1
|
Sanoguera-Miralles L, Llinares-Burguet I, Bueno-Martínez E, Ramadane-Morchadi L, Stuani C, Valenzuela-Palomo A, García-Álvarez A, Pérez-Segura P, Buratti E, de la Hoya M, Velasco-Sampedro EA. Comprehensive splicing analysis of the alternatively spliced CHEK2 exons 8 and 10 reveals three enhancer/silencer-rich regions and 38 spliceogenic variants. J Pathol 2024; 262:395-409. [PMID: 38332730 DOI: 10.1002/path.6243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Lobna Ramadane-Morchadi
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Cristiana Stuani
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
2
|
Dong Z, Wang Y, Zhang J, Zhu F, Liu Z, Kang Y, Lin M, Shi H. Analyzing the effects of BRCA1/2 variants on mRNA splicing by minigene assay. J Hum Genet 2023; 68:65-71. [PMID: 36446827 DOI: 10.1038/s10038-022-01077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
As BRCA1/2 gene sequencing become more extensive, a large number VUS (variants of uncertain significance) emerge rapidly. Verifying the splicing effect is an effective means for VUS reclassification. The Minigene Assay platform was established and its reliability was verified in this article. 47 BRCA1 or BRCA2 variants were selected and performed to validate their effect on mRNA splicing. The results showed that, a total of 16 variants were experimentally proved to have effects on mRNA splicing, among which 14 variants were shown to cause truncated proteins by Sanger sequencing. While the other two variants, BRCA2 c.7976 + 3 A > G and BRCA1 c.5152 + 3_5152 + 4insT was analyzed to cause 57 bp and 26 bp base in-frame deletion, respectively. The remaining 31 variants were not shown to cause mRNA splicing abnormity, including several sites at the edge of exons, which were predicted to affect splicing of mRNA by multiple bioinformatic software. Based on our experimental results, 37 variants were reclassified by ACMG rules. Our study showed that experimental splicing analysis was effectual for variants classification, and multiple functional assay or clinical data were also necessary for comprehensive judgment of variants.
Collapse
Affiliation(s)
- Zhouhuan Dong
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Yun Wang
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Jing Zhang
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Fengwei Zhu
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Zhiyuan Liu
- Amoy Diagnostics Co., Ltd., Xiamen, 361027, PR China
| | - Yajun Kang
- Amoy Diagnostics Co., Ltd., Xiamen, 361027, PR China
| | - Mingyuan Lin
- Amoy Diagnostics Co., Ltd., Xiamen, 361027, PR China
| | - Huaiyin Shi
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China.
| |
Collapse
|
3
|
Alimohamed MZ, Boven LG, van Dijk KK, Vos YJ, Hoedemaekers YM, van der Zwaag PA, Sijmons RH, Jongbloed JD, Sikkema-Raddatz B, Westers H. SEPT–GD: A decision tree to prioritise potential RNA splice variants in cardiomyopathy genes for functional splicing assays in diagnostics. Gene 2023; 851:146984. [DOI: 10.1016/j.gene.2022.146984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/09/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
4
|
Zhang H, Chen C, Wu X, Lou C, Liang Q, Wu W, Wang X, Ding Q. Effects of 14 F9 synonymous codon variants on hemophilia B expression: Alteration of splicing along with protein expression. Hum Mutat 2022; 43:928-939. [PMID: 35391506 DOI: 10.1002/humu.24377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023]
Abstract
There is growing evidence that synonymous codon variants (SCVs) can cause disease through the disruption of different processes of protein production. The aim of the study is to investigate whether the 14 SCVs reported in the F9 variant database were the pathogenic causes of hemophilia B. The impacts of SCVs on splicing and protein expression were detected using a combination of in silico prediction, in vitro minigene splicing assay and cell expression detection. The splicing transcripts were identified and quantified by co-amplification fluorescent PCR. The mechanism of splicing was verified by a modified pU1snRNA and pU7snRNA approach. Aberrant splicing patterns were found in eight SCVs. Five of the 8 SCVs produced almost all aberrant splicing isoforms, which were expected to truncate protein, three of them presented a partial defect on both splicing and protein secretion, the overall effects were consistent with the residual Factor IX activity of the affected cases. Neither the pre-messenger RNA (mRNA) splicing process nor the protein function was impaired in the rest six SCVs. In conclusion, our study firstly revealed the pathogenic mechanism of the 14 F9 SCVs and highlighted the importance of performing mRNA splicing analysis and protein expression studies of SCVs in inherited disorders.
Collapse
Affiliation(s)
- Huayang Zhang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Can Lou
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Minigene Splicing Assays Identify 20 Spliceogenic Variants of the Breast/Ovarian Cancer Susceptibility Gene RAD51C. Cancers (Basel) 2022; 14:cancers14122960. [PMID: 35740625 PMCID: PMC9221245 DOI: 10.3390/cancers14122960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
RAD51C loss-of-function variants are associated with an increased risk of breast and ovarian cancers. Likewise, splicing disruptions are a frequent mechanism of gene inactivation. Taking advantage of a previous splicing-reporter minigene with exons 2-8 (mgR51C_ex2-8), we proceeded to check its impact on the splicing of candidate ClinVar variants. A total of 141 RAD51C variants at the intron/exon boundaries were analyzed with MaxEntScan. Twenty variants were selected and genetically engineered into the wild-type minigene. All the variants disrupted splicing, and 18 induced major splicing anomalies without any trace or minimal amounts (<2.4%) of the minigene full-length (FL) transcript. Twenty-seven transcripts (including the wild-type and r.904A FL transcripts) were identified by fluorescent fragment electrophoresis; of these, 14 were predicted to truncate the RAD51C protein, 3 kept the reading frame, and 8 minor isoforms (1.1−4.7% of the overall expression) could not be characterized. Finally, we performed a tentative interpretation of the variants according to an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme, classifying 16 variants as likely pathogenic. Minigene assays have been proven as valuable tools for the initial characterization of potential spliceogenic variants. Hence, minigene mgR51C_ex2-8 provided useful splicing data for 40 RAD51C variants.
Collapse
|
6
|
Alenezi WM, Fierheller CT, Revil T, Serruya C, Mes-Masson AM, Foulkes WD, Provencher D, El Haffaf Z, Ragoussis J, Tonin PN. Case Review: Whole-Exome Sequencing Analyses Identify Carriers of a Known Likely Pathogenic Intronic BRCA1 Variant in Ovarian Cancer Cases Clinically Negative for Pathogenic BRCA1 and BRCA2 Variants. Genes (Basel) 2022; 13:genes13040697. [PMID: 35456503 PMCID: PMC9032308 DOI: 10.3390/genes13040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Detecting pathogenic intronic variants resulting in aberrant splicing remains a challenge in routine genetic testing. We describe germline whole-exome sequencing (WES) analyses and apply in silico predictive tools of familial ovarian cancer (OC) cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants. Methods: WES data from 27 familial OC cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants and 53 sporadic early-onset OC cases were analyzed for pathogenic variants in BRCA1 or BRCA2. WES data from carriers of pathogenic BRCA1 or BRCA2 variants were analyzed for pathogenic variants in 10 other OC predisposing genes. Loss of heterozygosity analysis was performed on tumor DNA from variant carriers. Results: BRCA1 c.5407-25T>A intronic variant, identified in two affected sisters and one sporadic OC case, is predicted to create a new splice effecting transcription of BRCA1. WES data from BRCA1 c.5407-25T>A carriers showed no evidence of pathogenic variants in other OC predisposing genes. Sequencing the tumor DNA from the variant carrier showed complete loss of the wild-type allele. Conclusions: The findings support BRCA1 c.5407-25T>A as a likely pathogenic variant and highlight the importance of investigating intronic sequences as causal variants in OC families where the involvement of BRCA1 is highly suggestive.
Collapse
Affiliation(s)
- Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Department of Medical Laboratory Technology, Taibah University, Medina 42353, Saudi Arabia
| | - Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Corinne Serruya
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Anne-Marie Mes-Masson
- Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada; (D.P.); (Z.E.H.)
| | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 1G5, Canada
| | - Diane Provencher
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada; (D.P.); (Z.E.H.)
- Division of Gynecologic Oncology, Université de Montréal, Montreal, QC H4A 3J1, Canada
| | - Zaki El Haffaf
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada; (D.P.); (Z.E.H.)
