1 transcriptionally regulates expression of integrin β1 in triple-negative breast cancer. Breast Cancer Res Treat 2017; 163:485-493. [PMID: 28361350 DOI: 10.1007/s10549-017-4207-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/15/2017] [Indexed: 01/10/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer and associated with early metastasis, drug resistance, and poor patient survival. Fork head box M1 (FOXM1) is considered as an emerging molecular target due to its oncogenic role and high overexpression profile in 85% in TNBC. However, molecular mechanisms by which FOXM1 transcription factor mediate its oncogenic effects are not fully understood. Integrin β1 is often upregulated in invasive breast cancers and associated with poor clinical outcome and shorter overall patient survival in TNBC. However, the mechanisms regulating integrin β1 (ITGB1) gene expression have not been well elucidated. METHODS Normal breast epithelium (MCF10A) and TNBC cells (i.e., MDA-MB-231, BT-20 MDA-MB436) were used for the study. Small interfering RNA (siRNA)-based knockdown was used to inhibit Integrin β1 gene (mRNA) and protein expressions, which are detected by RT-PCR and Western blot, respectively. Chromatin immunoprecipitation (ChiP) and gene reporter (Luciferase) assays were used to demonstrate that FOXM1 transcription factor binds to the promoter of Integrin β1 gene and drives its expression. RESULTS We demonstrated that FOXM1 directly binds to the promoter of integrin β1 gene and transcriptionally regulates its expression and activity of focal adhesion kinase (FAK) in TNBC cells. CONCLUSION Our study suggests that FOXM1 transcription factor regulates Integrin β1 gene expression and that FOXM1/ Integrin-β1/FAK axis may play an important role in the progression of TNBC.
Collapse
Affiliation(s)
- Zuhal Hamurcu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA.,Faculty of Medicine, Department of Medical Biology, Erciyes University, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Nermin Kahraman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Ahmed Ashour
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA. .,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
42
|
Meenakshi Sundaram DN, Kucharski C, Parmar MB, Kc RB, Uludağ H. Polymeric Delivery of siRNA against Integrin-β1 (CD29) to Reduce Attachment and Migration of Breast Cancer Cells. Macromol Biosci 2017; 17. [PMID: 28160423 DOI: 10.1002/mabi.201600430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Cell surface integrins, which play important roles in the survival, proliferation, migration, and invasion of cancer cells, are a viable target for treatment of metastatic breast cancer. This line of therapy still remains challenging due to the lack of proper identification and validation of effective targets as well as the lack of suitable therapeutic agents for treatment. The focus is on one such molecular target for this purpose, namely integrin-β1, and effective lowering of integrin-β1 levels on a breast cancer model (MDA-MB-231 cells) is achieved by delivering a dicer-substrate short interfering RNA (siRNA) targeting integrin-β1 with lipid-modified low molecular weight polyethylenimine polymers. Reduction of integrin-β1 levels leads to reduced adhesion of MDA-MB-231 cells to extracellular matrix component fibronectin as well as to human bone marrow cells. A reduced migration of the breast cancer cells is also observed after integrin-β1 silencing in "scratch" and "transwell" migration assays. These results highlight the importance of integrin-β1 for the migration of metastatic breast cancer cells by effectively silencing this target with a practical dose of siRNA.