- Service de Médecine Génique, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-(514)-934-1934 (ext. 44069)
| |
Collapse
|
7
|
Ha HI, Ryu JS, Shim H, Kong SY, Lim MC. Reclassification of BRCA1 and BRCA2 variants found in ovarian epithelial, fallopian tube, and primary peritoneal cancers. J Gynecol Oncol 2021; 31:e83. [PMID: 33078592 PMCID: PMC7593220 DOI: 10.3802/jgo.2020.31.e83] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/22/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022] Open
Abstract
Objective We investigated the proportions of and reclassified BRCA1/2 variants of unknown significance (VUS) in Korean patients with epithelial ovarian, tubal, and primary peritoneal cancers. Methods Data from 805 patients who underwent genetic testing for BRCA1/2 from January 1, 2006 to August 31, 2018 were included. The VUS in BRCA1/2 were reclassified using the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology standards and guidelines. Results A BRCA1 pathogenic variant was found in 17.0% (137/805) of the patients, and BRCA1 VUS were found in 15.9% (128/805) of the patients. Further, 8.7% (69/805) of the patients possessed a BRCA2 pathogenic variant and 18.4% (148/805) of the patients possessed BRCA2 VUS. Fifty-three specific BRCA1 VUS were found and 20 were further reclassified as benign (n=11), likely benign (n=5), likely pathogenic (n=3), and pathogenic (n=1). The remaining 33 remained classified as VUS. For BRCA2, 55 specific VUS were detected; among these, 14 were reclassified as benign or likely benign, and 2 were reclassified as likely pathogenic. Among the 805 patients, 195 were found to have only VUS and no pathogenic variants (PV), and 41.5% (81/195) were reclassified as benign or likely benign, and 10.3% (20/195) as pathogenic or likely pathogenic variants. Conclusions Approximately 33.3% (36/108) of the specific BRCA1/2 variants analyzed in this study that were initially classified as VUS over a 13-year period were reclassified. Among these, 5.6% (6/108) were reclassified as pathogenic or likely pathogenic variants.
Collapse
Affiliation(s)
- Hyeong In Ha
- Center for Gynecologic Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jin Sun Ryu
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
| | - Hyoeun Shim
- Department of Laboratory Medicine, Center for Diagnostic Oncology, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Sun Young Kong
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea.,Department of Laboratory Medicine, Center for Diagnostic Oncology, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea.,Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Korea.,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| |
Collapse
|
8
|
Bueno-Martínez E, Sanoguera-Miralles L, Valenzuela-Palomo A, Lorca V, Gómez-Sanz A, Carvalho S, Allen J, Infante M, Pérez-Segura P, Lázaro C, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. RAD51D Aberrant Splicing in Breast Cancer: Identification of Splicing Regulatory Elements and Minigene-Based Evaluation of 53 DNA Variants. Cancers (Basel) 2021; 13:2845. [PMID: 34200360 PMCID: PMC8201001 DOI: 10.3390/cancers13112845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
RAD51D loss-of-function variants increase lifetime risk of breast and ovarian cancer. Splicing disruption is a frequent pathogenic mechanism associated with variants in susceptibility genes. Herein, we have assessed the splicing and clinical impact of splice-site and exonic splicing enhancer (ESE) variants identified through the study of ~113,000 women of the BRIDGES cohort. A RAD51D minigene with exons 2-9 was constructed in splicing vector pSAD. Eleven BRIDGES splice-site variants (selected by MaxEntScan) were introduced into the minigene by site-directed mutagenesis and tested in MCF-7 cells. The 11 variants disrupted splicing, collectively generating 25 different aberrant transcripts. All variants but one produced negligible levels (<3.4%) of the full-length (FL) transcript. In addition, ESE elements of the alternative exon 3 were mapped by testing four overlapping exonic microdeletions (≥30-bp), revealing an ESE-rich interval (c.202_235del) with critical sequences for exon 3 recognition that might have been affected by germline variants. Next, 26 BRIDGES variants and 16 artificial exon 3 single-nucleotide substitutions were also assayed. Thirty variants impaired splicing with variable amounts (0-65.1%) of the FL transcript, although only c.202G>A demonstrated a complete aberrant splicing pattern without the FL transcript. On the other hand, c.214T>C increased efficiency of exon 3 recognition, so only the FL transcript was detected (100%). In conclusion, 41 RAD51D spliceogenic variants (28 of which were from the BRIDGES cohort) were identified by minigene assays. We show that minigene-based mapping of ESEs is a powerful approach for identifying ESE hotspots and ESE-disrupting variants. Finally, we have classified nine variants as likely pathogenic according to ACMG/AMP-based guidelines, highlighting the complex relationship between splicing alterations and variant interpretation.
Collapse
Affiliation(s)
- Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Alicia Gómez-Sanz
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Mar Infante
- Cancer Genetics, Unidad de Excelencia Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, 08908 Hospitalet de Llobregat, Spain;
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| |
Collapse
|
9
|
Kortüm F, Kieninger S, Mazzola P, Kohl S, Wissinger B, Prokisch H, Stingl K, Weisschuh N. X-Linked Retinitis Pigmentosa Caused by Non-Canonical Splice Site Variants in RPGR. Int J Mol Sci 2021; 22:ijms22020850. [PMID: 33467000 PMCID: PMC7830253 DOI: 10.3390/ijms22020850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 01/13/2023] Open
Abstract
We aimed to validate the effect of non-canonical splice site variants in the RPGR gene in five patients from four families diagnosed with retinitis pigmentosa. Four variants located in intron 2 (c.154 + 3_154 + 6del), intron 3 (c.247 + 5G>A), intron 7 (c.779-5T>G), and intron 13 (c.1573-12A>G), respectively, were analyzed by means of in vitro splice assays. Splicing analysis revealed different aberrant splicing events, including exon skipping and intronic nucleotide addition, which are predicted to lead either to an in-frame deletion affecting relevant protein domains or to a frameshift of the open reading frame. Our data expand the landscape of pathogenic variants in RPGR, thereby increasing the genetic diagnostic rate in retinitis pigmentosa and allowing patients harboring the analyzed variants to be enrolled in clinical trials.
Collapse
Affiliation(s)
- Friederike Kortüm
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany; (F.K.); (K.S.)
| | - Sinja Kieninger
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (S.K.); (S.K.); (B.W.)
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany;
| | - Susanne Kohl
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (S.K.); (S.K.); (B.W.)
| | - Bernd Wissinger
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (S.K.); (S.K.); (B.W.)
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany; (F.K.); (K.S.)
| | - Nicole Weisschuh
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (S.K.); (S.K.); (B.W.)
- Correspondence:
| |
Collapse
|
10
|
Sanoguera-Miralles L, Valenzuela-Palomo A, Bueno-Martínez E, Llovet P, Díez-Gómez B, Caloca MJ, Pérez-Segura P, Fraile-Bethencourt E, Colmena M, Carvalho S, Allen J, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. Comprehensive Functional Characterization and Clinical Interpretation of 20 Splice-Site Variants of the RAD51C Gene. Cancers (Basel) 2020; 12:E3771. [PMID: 33333735 PMCID: PMC7765170 DOI: 10.3390/cancers12123771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary breast and/or ovarian cancer is a highly heterogeneous disease with more than 10 known disease-associated genes. In the framework of the BRIDGES project (Breast Cancer Risk after Diagnostic Gene Sequencing), the RAD51C gene has been sequenced in 60,466 breast cancer patients and 53,461 controls. We aimed at functionally characterizing all the identified genetic variants that are predicted to disrupt the splicing process. Forty RAD51C variants of the intron-exon boundaries were bioinformatically analyzed, 20 of which were selected for splicing functional assays. To test them, a splicing reporter minigene with exons 2 to 8 was designed and constructed. This minigene generated a full-length transcript of the expected size (1062 nucleotides), sequence, and structure (Vector exon V1- RAD51C exons_2-8- Vector exon V2). The 20 candidate variants were genetically engineered into the wild type minigene and functionally assayed in MCF-7 cells. Nineteen variants (95%) impaired splicing, while 18 of them produced severe splicing anomalies. At least 35 transcripts were generated by the mutant minigenes: 16 protein-truncating, 6 in-frame, and 13 minor uncharacterized isoforms. According to ACMG/AMP-based standards, 15 variants could be classified as pathogenic or likely pathogenic variants: c.404G > A, c.405-6T > A, c.571 + 4A > G, c.571 + 5G > A, c.572-1G > T, c.705G > T, c.706-2A > C, c.706-2A > G, c.837 + 2T > C, c.905-3C > G, c.905-2A > C, c.905-2_905-1del, c.965 + 5G > A, c.1026 + 5_1026 + 7del, and c.1026 + 5G > T.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Patricia Llovet
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - María José Caloca
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
- Knight Cancer Research Building, 2720 S Moody Ave, Portland, OR 97201, USA
| | - Marta Colmena
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Leiden University Medical Center, Department of Human Genetics, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Leiden University Medical Center, Department of Human Genetics, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| |
Collapse
|
11
|
Di Scipio M, Tavares E, Deshmukh S, Audo I, Green-Sanderson K, Zubak Y, Zine-Eddine F, Pearson A, Vig A, Tang CY, Mollica A, Karas J, Tumber A, Yu CW, Billingsley G, Wilson MD, Zeitz C, Héon E, Vincent A. Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 32881472 PMCID: PMC7443117 DOI: 10.1167/iovs.61.10.36] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To demonstrate the effectiveness of combining retinal phenotyping and focused variant filtering from genome sequencing (GS) in identifying deep intronic disease causing variants in inherited retinal dystrophies. Methods Affected members from three pedigrees with classical enhanced S-cone syndrome (ESCS; Pedigree 1), congenital stationary night blindness (CSNB; Pedigree 2), and achromatopsia (ACHM; Pedigree 3), respectively, underwent detailed ophthalmologic evaluation, optical coherence tomography, and electroretinography. The probands underwent panel-based genetic testing followed by GS analysis. Minigene constructs (NR2E3, GPR179 and CNGB3) and patient-derived cDNA experiments (NR2E3 and GPR179) were performed to assess the functional effect of the deep intronic variants. Results The electrophysiological findings confirmed the clinical diagnosis of ESCS, CSNB, and ACHM in the respective pedigrees. Panel-based testing revealed heterozygous pathogenic variants in NR2E3 (NM_014249.3; c.119-2A>C; Pedigree 1) and CNGB3 (NM_019098.4; c.1148delC/p.Thr383Ilefs*13; Pedigree 3). The GS revealed heterozygous deep intronic variants in Pedigrees 1 (NR2E3; c.1100+1124G>A) and 3 (CNGB3; c.852+4751A>T), and a homozygous GPR179 variant in Pedigree 2 (NM_001004334.3; c.903+343G>A). The identified variants segregated with the phenotype in all pedigrees. All deep intronic variants were predicted to generate a splice acceptor gain causing aberrant exonization in NR2E3 [89 base pairs (bp)], GPR179 (197 bp), and CNGB3 (73 bp); splicing defects were validated through patient-derived cDNA experiments and/or minigene constructs and rescued by antisense oligonucleotide treatment. Conclusions Deep intronic mutations contribute to missing heritability in retinal dystrophies. Combining results from phenotype-directed gene panel testing, GS, and in silico splice prediction tools can help identify these difficult-to-detect pathogenic deep intronic variants.
Collapse
Affiliation(s)
- Matteo Di Scipio
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Erika Tavares
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Shriya Deshmukh
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, Paris, France
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Kit Green-Sanderson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Yuliya Zubak
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Fayçal Zine-Eddine
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Alexander Pearson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Anjali Vig
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Chen Yu Tang
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Antonio Mollica
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jonathan Karas
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Caberry W. Yu
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Gail Billingsley
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Michael D. Wilson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Elise Héon
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Ajoy Vincent
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Canson D, Glubb D, Spurdle AB. Variant effect on splicing regulatory elements, branchpoint usage, and pseudoexonization: Strategies to enhance bioinformatic prediction using hereditary cancer genes as exemplars. Hum Mutat 2020; 41:1705-1721. [PMID: 32623769 DOI: 10.1002/humu.24074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
It is possible to estimate the prior probability of pathogenicity for germline disease gene variants based on bioinformatic prediction of variant effect/s. However, routinely used approaches have likely led to the underestimation and underreporting of variants located outside donor and acceptor splice site motifs that affect messenger RNA (mRNA) processing. This review presents information about hereditary cancer gene germline variants, outside native splice sites, with experimentally validated splicing effects. We list 95 exonic variants that impact splicing regulatory elements (SREs) in BRCA1, BRCA2, MLH1, MSH2, MSH6, and PMS2. We utilized a pre-existing large-scale BRCA1 functional data set to map functional SREs, and assess the relative performance of different tools to predict effects of 283 variants on such elements. We also describe rare examples of intronic variants that impact branchpoint (BP) sites and create pseudoexons. We discuss the challenges in predicting variant effect on BP site usage and pseudoexonization, and suggest strategies to improve the bioinformatic prioritization of such variants for experimental validation. Importantly, our review and analysis highlights the value of considering impact of variants outside donor and acceptor motifs on mRNA splicing and disease causation.
Collapse
Affiliation(s)
- Daffodil Canson
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Dylan Glubb
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Amanda B Spurdle
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Gross AM, Turner J, Kirkorian AY, Okoye GA, Luca DC, Bornhorst M, Jacobs SS, Williams KM, Schore RJ. A Pediatric Case of Transformed Mycosis Fungoides in a BRCA2 Positive Patient. J Pediatr Hematol Oncol 2020; 42:e361-e364. [PMID: 30969264 DOI: 10.1097/mph.0000000000001481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cutaneous T-cell lymphomas are very rare in children. Although mycosis fungoides is the most common of these rare cutaneous T-cell lymphomas in children, transformation to an aggressive malignancy remains extremely uncommon, and there are no clear guidelines for clinical management in the pediatric population. In addition, the increased usage of next-generation sequencing for pediatric patients with unusual malignancies may result in the discovery of pathogenic germline mutations, though the association between these mutations and the patient's cancer is not always clear. We present here a unique pediatric case of transformed mycosis fungoides in a patient with BRCA2 mutation.
Collapse
Affiliation(s)
- Andrea M Gross
- Children's National Medical Center, Washington, DC.,National Institutes of Health, National Cancer Institute, Bethesda
| | - Joyce Turner
- Children's National Medical Center, Washington, DC
| | | | - Ginette A Okoye
- Department of Dermatology, Howard University College of Medicine, Washington, DC
| | | | | | | | | | | |
Collapse
|
14
|
Liang Z, Hu W, Li S, Wei Z, Zhu Z. Germline BRCA2 Truncating Mutation in Familial Esophageal Squamous Cell Carcinoma: A Case Controlled Study in China. Med Sci Monit 2020; 26:e923926. [PMID: 32579544 PMCID: PMC7331485 DOI: 10.12659/msm.923926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Germline mutations of BRCA2 have been reported in various malignancies. We investigated BRCA2 germline mutations in familial clusters with esophageal squamous cell carcinoma (ESCC). Material/Methods We screened the DNA of familial ESCC patients for BRCA2 germline mutations with whole gene sequencing. Multiple BRCA2 mutations including one novel splice variant, c.426-2A>G were identified. Other family members, sporadic ESCC patients, and controls were also assessed for the novel mutation. Results The mutation c.426-2A>G was found in 2 affected ESCC sisters and 7 other family members. The splice variant mutation results in exon 5 skipping with a frame shift leading to a premature stop codon in exon 6 and truncation. Novel mutation tracking ruled out single nucleotide polymorphism (SNP) in 100 chromosomes of healthy individuals. Conclusions BRCA2 germline mutation in ESCC patients may play a role in genetic susceptibility to familial ESCC. Genetic analysis of BRCA2 in patients with familial ESCC could provide opportunities for targeted therapies.
Collapse
Affiliation(s)
- Zhong Liang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Weidong Hu
- Department of Respiration, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Shuping Li
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Zhenhong Wei
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Zijiang Zhu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
15
|
High-throughput functional evaluation of BRCA2 variants of unknown significance. Nat Commun 2020; 11:2573. [PMID: 32444794 PMCID: PMC7244490 DOI: 10.1038/s41467-020-16141-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous nontruncating missense variants of the BRCA2 gene have been identified, but there is a lack of convincing evidence, such as familial data, demonstrating their clinical relevance and they thus remain unactionable. To assess the pathogenicity of variants of unknown significance (VUSs) within BRCA2, here we develop a method, the MANO-B method, for high-throughput functional evaluation utilizing BRCA2-deficient cells and poly (ADP-ribose) polymerase (PARP) inhibitors. The estimated sensitivity and specificity of this assay compared to those of the International Agency for Research on Cancer classification system is 95% and 95% (95% confidence intervals: 77–100% and 82–99%), respectively. We classify the functional impact of 186 BRCA2 VUSs with our computational pipeline, resulting in the classification of 126 variants as normal/likely normal, 23 as intermediate, and 37 as abnormal/likely abnormal. We further describe a simplified, on-demand annotation system that could be used as a companion diagnostic for PARP inhibitors in patients with unknown BRCA2 VUSs. Many germline variants are found in the BRCA2 gene, some of which pre-dispose women to breast and ovarian cancer. Here, the authors develop a method to determine the functional significance of BRCA2 variants and show that it is comparable to the IARC system of classifying variants.
Collapse
|
16
|
Sirisena N, Biswas K, Sullivan T, Stauffer S, Cleveland L, Southon E, Dissanayake VHW, Sharan SK. Functional evaluation of five BRCA2 unclassified variants identified in a Sri Lankan cohort with inherited cancer syndromes using a mouse embryonic stem cell-based assay. Breast Cancer Res 2020; 22:43. [PMID: 32393398 PMCID: PMC7216543 DOI: 10.1186/s13058-020-01272-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022] Open
Abstract
Next-generation sequencing of Sri Lankan families with inherited cancer syndromes resulted in the identification of five BRCA2 variants of unknown clinical significance. Interpreting such variants poses significant challenges for both clinicians and patients. Using a mouse embryonic stem cell-based functional assay, we found I785V, N830D, and K2077N to be functionally indistinguishable from wild-type BRCA2. Specific but mild sensitivity to olaparib and reduction in homologous recombination (HR) efficiency suggest partial loss of function of the A262T variant. This variant is located in the N-terminal DNA binding domain of BRCA2 that can facilitate HR by binding to dsDNA/ssDNA junctions. P3039P is clearly pathogenic because of premature protein truncation caused by exon 23 skipping. These findings highlight the value of mouse embryonic stem cell-based assays for determining the functional significance of variants of unknown clinical significance and provide valuable information regarding risk estimation and genetic counseling of families carrying these BRCA2 variants.