Collapse
Affiliation(s)
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Manoj B Parmar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Remant Bahadur Kc
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2H1, Canada.,Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V2, Canada.,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, 2V2, Canada
| |
Collapse
|
43
|
Huang YS, Chen JLY, Huang CS, Kuo SH, Jaw FS, Tseng YH, Ko WC, Chang YC. High mammographic breast density predicts locoregional recurrence after modified radical mastectomy for invasive breast cancer: a case-control study. Breast Cancer Res 2016; 18:120. [PMID: 27906044 PMCID: PMC5134100 DOI: 10.1186/s13058-016-0784-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022] Open
Abstract
Background We aimed to evaluate the influence of mammographic breast density at diagnosis on the risk of cancer recurrence and survival outcomes in patients with invasive breast cancer after modified radical mastectomy. Methods This case-control study included 121 case-control pairs of women diagnosed with invasive breast cancer between 2004 and 2009, and who had undergone modified radical mastectomy and had mammographic breast density measured before or at diagnosis. Women with known locoregional recurrence or distant metastasis were matched by pathological disease stage, age, and year of diagnosis to women without recurrence. Locoregional recurrence was defined as recurrence in the ipsilateral chest wall, or axillary, internal mammary, or supraclavicular nodes. The median follow-up duration was 84.0 months for case patients and 92.9 months for control patients. Results Patients with heterogeneously dense (50–75% density) and extremely dense (>75% density) breasts had an increased risk of locoregional recurrence (hazard ratios 3.1 and 5.7, 95% confidence intervals 1.1–9.8 and 1.2–34.9, p = 0.043 and 0.048, respectively) than did women with less dense breasts. Positive margins after surgery also increased the risk of locoregional recurrence (hazard ratio 3.3, 95% confidence interval 1.3–8.3, p = 0.010). Multivariate analysis that included dense breasts (>50% density), positive margin, no adjuvant radiotherapy, and no adjuvant chemotherapy revealed that dense breasts were significant factors for predicting locoregional recurrence risk (hazard ratio 3.6, 95% confidence interval 1.2–11.1, p = 0.025). Conclusions Our results demonstrate that dense breast tissue (>50% density) increased the risk of locoregional recurrence after modified radical mastectomy in patients with invasive breast cancer. Additional prospective studies are necessary to validate these findings. Trial registration The study is retrospectively registered with ClinicalTrials.gov, number NCT02771665, on May 11, 2016.
Collapse
Affiliation(s)
- Yu-Sen Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S. Rd., Taipei, 100, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Jenny Ling-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Radiation Oncology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu-Shan Jaw
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yao-Hui Tseng
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Wei-Chun Ko
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S. Rd., Taipei, 100, Taiwan
| | - Yeun-Chung Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S. Rd., Taipei, 100, Taiwan.
| |
Collapse
|
44
|
Itou J, Tanaka S, Li W, Iida A, Sehara-Fujisawa A, Sato F, Toi M. The Sal-like 4 - integrin α6β1 network promotes cell migration for metastasis via activation of focal adhesion dynamics in basal-like breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:76-88. [PMID: 27773610 DOI: 10.1016/j.bbamcr.2016.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022]
Abstract
During metastasis, cancer cell migration is enhanced. However, the mechanisms underlying this process remain elusive. Here, we addressed this issue by functionally analyzing the transcription factor Sal-like 4 (SALL4) in basal-like breast cancer cells. Loss-of-function studies of SALL4 showed that this transcription factor is required for the spindle-shaped morphology and the enhanced migration of cancer cells. SALL4 also up-regulated integrin gene expression. The impaired cell migration observed in SALL4 knockdown cells was restored by overexpression of integrin α6 and β1. In addition, we clarified that integrin α6 and β1 formed a heterodimer. At the molecular level, loss of the SALL4 - integrin α6β1 network lost focal adhesion dynamics, which impairs cell migration. Over-activation of Rho is known to inhibit focal adhesion dynamics. We observed that SALL4 knockdown cells exhibited over-activation of Rho. Aberrant Rho activation was suppressed by integrin α6β1 expression, and pharmacological inhibition of Rho activity restored cell migration in SALL4 knockdown cells. These results indicated that the SALL4 - integrin α6β1 network promotes cell migration via modulation of Rho activity. Moreover, our zebrafish metastasis assays demonstrated that this gene network enhances cell migration in vivo. Our findings identify a potential new therapeutic target for the prevention of metastasis, and provide an improved understanding of cancer cell migration.