Collapse
Affiliation(s)
- Nirmala Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, 8, Sri Lanka
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | | | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA.
| |
Collapse
|
17
|
Nguyen-Dumont T, MacInnis RJ, Steen JA, Theys D, Tsimiklis H, Hammet F, Mahmoodi M, Pope BJ, Park DJ, Mahmood K, Severi G, Bolton D, Milne RL, Giles GG, Southey MC. Rare germline genetic variants and risk of aggressive prostate cancer. Int J Cancer 2020; 147:2142-2149. [PMID: 32338768 DOI: 10.1002/ijc.33024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 01/02/2023]
Abstract
Few genetic risk factors have been demonstrated to be specifically associated with aggressive prostate cancer (PrCa). Here, we report a case-case study of PrCa comparing the prevalence of germline pathogenic/likely pathogenic (P/LP) genetic variants in 787 men with aggressive disease and 769 with nonaggressive disease. Overall, we observed P/LP variants in 11.4% of men with aggressive PrCa and 9.8% of men with nonaggressive PrCa (two-tailed Fisher's exact tests, P = .28). The proportion of BRCA2 and ATM P/LP variant carriers in men with aggressive PrCa exceeded that observed in men with nonaggressive PrCa; 18/787 carriers (2.3%) and 4/769 carriers (0.5%), P = .004, and 14/787 carriers (0.02%) and 5/769 carriers (0.01%), P = .06, respectively. Our findings contribute to the extensive international effort to interpret the genetic variation identified in genes included on gene-panel tests, for which there is currently an insufficient evidence-base for clinical translation in the context of PrCa risk.
Collapse
Affiliation(s)
- Tú Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason A Steen
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Derrick Theys
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Helen Tsimiklis
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Fleur Hammet
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Maryam Mahmoodi
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bernard J Pope
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,The University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, Victoria, Australia.,Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel J Park
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gianluca Severi
- CESP Inserm U1018, Faculté de Médecine - Université Paris-Sud, Faculté de Médecine - UVSQ, Université Paris-Saclay, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Damien Bolton
- Department of Surgery, The University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,The University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Variants of uncertain significance in the era of high-throughput genome sequencing: a lesson from breast and ovary cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:46. [PMID: 32127026 PMCID: PMC7055088 DOI: 10.1186/s13046-020-01554-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The promising expectations about personalized medicine have opened the path to routine large-scale sequencing and increased the importance of genetic counseling for hereditary cancers, among which hereditary breast and ovary cancers (HBOC) have a major impact. High-throughput sequencing, or Next-Generation Sequencing (NGS), has improved cancer patient management, ameliorating diagnosis and treatment decisions. In addition to its undeniable clinical utility, NGS is also unveiling a large number of variants that we are still not able to clearly define and classify, the variants of uncertain significance (VUS), which account for about 40% of total variants. At present, VUS use in the clinical context is challenging. Medical reports may omit this kind of data and, even when included, they limit the clinical utility of genetic information. This has prompted the scientific community to seek easily applicable tests to accurately classify VUS and increase the amount of usable information from NGS data. In this review, we will focus on NGS and classification systems for VUS investigation, with particular attention on HBOC-related genes and in vitro functional tests developed for ameliorating and accelerating variant classification in cancer.
Collapse
|
19
|
Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, Jongco AM, Keller MD, Kobrynski LJ, Kumanovics A, Lawrence MG, Leiding JW, Lugar PL, Orange JS, Patel K, Platt CD, Puck JM, Raje N, Romberg N, Slack MA, Sullivan KE, Tarrant TK, Torgerson TR, Walter JE. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: A working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2019; 145:46-69. [PMID: 31568798 DOI: 10.1016/j.jaci.2019.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/02/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Genetic testing has become an integral component of the diagnostic evaluation of patients with suspected primary immunodeficiency diseases. Results of genetic testing can have a profound effect on clinical management decisions. Therefore clinical providers must demonstrate proficiency in interpreting genetic data. Because of the need for increased knowledge regarding this practice, the American Academy of Allergy, Asthma & Immunology Primary Immunodeficiency Diseases Committee established a work group that reviewed and summarized information concerning appropriate methods, tools, and resources for evaluating variants identified by genetic testing. Strengths and limitations of tests frequently ordered by clinicians were examined. Summary statements and tables were then developed to guide the interpretation process. Finally, the need for research and collaboration was emphasized. Greater understanding of these important concepts will improve the diagnosis and management of patients with suspected primary immunodeficiency diseases.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex.
| | - Alice Y Chan
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Janet Chou
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Morna J Dorsey
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Joud Hajjar
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Artemio M Jongco
- Departments of Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY; Center for Health Innovations and Outcomes Research, Feinstein Institute for Medical Research, Great Neck, NY; Division of Allergy & Immunology, Cohen Children's Medical Center of New York, Great Neck, NY
| | - Michael D Keller
- Department of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - Lisa J Kobrynski
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Monica G Lawrence
- Department of Medicine, Division of Asthma, Allergy and Immunology, University of Virginia Health System, Charlottesville, Va
| | - Jennifer W Leiding
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Cancer and Blood Disorders Institute, Johns Hopkins-All Children's Hospital, St Petersburg, Fla
| | - Patricia L Lugar
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC
| | - Jordan S Orange
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY; New York Presbyterian Morgan Stanley Children's Hospital, New York, NY
| | - Kiran Patel
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Craig D Platt
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Nikita Raje
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Mo; Division of Allergy/Asthma/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Neil Romberg
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Maria A Slack
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, NY; Department of Pediatrics, Division of Pediatric Allergy and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Kathleen E Sullivan
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Jolan E Walter
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy Immunology, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
20
|
Siavrienė E, Mikštienė V, Radzevičius D, Maldžienė Ž, Rančelis T, Petraitytė G, Tamulytė G, Kavaliauskienė I, Šarkinas L, Utkus A, Kučinskas V, Preikšaitienė E. Novel GLI3 variant causes Greig cephalopolysyndactyly syndrome in three generations of a Lithuanian family. Mol Genet Genomic Med 2019; 7:e878. [PMID: 31325247 PMCID: PMC6732282 DOI: 10.1002/mgg3.878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Background Preaxial polydactyly type IV, also referred as polysyndactyly, has been described in a few syndromes. We present three generations of a family with preaxial polydactyly type IV and other clinical features of Greig cephalopolysyndactyly syndrome (GCPS). Methods and results Sequencing analysis of the GLI3 coding region identified a novel donor splice site variant NC_000007.14(NM_000168.6):c.473+3A>T in the proband and the same pathogenic variant was subsequently identified in other affected family members. Functional analysis based on Sanger sequencing of the proband's complementary DNA (cDNA) sample revealed that the splice site variant c.473+3A>T disrupts the original donor splice site, thus leading to exon 4 skipping. Based on further in silico analysis, this pathogenic splice site variant consequently results in a truncated protein NP_000159.3:p.(His123Argfs*57), which lacks almost all functionally important domains. Therefore, functional cDNA analysis confirmed that the haploinsufficiency of the GLI3 is the cause of GCPS in the affected family members. Conclusion Despite the evidence provided, pathogenic variants in the GLI3 do not always definitely correlate with syndromic or nonsyndromic clinical phenotypes associated with this gene. For this reason, further transcriptomic and proteomic evaluation could be suggested.
Collapse
Affiliation(s)
- Evelina Siavrienė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Violeta Mikštienė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Darius Radzevičius
- The Children's Hospital, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Živilė Maldžienė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Tautvydas Rančelis
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Gunda Petraitytė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | | | - Ingrida Kavaliauskienė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Laurynas Šarkinas
- The Children's Hospital, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
21
|
Fraile-Bethencourt E, Valenzuela-Palomo A, Díez-Gómez B, Caloca MJ, Gómez-Barrero S, Velasco EA. Minigene Splicing Assays Identify 12 Spliceogenic Variants of BRCA2 Exons 14 and 15. Front Genet 2019; 10:503. [PMID: 31191615 PMCID: PMC6546720 DOI: 10.3389/fgene.2019.00503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
A relevant fraction of BRCA2 variants is associated with splicing alterations and with an increased risk of hereditary breast and ovarian cancer (HBOC). In this work, we have carried out a thorough study of variants from BRCA2 exons 14 and 15 reported at mutation databases. A total of 294 variants from exons 14 and 15 and flanking intronic sequences were analyzed with the online splicing tools NNSplice and Human Splicing Finder. Fifty-three out of these 294 variants were selected as candidate splicing variants. All variants but one, were introduced into the minigene MGBR2_ex14-20 (with exons 14–20) by site-directed mutagenesis and assayed in MCF-7 cells. Twelve of the remaining 52 variants (23.1%) impaired splicing at different degrees, yielding from 5 to 100% of aberrant transcripts. Nine variants affected the natural acceptor or donor sites of both exons and three affected putative enhancers or silencers. Fluorescent capillary electrophoresis revealed at least 10 different anomalous transcripts: (E14q5), Δ (E14p10), Δ(E14p246), Δ(E14q256), Δ(E14), Δ(E15p12), Δ(E15p13), Δ(E15p83), Δ(E15) and a 942-nt fragment of unknown structure. All transcripts, except for Δ(E14q256) and Δ(E15p12), are expected to truncate the BRCA2 protein. Nine variants induced severe splicing aberrations with more than 90% of abnormal transcripts. Thus, according to the guidelines of the American College of Medical Genetics and Genomics, eight variants should be classified as pathogenic (c.7008-2A > T, c.7008-1G > A, c.7435+1G > C, c.7436-2A > T, c.7436-2A > G, c.7617+1G > A, c.7617+1G > T, and c.7617+2T > G), one as likely pathogenic (c.7008-3C > G) and three remain as variants of uncertain clinical significance or VUS (c.7177A > G, c.7447A > G and c.7501C > T). In conclusion, functional assays by minigenes constitute a valuable strategy to primarily check the splicing impact of DNA variants and their clinical interpretation. While bioinformatics predictions of splice site variants were accurate, those of enhancer or silencer variants were poor (only 3/23 spliceogenic variants) which showed weak impacts on splicing (∼5–16% of aberrant isoforms). So, the Exonic Splicing Enhancer and Silencer (ESE and ESS, respectively) prediction algorithms require further improvement.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - María José Caloca
- Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | | | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
22
|
Fraile-Bethencourt E, Valenzuela-Palomo A, Díez-Gómez B, Goina E, Acedo A, Buratti E, Velasco EA. Mis-splicing in breast cancer: identification of pathogenic BRCA2 variants by systematic minigene assays. J Pathol 2019; 248:409-420. [PMID: 30883759 DOI: 10.1002/path.5268] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
Abstract
Splicing disruption is a common mechanism of gene inactivation associated with germline variants of susceptibility genes. To study the role of BRCA2 mis-splicing in hereditary breast/ovarian cancer (HBOC), we performed a comprehensive analysis of variants from BRCA2 exons 2-9, as well as the initial characterization of the regulatory mechanisms of such exons. A pSAD-based minigene with exons 2-9 was constructed and validated in MCF-7 cells, producing the expected transcript (1016-nt/V1-BRCA2_exons_2-9-V2). DNA variants from mutational databases were analyzed by NNSplice and Human Splicing Finder softwares. To refine ESE-variant prediction, we mapped the regulatory regions through a functional strategy whereby 26 exonic microdeletions were introduced into the minigene and tested in MCF-7 cells. Thus, we identified nine spliceogenic ESE-rich intervals where ESE-variants may be located. Combining bioinformatics and microdeletion assays, 83 variants were selected and genetically engineered in the minigene. Fifty-three changes impaired splicing: 28 variants disrupted the canonical sites, four created new ones, 10 abrogated enhancers, eight created silencers and three caused a double-effect. Notably, nine spliceogenic-ESE variants were located within ESE-containing intervals. Capillary electrophoresis and sequencing revealed more than 23 aberrant transcripts, where exon skipping was the most common event. Interestingly, variant c.67G>A triggered the usage of a noncanonical GC-donor 4-nt upstream. Thirty-six variants that induced severe anomalies (>60% aberrant transcripts) were analyzed according to the ACMG guidelines. Thus, 28 variants were classified as pathogenic, five as likely pathogenic and three as variants of uncertain significance. Interestingly, 13 VUS were reclassified as pathogenic or likely pathogenic variants. In conclusion, a large fraction of BRCA2 variants (∼64%) provoked splicing anomalies lending further support to the high prevalence of this disease-mechanism. The low accuracy of ESE-prediction algorithms may be circumvented by functional ESE-mapping that represents an optimal strategy to identify spliceogenic ESE-variants. Finally, systematic functional assays by minigenes depict a valuable tool for the initial characterization of splicing anomalies and the clinical interpretation of variants. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Elisa Goina
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Acedo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
23
|
Usefulness and Limitations of Comprehensive Characterization of mRNA Splicing Profiles in the Definition of the Clinical Relevance of BRCA1/2 Variants of Uncertain Significance. Cancers (Basel) 2019; 11:cancers11030295. [PMID: 30832263 PMCID: PMC6468917 DOI: 10.3390/cancers11030295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Highly penetrant variants of BRCA1/2 genes are involved in hereditary predisposition to breast and ovarian cancer. The detection of pathogenic BRCA variants has a considerable clinical impact, allowing appropriate cancer-risk management. However, a major drawback is represented by the identification of variants of uncertain significance (VUS). Many VUS potentially affect mRNA splicing, making transcript analysis an essential step for the definition of their pathogenicity. Here, we characterize the impact on splicing of ten BRCA1/2 variants. Aberrant splicing patterns were demonstrated for eight variants whose alternative transcripts were fully characterized. Different events were observed, including exon skipping, intron retention, and usage of de novo and cryptic splice sites. Transcripts with premature stop codons or in-frame loss of functionally important residues were generated. Partial/complete splicing effect and quantitative contribution of different isoforms were assessed, leading to variant classification according to Evidence-based Network for the Interpretation of Mutant Alleles (ENIGMA) consortium guidelines. Two variants could be classified as pathogenic and two as likely benign, while due to a partial splicing effect, six variants remained of uncertain significance. The association with an undefined tumor risk justifies caution in recommending aggressive risk-reduction treatments, but prevents the possibility of receiving personalized therapies with potential beneficial effect. This indicates the need for applying additional approaches for the analysis of variants resistant to classification by gene transcript analyses.
Collapse
|
24
|
A novel LRAT mutation affecting splicing in a family with early onset retinitis pigmentosa. Hum Genomics 2018; 12:35. [PMID: 29973277 PMCID: PMC6033202 DOI: 10.1186/s40246-018-0165-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023] Open
Abstract
Background and purpose Retinitis pigmentosa is an important cause of severe visual dysfunction. This study reports a novel splicing mutation in the lecithin retinol acyltransferase (LRAT) gene associated with early onset retinitis pigmentosa and characterizes the effects of this mutation on mRNA splicing and structure. Methods Genome-wide linkage analysis followed by dideoxy sequencing of the linked candidate gene LRAT was performed in a consanguineous Pakistani family with autosomal recessive retinitis pigmentosa. In silico prediction and minigene assays were used to investigate the effects of the presumptive splicing mutation. Results ARRP in this family was linked to chromosome 4q31.21-q32.1 with a maximum LOD score of 5.40. A novel homozygous intronic mutation (NM_004744.4: c.541-15T>G) was detected in LRAT. In silico tools predicted that the AG-creating mutation would activate an intronic cryptic acceptor site, but cloning fragments of wild-type and mutant sequences of LRAT into Exontrap Cloning Vector pET01 and Expression Cloning Vector pCMV-(DYKD4K)-C showed that the primary effect of the sequence change was to weaken the nearby authentic acceptor site and cause exon skipping, with only a small fraction of transcripts utilizing the acceptor site producing the reference transcript. Conclusions The c.541-15T>G mutation in LRAT results in aberrant splicing and is therefore predicted to be causal for the early onset retinitis pigmentosa in this family. In addition, this work suggests that minigenes adapted to the specific gene and exon may need to be designed for variants in the first and last exon and intron to mimic the authentic splicing mechanism in vivo. Electronic supplementary material The online version of this article (10.1186/s40246-018-0165-3) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Fraile-Bethencourt E, Valenzuela-Palomo A, Díez-Gómez B, Acedo A, Velasco EA. Identification of Eight Spliceogenic Variants in BRCA2 Exon 16 by Minigene Assays. Front Genet 2018; 9:188. [PMID: 29881398 PMCID: PMC5977032 DOI: 10.3389/fgene.2018.00188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
Genetic testing of BRCA1 and BRCA2 identifies a large number of variants of uncertain clinical significance whose functional and clinical interpretations pose a challenge for genetic counseling. Interestingly, a relevant fraction of DNA variants can disrupt the splicing process in cancer susceptibility genes. We have tested more than 200 variants throughout 19 BRCA2 exons mostly by minigene assays, 54% of which displayed aberrant splicing, thus confirming the utility of this assay to check genetic variants in the absence of patient RNA. Our goal was to investigate BRCA2 exon 16 with a view to characterizing spliceogenic variants recorded at the mutational databases. Seventy-two different BIC and UMD variants were analyzed with NNSplice and Human Splicing Finder, 12 of which were selected because they were predicted to disrupt essential splice motifs: canonical splice sites (ss; eight variants) and exonic/intronic splicing enhancers (four variants). These 12 candidate variants were introduced into the BRCA2 minigene with seven exons (14–20) by site-directed mutagenesis and then transfected into MCF-7 cells. Seven variants (six intronic and one missense) induced complete abnormal splicing patterns: c.7618-2A>T, c.7618-2A>G, c.7618-1G>C, c.7618-1G>A, c.7805G>C, c.7805+1G>A, and c.7805+3A>C, as well as a partial anomalous outcome by c.7802A>G. They generated at least 10 different transcripts: Δ16p44 (alternative 3’ss 44-nt downstream; acceptor variants), Δ16 (exon 16-skipping; donor variants), Δ16p55 (alternative 3’ss 55-nt downstream), Δ16q4 (alternative 5’ss 4-nt upstream), Δ16q100 (alternative 5’ss 4-nt upstream), ▾16q20 (alternative 5’ss 20-nt downstream), as well as minor (Δ16p93 and Δ16,17p69) and uncharacterized transcripts of 893 and 954 nucleotides. Isoforms Δ16p44, Δ16, Δ16p55, Δ16q4, Δ16q100, and ▾16q20 introduced premature termination codons which presumably inactivate BRCA2. According to the guidelines the American College of Medical Genetics and Genomics these eight variants could be classified as pathogenic or likely pathogenic whereas the Evidence-based Network for the Interpretation of Germline Mutant Alleles rules suggested seven class 4 and one class 3 variants. In conclusion, our study highlights the relevance of splicing functional assays by hybrid minigenes for the clinical classification of genetic variations. Hence, we provide new data about spliceogenic variants of BRCA2 exon 16 that are directly correlated with breast cancer susceptibility.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Alberto Acedo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain.,Biome Makers Inc., San Francisco, CA, United States
| | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
26
|
Fraile-Bethencourt E, Valenzuela-Palomo A, Díez-Gómez B, Infante M, Durán M, Marcos G, Lastra E, Gómez-Barrero S, Velasco EA. Genetic dissection of the BRCA2 promoter and transcriptional impact of DNA variants. Breast Cancer Res Treat 2018; 171:53-63. [PMID: 29766361 DOI: 10.1007/s10549-018-4826-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/16/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE Promoter mutations may affect transcription and can be associated with human diseases. However, the promoters of the breast cancer (BC) genes are not regularly screened. Our goal was to investigate the BRCA2 promoter in order to study a possible correlation between impaired transcription and disease. METHODS The proximal and core promoter of the BRCA2 gene was sequenced in 95 high-risk BC patients. A BRCA2-promoter insert [- 938 to + 312 from the transcription start site (TSS)] was generated and cloned into the firefly luciferase vector pGL4.10. Promoter variants and deletions were introduced by site-directed mutagenesis and quantified by Dual-Luciferase assays and semi-quantitative RT-PCR. RESULTS Three different variants were detected in high-risk BC patients: rs3092989, rs206118, and rs563971900. Functional mapping of 13 overlapping deletions revealed four down-regulating segments (TSS positions): -59_-10del/µdel3 (16% of activity of the wild-type construct), -104_-55del/µdel4 (62%), -239_-190del/µdel7 (39%), -464_-415/µdel12 (78%), suggesting the presence therein of putative transcriptional activator motifs. Additionally, six microdeletions rendered luciferase overexpression: +32_+81del/µdel1 (356%), -14_+36del/µdel2 (180%), -194_-145del/µdel6 (154%), -284_-235del/µdel8 (168%), -329_-280del/µdel9 (111%), and -509_-460del/µdel13 (139%), which is indicative of repressor elements. Functional assays of 15 promoter variants (including those detected in patients) showed that ten of them significantly altered expression with seven up-regulating (113-163%) and three down-regulating (rs551887850_G, rs570548398_T, rs55880202_T; 72-83%) SNPs. Eight of them were located in an ENCODE-DNase Hypersensitive Cluster (TSS - 185 to + 105) where most active transcriptional motifs are known to be placed. CONCLUSIONS BRCA2 expression is highly sensitive to promoter variations as most of them induced relevant changes. Moreover, we mapped critical regions of the BRCA2 promoter that may constitute potential targets for regulatory variants. Three SNPs moderately decreased luciferase activity, but confirmation of its potential pathogenicity requires further analysis. These data reinforce the need to screen the promoter regions of breast cancer genes with a view to discovering novel deleterious mutations.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Grupo de Splicing y Cáncer, Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC-UVa), Sanz y Forés 3, 47003, Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Grupo de Splicing y Cáncer, Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC-UVa), Sanz y Forés 3, 47003, Valladolid, Spain
| | - Beatriz Díez-Gómez
- Grupo de Splicing y Cáncer, Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC-UVa), Sanz y Forés 3, 47003, Valladolid, Spain
| | - Mar Infante
- Cancer Genetics, Instituto de Biología y Genética Molecular (UVa-CSIC), Valladolid, Spain
| | - Mercedes Durán
- Cancer Genetics, Instituto de Biología y Genética Molecular (UVa-CSIC), Valladolid, Spain
| | - Germán Marcos
- Servicio de Oncología, Hospital Río Hortega, Valladolid, Spain
| | - Enrique Lastra
- Servicio de Oncología, Hospital Universitario de Burgos, Burgos, Spain
| | | | - Eladio A Velasco
- Grupo de Splicing y Cáncer, Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC-UVa), Sanz y Forés 3, 47003, Valladolid, Spain.
| |
Collapse
|
27
|
Dutil J, Godoy L, Rivera-Lugo R, Arroyo N, Albino E, Negrón L, Monteiro AN, Matta JL, Echenique M. No Evidence for the Pathogenicity of the BRCA2 c.6937 + 594T>G Deep Intronic Variant: A Case-Control Analysis. Genet Test Mol Biomarkers 2018; 22:85-89. [PMID: 29356578 DOI: 10.1089/gtmb.2017.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The role of deep intronic variants in hereditary cancer susceptibility has been largely understudied. Previously, the BRCA2 c.6937 + 594T>G variant has been shown to preferentially promote the inclusion of a 95 nucleotide cryptic exon and to introduce a premature termination codon. Our objective was to further assess the pathogenicity of the BRCA2 c.6937 + 594T>G deep intronic variant. PATIENTS AND METHODS We examined the association between BRCA2 c.6937 + 594T>G and breast cancer (BC) risk in 464 BC cases and 497 noncancer controls from Puerto Rico. RESULTS The overall frequency of the G allele was 2.1% in this population. There was no association between the TG/GG genotypes and BC risk in the uncorrected model and after correcting for confounders. There was only one carrier of the GG genotype. This individual did not have personal or family history of cancer and did not meet the National Comprehensive Cancer Network criteria for hereditary cancer genetic testing. CONCLUSIONS Although previous work has demonstrated that the BRCA2 c.6937 + 594T>G variant affects splicing, this association study does not support a pathogenic role for the BRCA2 c.6937 + 594T>G intronic variant in breast and ovarian cancer syndrome susceptibility. Furthermore, it emphasizes the need to take into account multiple diverse populations in association studies for the assessment of variant pathogenicity.
Collapse
Affiliation(s)
- Julie Dutil
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Lenin Godoy
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Rafael Rivera-Lugo
- 2 Department of Biology, University of Puerto Rico in Ponce , Ponce, Puerto Rico
| | - Nelly Arroyo
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Elinette Albino
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Luis Negrón
- 3 Hematology-Oncology Program, VA Caribbean Healthcare System , San Juan, Puerto Rico
| | - Alvaro N Monteiro
- 4 Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa, Florida
| | - Jaime L Matta
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | | |
Collapse
|
28
|
Wu H, Wu X, Liang Z. Impact of germline and somatic BRCA1/2 mutations: tumor spectrum and detection platforms. Gene Ther 2017; 24:601-609. [PMID: 28771233 DOI: 10.1038/gt.2017.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022]
Abstract
The BRCA1/2 genes are long and complex and mutation carriers are at risk of developing malignancies, mainly of gynecological origin. Various mutations arise in these genes and their characterization is a time-consuming, cost intensive, complicated process. Tumors of BRCA1/2 origin have distinct molecular and histological features that can impact responses to therapy. Therefore, detection of these mutations constitutes an important step in the risk assessment, prevention strategy and treatment of subjects. Although Sanger sequencing is the gold standard for the detection of genetic mutations, several next generation sequencing-based high throughput platforms have been developed and adapted for the detection of BRCA1/2 mutations. This review provides a comprehensive overview of the sequencing platforms available for the screening and identification of these mutations. We also summarize what is known about the different types of mutations that arise in these genes and the tumor spectra they result in. Finally, we present a short discussion on existing clinical guidelines which assist physicians in the decision-making process. These parameters have important consequences for the management of patients and an urgent need exists for the development of detection platforms that are cost effective and can provide clinicians with conclusive results within a significantly shorter time.
Collapse
Affiliation(s)
- H Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - X Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Z Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Systematic analysis of splicing defects in selected primary immunodeficiencies-related genes. Clin Immunol 2017; 180:33-44. [DOI: 10.1016/j.clim.2017.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/03/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
|
30
|
Lokki AI, Kaartokallio T, Holmberg V, Onkamo P, Koskinen LLE, Saavalainen P, Heinonen S, Kajantie E, Kere J, Kivinen K, Pouta A, Villa PM, Hiltunen L, Laivuori H, Meri S. Analysis of Complement C3 Gene Reveals Susceptibility to Severe Preeclampsia. Front Immunol 2017; 8:589. [PMID: 28611769 PMCID: PMC5446983 DOI: 10.3389/fimmu.2017.00589] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2017] [Indexed: 11/29/2022] Open
Abstract
Preeclampsia (PE) is a common vascular disease of pregnancy with genetic predisposition. Dysregulation of the complement system has been implicated, but molecular mechanisms are incompletely understood. In this study, we determined the potential linkage of severe PE to the most central complement gene, C3. Three cohorts of Finnish patients and controls were recruited for a genetic case-control study. Participants were genotyped using Sequenom genotyping and Sanger sequencing. Initially, we studied 259 Finnish patients with severe PE and 426 controls from the Southern Finland PE and the Finnish population-based PE cohorts. We used a custom-made single nucleotide polymorphism (SNP) genotyping assay consisting of 98 SNPs in 18 genes that encode components of the complement system. Following the primary screening, C3 was selected as the candidate gene and consequently Sanger sequenced. Fourteen SNPs from C3 were also genotyped by a Sequenom panel in 960 patients with severe PE and 705 controls, including already sequenced individuals. Three of the 43 SNPs observed within C3 were associated with severe PE: rs2287845 (p = 0.038, OR = 1.158), rs366510 (p = 0.039, OR = 1.158), and rs2287848 (p = 0.041, OR = 1.155). We also discovered 16 SNP haplotypes with extreme linkage disequilibrium in the middle of the gene with a protective (p = 0.044, OR = 0.628) or a predisposing (p = 0.011, OR = 2.110) effect to severe PE depending on the allele combination. Genetic variants associated with PE are located in key domains of C3 and could thereby influence the function of C3. This is, as far as we are aware, the first candidate gene in the complement system with an association to a clinically relevant PE subphenotype, severe PE. The result highlights a potential role for the complement system in the pathogenesis of PE and may help in defining prognostic and therapeutic subgroups of preeclamptic women.