Collapse
Affiliation(s)
- Junji Itou
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Sunao Tanaka
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Wenzhao Li
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsuo Iida
- Department of Growth Regulation, Institute of Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation, Institute of Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Fumiaki Sato
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
45
|
Jia F, Howlader MA, Cairo CW. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1170-1179. [PMID: 27344026 DOI: 10.1016/j.bbalip.2016.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023]
Abstract
Integrins are critical receptors in cell migration and adhesion. A number of mechanisms are known to regulate the function of integrins, including phosphorylation, conformational change, and cytoskeletal anchoring. We investigated whether native neuraminidase (Neu, or sialidase) enzymes which modify glycolipids could play a role in regulating integrin-mediated cell migration. Using a scratch assay, we found that exogenously added Neu3 and Neu4 activity altered rates of cell migration. We observed that Neu4 increased the rate of migration in two cell lines (HeLa, A549); while Neu3 only increased migration in HeLa cells. A bacterial neuraminidase was able to increase the rate of migration in HeLa, but not in A549 cells. Treatment of cells with complex gangliosides (GM1, GD1a, GD1b, and GT1b) resulted in decreased cell migration rates, while LacCer was able to increase rates of migration in both lines. Importantly, our results show that treatment of cells with inhibitors of native Neu enzymes had a dramatic effect on the rates of cell migration. The most potent compound tested targeted the human Neu4 isoenzyme, and was able to substantially reduce the rate of cell migration. We found that the lateral mobility of integrins was reduced by treatment of cells with Neu3, suggesting that Neu3 enzyme activity resulted in changes to integrin-co-receptor or integrin-cytoskeleton interactions. Finally, our results support the hypothesis that inhibitors of human Neu can be used to investigate mechanisms of cell migration and for the development of anti-adhesive therapies.
Collapse
Affiliation(s)
- Feng Jia
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Md Amran Howlader
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
46
|
NR4A1 Antagonists Inhibit β1-Integrin-Dependent Breast Cancer Cell Migration. Mol Cell Biol 2016; 36:1383-94. [PMID: 26929200 DOI: 10.1128/mcb.00912-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/24/2016] [Indexed: 12/30/2022] Open
Abstract
Overexpression of the nuclear receptor 4A1 (NR4A1) in breast cancer patients is a prognostic factor for decreased survival and increased metastasis, and this has been linked to NR4A1-dependent regulation of transforming growth factor β (TGF-β) signaling. Results of RNA interference studies demonstrate that basal migration of aggressive SKBR3 and MDA-MB-231 breast cancer cells is TGF-β independent and dependent on regulation of β1-integrin gene expression by NR4A1 which can be inhibited by the NR4A1 antagonists 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) and a related p-carboxymethylphenyl [1,1-bis(3'-indolyl)-1-(p-carboxymethylphenyl)methane (DIM-C-pPhCO2Me)] analog. The NR4A1 antagonists also inhibited TGF-β-induced migration of MDA-MB-231 cells by blocking nuclear export of NR4A1, which is an essential step in TGF-β-induced cell migration. We also observed that NR4A1 regulates expression of both β1- and β3-integrins, and unlike other β1-integrin inhibitors which induce prometastatic β3-integrin, NR4A1 antagonists inhibit expression of both β1- and β3-integrin, demonstrating a novel mechanism-based approach for targeting integrins and integrin-dependent breast cancer metastasis.
Collapse
|
47
|
Das SG, Romagnoli M, Mineva ND, Barillé-Nion S, Jézéquel P, Campone M, Sonenshein GE. miR-720 is a downstream target of an ADAM8-induced ERK signaling cascade that promotes the migratory and invasive phenotype of triple-negative breast cancer cells. Breast Cancer Res 2016; 18:40. [PMID: 27039296 PMCID: PMC4818899 DOI: 10.1186/s13058-016-0699-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ADAM8 (a disintegrin and metalloproteinase 8) protein promotes the invasive and metastatic phenotype of triple-negative breast cancer (TNBC) cells. High ADAM8 expression in breast cancer patients is an independent predictor of poor prognosis. Here, we investigated whether ADAM8 regulates specific miRNAs, their roles in aggressive phenotype, and potential use as biomarkers of disease. METHODS Microarray analysis was performed on RNA from MDA-MB-231 cells after transient ADAM8 knockdown using TaqMan miRNA cards. Changes in miRNA levels were confirmed using two ADAM8 siRNAs in TNBC cell lines. Kinase inhibitors, β1-integrin antagonist antibody, and different forms of ADAM8 