Collapse
Affiliation(s)
- A Inkeri Lokki
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Tea Kaartokallio
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Holmberg
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Clinic of Infectious Diseases, HYKS Inflammation Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Lotta L E Koskinen
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Päivi Saavalainen
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Seppo Heinonen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Eero Kajantie
- Chronic Disease Prevention Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,PEDEGO Research Unit, MRC Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Folkhälsan Institute of Genetics, Helsinki, Finland.,Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Katja Kivinen
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Anneli Pouta
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Government Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Pia M Villa
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Functional classification of DNA variants by hybrid minigenes: Identification of 30 spliceogenic variants of BRCA2 exons 17 and 18. PLoS Genet 2017; 13:e1006691. [PMID: 28339459 PMCID: PMC5384790 DOI: 10.1371/journal.pgen.1006691] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 04/07/2017] [Accepted: 03/14/2017] [Indexed: 11/30/2022] Open
Abstract
Mutation screening of the breast cancer genes BRCA1 and BRCA2 identifies a large fraction of variants of uncertain clinical significance (VUS) whose functional and clinical interpretations pose a challenge for genomic medicine. Likewise, an increasing amount of evidence indicates that genetic variants can have deleterious effects on pre-mRNA splicing. Our goal was to investigate the impact on splicing of a set of reported variants of BRCA2 exons 17 and 18 to assess their role in hereditary breast cancer and to identify critical regulatory elements that may constitute hotspots for spliceogenic variants. A splicing reporter minigene with BRCA2 exons 14 to-20 (MGBR2_ex14-20) was constructed in the pSAD vector. Fifty-two candidate variants were selected with splicing prediction programs, introduced in MGBR2_ex14-20 by site-directed mutagenesis and assayed in triplicate in MCF-7 cells. Wild type MGBR2_ex14-20 produced a stable transcript of the expected size (1,806 nucleotides) and structure (V1-[BRCA2_exons_14–20]–V2). Functional mapping by microdeletions revealed essential sequences for exon recognition on the 3’ end of exon 17 (c.7944-7973) and the 5’ end of exon 18 (c.7979-7988, c.7999-8013). Thirty out of the 52 selected variants induced anomalous splicing in minigene assays with >16 different aberrant transcripts, where exon skipping was the most common event. A wide range of splicing motifs were affected including the canonical splice sites (15 variants), novel alternative sites (3 variants), the polypyrimidine tract (3 variants) and enhancers/silencers (9 variants). According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), 20 variants could be classified as pathogenic (c.7806-2A>G, c.7806-1G>A, c.7806-1G>T, c.7806-1_7806-2dup, c.7976+1G>A, c.7977-3_7978del, c.7977-2A>T, c.7977-1G>T, c.7977-1G>C, c.8009C>A, c.8331+1G>T and c.8331+2T>C) or likely pathogenic (c.7806-9T>G, c.7976G>C, c.7976G>A, c.7977-7C>G, c.7985C>G, c.8023A>G, c.8035G>T and c.8331G>A), accounting for 30.8% of all pathogenic/likely pathogenic variants of exons 17–18 at the BRCA Share database. The remaining 8 variants (c.7975A>G, c.7977-6T>G, c.7988A>T, c.7992T>A, c.8007A>G, c.8009C>T, c.8009C>G, and c.8072C>T) induced partial splicing anomalies with important ratios of the full-length transcript (≥70%), so that they remained classified as VUS. Aberrant splicing is therefore especially prevalent in BRCA2 exons 17 and 18 due to the presence of active ESEs involved in exon recognition. Splicing functional assays with minigenes are a valuable strategy for the initial characterization of the splicing outcomes and the subsequent clinical interpretation of variants of any disease-gene, although these results should be checked, whenever possible, against patient RNA. A significant proportion of disease-causing mutations of inherited disorders impair splicing. Massive sequencing projects of genetic diseases generate thousands of sequence variations that require functional and clinical interpretations. We have shown that splicing reporter minigenes of the breast cancer genes BRCA1 and BRCA2 are useful tools to functionally test DNA variants. In this work, we have constructed a 7-exon BRCA2 minigene (exons 14 to 20) where we mapped critical splicing regulatory sequences and tested 52 selected variants of exons 17 and 18 detected in breast cancer patients. We finely located three DNA segments on both exons that presumably contain splicing enhancer sequences. We observed that a total of 30 variants of any type disrupted the splicing patterns and, given the severity of their outcomes, we classified 20 of them as pathogenic or likely pathogenic. We also showed that a wide range of splicing elements were affected including canonical and novel 5’ and 3’ splice sites, the polypyrimidine tract and enhancer and silencer sequences. We concluded that splicing aberrations are frequent in Hereditary Breast and Ovarian Cancer and that minigenes are valuable tools to functionally classify DNA variants of any human disease gene under the splicing viewpoint.
Collapse
|
32
|
A Novel Pathogenic BRCA1 Splicing Variant Produces Partial Intron Retention in the Mature Messenger RNA. Int J Mol Sci 2016; 17:ijms17122145. [PMID: 28009814 PMCID: PMC5187945 DOI: 10.3390/ijms17122145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/30/2016] [Accepted: 12/14/2016] [Indexed: 01/17/2023] Open
Abstract
About 10% of all breast cancers arise from hereditary mutations that increase the risk of breast and ovarian cancers; and about 25% of these are associated with the BRCA1 or BRCA2 genes. The identification of BRCA1/BRCA2 mutations can enable physicians to better tailor the clinical management of patients; and to initiate preventive measures in healthy carriers. The pathophysiological significance of newly identified variants poses challenges for genetic counseling. We characterized a new BRCA1 variant discovered in a breast cancer patient during BRCA1/2 screening by next-generation sequencing. Bioinformatic predictions; indicating that the variant is probably pathogenetic; were verified using retro-transcription of the patient’s RNA followed by PCR amplifications performed on the resulting cDNA. The variant causes the loss of a canonic donor splice site at position +2 in BRCA1 intron 21; and consequently the partial retention of 156 bp of intron 21 in the patient’s transcript; which demonstrates that this novel BRCA1 mutation plays a pathogenetic role in breast cancer. These findings enabled us to initiate appropriate counseling and to tailor the clinical management of this family. Lastly; these data reinforce the importance of studying the effects of sequence variants at the RNA level to verify their potential role in disease onset.
Collapse
|
33
|
Ferreira PG, Oti M, Barann M, Wieland T, Ezquina S, Friedländer MR, Rivas MA, Esteve-Codina A, Rosenstiel P, Strom TM, Lappalainen T, Guigó R, Sammeth M. Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing. Sci Rep 2016; 6:32406. [PMID: 27617755 PMCID: PMC5019111 DOI: 10.1038/srep32406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022] Open
Abstract
Recent advances in the cost-efficiency of sequencing technologies enabled the combined DNA- and RNA-sequencing of human individuals at the population-scale, making genome-wide investigations of the inter-individual genetic impact on gene expression viable. Employing mRNA-sequencing data from the Geuvadis Project and genome sequencing data from the 1000 Genomes Project we show that the computational analysis of DNA sequences around splice sites and poly-A signals is able to explain several observations in the phenotype data. In contrast to widespread assessments of statistically significant associations between DNA polymorphisms and quantitative traits, we developed a computational tool to pinpoint the molecular mechanisms by which genetic markers drive variation in RNA-processing, cataloguing and classifying alleles that change the affinity of core RNA elements to their recognizing factors. The in silico models we employ further suggest RNA editing can moonlight as a splicing-modulator, albeit less frequently than genomic sequence diversity. Beyond existing annotations, we demonstrate that the ultra-high resolution of RNA-Seq combined from 462 individuals also provides evidence for thousands of bona fide novel elements of RNA processing-alternative splice sites, introns, and cleavage sites-which are often rare and lowly expressed but in other characteristics similar to their annotated counterparts.