were employed to elucidate the signaling pathway required for miR-720 expression. miR-720 levels were modulated using a specific antagomiR or a mimic, and effects on aggressive phenotype of TNBC cells were determined using Boyden chamber and 3D-Matrigel outgrowth assays. Plasma was isolated from mice before and after implantation of MDA-MB-231 cells and analyzed for miR-720 levels. Serum samples of TNBC patients were evaluated for their ADAM8 and miR-720 levels. RESULTS We identified 68 miRNAs differentially regulated upon ADAM8 knockdown, including decreased levels of secreted miR-720. Ectopic overexpression of wild-type ADAM8 or forms that lack metalloproteinase activity similarly induced miR-720 levels. The disintegrin and cysteine-rich domains of ADAM8 were shown to induce miR-720 via activation of a β1-integrin to ERK signaling cascade. Knockdown of miR-720 led to a significant decrease in migratory and invasive abilities of TNBC cells. Conversely, miR-720 overexpression rescued these properties. A profound increase in plasma levels of miR-720 was detected 7 days after TNBC cell inoculation into mouse mammary fat pads when tumors were barely palpable. Concordantly, miR-720 levels were found to be significantly higher in serum samples of TNBC patients with high ADAM8 expression. CONCLUSIONS We have shown for the first time that miR-720 is induced by ADAM8 signaling via ERK and plays an essential role in promoting the aggressive phenotype of TNBCs. miR-720 is elevated in serum of patients with ADAM8-high TNBC and, in a group with other miRNAs downstream of ADAM8, holds promise as a biomarker for early detection of or treatment response of ADAM8-positive TNBCs.
Collapse
Affiliation(s)
- Sonia G. Das
- />Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 USA
| | - Mathilde Romagnoli
- />Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 USA
- />Present address: Institut Curie, Centre de Recherche, UMR 144, 26 Rue d’Ulm, 75248 Paris, France
| | - Nora D. Mineva
- />Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 USA
| | | | - Pascal Jézéquel
- />INSERM U892, IRT-UN, 8 quai Moncousu, 44007 Nantes Cedex, France
- />Institut de Cancérologie de Nantes, Centre de Lutte Contre le Cancer René Gauducheau, Boulevard Jacques Monod, 44 805 Saint-Herblain-Nantes Cedex, France
| | - Mario Campone
- />INSERM U892, IRT-UN, 8 quai Moncousu, 44007 Nantes Cedex, France
- />Institut de Cancérologie de Nantes, Centre de Lutte Contre le Cancer René Gauducheau, Boulevard Jacques Monod, 44 805 Saint-Herblain-Nantes Cedex, France
| | - Gail E. Sonenshein
- />Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 USA
| |
Collapse
|
48
|
Brooks DLP, Schwab LP, Krutilina R, Parke DN, Sethuraman A, Hoogewijs D, Schörg A, Gotwald L, Fan M, Wenger RH, Seagroves TN. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer 2016; 15:26. [PMID: 27001172 PMCID: PMC4802728 DOI: 10.1186/s12943-016-0510-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 03/11/2016] [Indexed: 11/27/2022] Open
Abstract
Background Hypoxia-inducible factors (HIFs) are well-established mediators of tumor growth, the epithelial to mesenchymal transition (EMT) and metastasis. In several types of solid tumors, including breast cancers, the HIFs play a critical role in maintaining cancer stem cell (CSC) activity. Thus, we hypothesized that HIFs may also regulate transcription of markers of breast CSC activity. One approach to enrich for breast cells with stem-like phenotypes is FACS sorting, in which sub-populations of live cells are gated based on the expression of cell surface antigens, including various integrin subunits. Integrin alpha 6 (ITGA6; CD49f) is routinely used in combination with other integrin subunits to enrich for breast stem cells by FACS. Integrins not only mediate interactions with the extracellular matrix (ECM), but also drive intracellular signaling events that communicate from the tumor microenvironment to inside of the tumor cell to alter phenotypes including migration and invasion. Methods We used two models of metastatic breast cancer (MBC), polyoma middle T (MMTV-PyMT) and MDA-MB-231 cells, to compare the expression of ITGA6 in wild type and knockout (KO) or knockdown cells. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays verified that ITGA6 is a direct HIF transcriptional target. We also used FACS sorting to enrich for CD49f + cells to compare tumorsphere formation, tumor initiating cell activity, invasion and HIF activity relative to CD49fneg or low cells. Knockdown of ITGA6 significantly reduced invasion, whereas re-expression of ITGA6 in the context of HIF knockdown partially rescued invasion. A search of public databases also revealed that ITGA6 expression is an independent prognostic factor of survival in breast cancer patients. Results We report that ITGA6 is a HIF-dependent target gene and that high ITGA6 expression enhances invasion and tumor-initiating cell activities in models of MBC. Moreover, cells that express high levels of ITGA6 are enriched for HIF-1α expression and the expression of HIF-dependent target genes. Conclusions Our data suggest that HIF-dependent regulation of ITGA6 is one mechanism by which sorting for CD49f + cells enhances CSC and metastatic phenotypes in breast cancers. Our results are particularly relevant to basal-like breast cancers which express higher levels of the HIFα subunits, core HIF-dependent target genes and ITGA6 relative to other molecular subtypes. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0510-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danielle L Peacock Brooks
- Center for Cancer Research and the Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Present address: National Cancer Institute, Center for Cancer Research, Women's Malignancies Branch, Bethesda, MD, 20892, USA
| | - Luciana P Schwab
- Center for Cancer Research and the Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Raisa Krutilina
- Center for Cancer Research and the Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Deanna N Parke
- Center for Cancer Research and the Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Aarti Sethuraman
- Center for Cancer Research and the Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - David Hoogewijs
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, CH-8057, Zürich, Switzerland.,Present address: Institute of Physiology, University of Duisburg-Essen, 45122, Essen, Germany
| | - Alexandra Schörg
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, CH-8057, Zürich, Switzerland
| | - Lauren Gotwald
- Center for Cancer Research and the Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Meiyun Fan
- Center for Cancer Research and the Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Roland H Wenger
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, CH-8057, Zürich, Switzerland
| | - Tiffany N Seagroves
- Center for Cancer Research and the Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
49
|
Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD. Elucidation of the Roles of Tumor Integrin β1 in the Extravasation Stage of the Metastasis Cascade. Cancer Res 2016; 76:2513-24. [PMID: 26988988 DOI: 10.1158/0008-5472.can-15-1325] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 02/27/2016] [Indexed: 12/22/2022]
Abstract
Tumor integrin β1 (ITGB1) contributes to primary tumor growth and metastasis, but its specific roles in extravasation have not yet been clearly elucidated. In this study, we engineered a three-dimensional microfluidic model of the human microvasculature to recapitulate the environment wherein extravasation takes place and assess the consequences of β1 depletion in cancer cells. Combined with confocal imaging, these tools allowed us to decipher the detailed morphology of transmigrating tumor cells and associated endothelial cells in vitro at high spatio-temporal resolution not easily achieved in conventional transmigration assays. Dynamic imaging revealed that β1-depleted cells lacked the ability to sustain protrusions into the subendothelial matrix in contrast with control cells. Specifically, adhesion via α3β1 and α6β1 to subendothelial laminin was a critical prerequisite for successful transmigration. β1 was required to invade past the endothelial basement membrane, whereas its attenuation in a syngeneic tumor model resulted in reduced metastatic colonization of the lung, an effect not observed upon depletion of other integrin alpha and beta subunits. Collectively, our findings in this novel model of the extravasation microenvironment revealed a critical requirement for β1 in several steps of extravasation, providing new insights into the mechanisms underlying metastasis. Cancer Res; 76(9); 2513-24. ©2016 AACR.
Collapse
Affiliation(s)
- Michelle B Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - John M Lamar
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ran Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Richard O Hynes
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
50
|
Abstract
Metastasis is often modeled by xenotransplantation of cell lines in immunodeficient mice. A wealth of information about tumor cell behavior in the new environment is obtained from these efforts. Yet by design, this approach is "tumor-centric," as it focuses on cell-autonomous determinants of human tumor dissemination in mouse tissues, in effect using the animal body as a sophisticated "Petri dish" providing nutrients and support for tumor growth. Transgenic or gene knockout mouse models of cancer allow the study of tumor spread as a systemic disease and offer a complimentary approach for studying the natural history of cancer. This introduction is aimed at describing the overall methodological approach to studying metastasis in genetically modified mice, with a particular focus on using animals with regulated expression of potent human oncogenes in the breast.
Collapse
|