Collapse
Affiliation(s)
- Pedro G. Ferreira
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
- Instituto de Investigação e Inovação em Saúde, (i3S) Universidade do Porto, 4200-625 Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-625 Porto, Portugal
| | - Martin Oti
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Matthias Barann
- Institute of Clinical Molecular Biology, Christians-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Suzana Ezquina
- Center for Human Genome and Stem-cell research (HUG-CELL), University of São Paulo (USP), 05508090 São Paulo, Brazil
| | - Marc R. Friedländer
- Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Manuel A. Rivas
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Anna Esteve-Codina
- Centre Nacional d’Anàlisi Genòmica, 08028 Barcelona, Catalonia, Spain
- Center for Research in Agricultural Genomics (CRAG), Autonome University of Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christians-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Tuuli Lappalainen
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
- Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Pompeu Fabra University (UPF), 08003 Barcelona, Catalonia, Spain
| | - Michael Sammeth
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
- National Center of Scientific Computing (LNCC), 2233-6000 Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Corman V, Potorac I, Manto F, Dassy S, Segers K, Thiry A, Bours V, Daly AF, Beckers A. Breast cancer in a male-to-female transsexual patient with a BRCA2 mutation. Endocr Relat Cancer 2016; 23:391-7. [PMID: 27000661 DOI: 10.1530/erc-16-0057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022]
Abstract
Breast cancer is rare in male patients. Certain predisposing factors, be they genetic (e.g., BRCA2 gene mutations) or hormonal (imbalance between estrogen and androgen levels), have been implicated in male breast cancer pathophysiology. Male-to-female (MtF) transsexualism is a condition that generally involves cross-sex hormone therapy. Anti-androgens and estrogens are used to mimic the female hormonal environment and induce the cross-sex secondary characteristics. In certain situations, the change in the hormonal milieu can be disadvantageous and favor the development of hormone-dependent pathologies, such as cancer. We report a case of a MtF transgender patient who developed breast cancer after 7 years of cross-sex hormonal therapy. The patient was found to be BRCA2 positive, and suffered recurrent disease. The patient was unaware of being a member of an established BRCA2 mutation-positive kindred. This represents the first case of a BRCA2 mutation predisposing to breast cancer in a MtF transgender patient.
Collapse
Affiliation(s)
- Vinciane Corman
- Department of EndocrinologyCentre Hospitalier Universitaire de Liege, Université de Liège, Liège, Belgium
| | - Iulia Potorac
- Department of EndocrinologyCentre Hospitalier Universitaire de Liege, Université de Liège, Liège, Belgium
| | | | - Sarah Dassy
- Department of OncologySt Nikolaus-Hospital, Eupen, Belgium
| | - Karin Segers
- Department of Human GeneticsCentre Hospitalier Universitaire de Liege, Université de Liège, Liège, Belgium
| | - Albert Thiry
- Department of Anatomo-pathologyCentre Hospitalier Universitaire de Liège, Université de Liège, Liège, Belgium
| | - Vincent Bours
- Department of Human GeneticsCentre Hospitalier Universitaire de Liege, Université de Liège, Liège, Belgium
| | - Adrian F Daly
- Department of EndocrinologyCentre Hospitalier Universitaire de Liege, Université de Liège, Liège, Belgium
| | - Albert Beckers
- Department of EndocrinologyCentre Hospitalier Universitaire de Liege, Université de Liège, Liège, Belgium
| |
Collapse
|
35
|
Vallée MP, Di Sera TL, Nix DA, Paquette AM, Parsons MT, Bell R, Hoffman A, Hogervorst FBL, Goldgar DE, Spurdle AB, Tavtigian SV. Adding In Silico Assessment of Potential Splice Aberration to the Integrated Evaluation of BRCA Gene Unclassified Variants. Hum Mutat 2016; 37:627-39. [PMID: 26913838 PMCID: PMC4907813 DOI: 10.1002/humu.22973] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 01/29/2016] [Indexed: 01/05/2023]
Abstract
Clinical mutation screening of the cancer susceptibility genes BRCA1 and BRCA2 generates many unclassified variants (UVs). Most of these UVs are either rare missense substitutions or nucleotide substitutions near the splice junctions of the protein coding exons. Previously, we developed a quantitative method for evaluation of BRCA gene UVs—the “integrated evaluation”—that combines a sequence analysis‐based prior probability of pathogenicity with patient and/or tumor observational data to arrive at a posterior probability of pathogenicity. One limitation of the sequence analysis‐based prior has been that it evaluates UVs from the perspective of missense substitution severity but not probability to disrupt normal mRNA splicing. Here, we calibrated output from the splice‐site fitness program MaxEntScan to generate spliceogenicity‐based prior probabilities of pathogenicity for BRCA gene variants; these range from 0.97 for variants with high probability to damage a donor or acceptor to 0.02 for exonic variants that do not impact a splice junction and are unlikely to create a de novo donor. We created a database http://priors.hci.utah.edu/PRIORS/ that provides the combined missense substitution severity and spliceogenicity‐based probability of pathogenicity for BRCA gene single‐nucleotide substitutions. We also updated the BRCA gene Ex‐UV LOVD, available at http://hci‐exlovd.hci.utah.edu, with 77 re‐evaluable variants.
Collapse
Affiliation(s)
- Maxime P Vallée
- Department of Molecular Medicine, CHUQ Research Center, Quebec City, Canada
| | - Tonya L Di Sera
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - David A Nix
- ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew M Paquette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Russel Bell
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrea Hoffman
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Sean V Tavtigian
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
36
|
Fackenthal JD, Yoshimatsu T, Zhang B, de Garibay GR, Colombo M, De Vecchi G, Ayoub SC, Lal K, Olopade OI, Vega A, Santamariña M, Blanco A, Wappenschmidt B, Becker A, Houdayer C, Walker LC, López-Perolio I, Thomassen M, Parsons M, Whiley P, Blok MJ, Brandão RD, Tserpelis D, Baralle D, Montalban G, Gutiérrez-Enríquez S, Díez O, Lazaro C, Spurdle AB, Radice P, de la Hoya M. Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples. J Med Genet 2016; 53:548-58. [PMID: 27060066 DOI: 10.1136/jmedgenet-2015-103570] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND BRCA1 and BRCA2 are the two principal tumour suppressor genes associated with inherited high risk of breast and ovarian cancer. Genetic testing of BRCA1/2 will often reveal one or more sequence variants of uncertain clinical significance, some of which may affect normal splicing patterns and thereby disrupt gene function. mRNA analyses are therefore among the tests used to interpret the clinical significance of some genetic variants. However, these could be confounded by the appearance of naturally occurring alternative transcripts unrelated to germline sequence variation or defects in gene function. To understand which novel splicing events are associated with splicing mutations and which are part of the normal BRCA2 splicing repertoire, a study was undertaken by members of the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium to characterise the spectrum of naturally occurring BRCA2 mRNA alternate-splicing events. METHODS mRNA was prepared from several blood and breast tissue-derived cells and cell lines by contributing ENIGMA laboratories. cDNA representing BRCA2 alternate splice sites was amplified and visualised using capillary or agarose gel electrophoresis, followed by sequencing. RESULTS We demonstrate the existence of 24 different BRCA2 mRNA alternate-splicing events in lymphoblastoid cell lines and both breast cancer and non-cancerous breast cell lines. CONCLUSIONS These naturally occurring alternate-splicing events contribute to the array of cDNA fragments that may be seen in assays for mutation-associated splicing defects. Caution must be observed in assigning alternate-splicing events to potential splicing mutations.
Collapse
Affiliation(s)
| | - Toshio Yoshimatsu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Bifeng Zhang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Giovanna De Vecchi
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Samantha C Ayoub
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kumar Lal
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Marta Santamariña
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Ana Blanco
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Barbara Wappenschmidt
- Medical Faculty, Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO) and Center for Molecular Medicine Cologne (CMMC), University of Cologne and University Hospital Cologne, Germany
| | - Alexandra Becker
- Medical Faculty, Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO) and Center for Molecular Medicine Cologne (CMMC), University of Cologne and University Hospital Cologne, Germany
| | - Claude Houdayer
- Service de Génétique and INSERM U830, Institut Curie and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Logan C Walker
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Irene López-Perolio
- Laboratorio de Oncología Molecular, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Michael Parsons
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Phillip Whiley
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rita D Brandão
- Maastricht Science Programme, Faculty of Humanities and Sciences, Maastricht University, Maastricht, The Netherlands
| | - Demis Tserpelis
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Diana Baralle
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain Clinical and Molecular Genetics Area, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Conxi Lazaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain
| | | | - Amanda B Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Miguel de la Hoya
- Laboratorio de Oncología Molecular, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
37
|
Pimentel H, Parra M, Gee SL, Mohandas N, Pachter L, Conboy JG. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res 2015; 44:838-51. [PMID: 26531823 PMCID: PMC4737145 DOI: 10.1093/nar/gkv1168] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/21/2015] [Indexed: 01/22/2023] Open
Abstract
Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.
Collapse
Affiliation(s)
- Harold Pimentel
- Department of Computer Science, University of California, Berkeley, CA 94720, USA
| | - Marilyn Parra
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sherry L Gee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065, USA
| | - Lior Pachter
- Department of Mathematics, University of California, Berkeley, CA 94720, USA Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - John G Conboy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
38
|
Acedo A, Hernández-Moro C, Curiel-García Á, Díez-Gómez B, Velasco EA. Functional classification of BRCA2 DNA variants by splicing assays in a large minigene with 9 exons. Hum Mutat 2015; 36:210-21. [PMID: 25382762 PMCID: PMC4371643 DOI: 10.1002/humu.22725] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/27/2014] [Indexed: 01/04/2023]
Abstract
Numerous pathogenic DNA variants impair the splicing mechanism in human genetic diseases. Minigenes are optimal approaches to test variants under the splicing viewpoint without the need of patient samples. We aimed to design a robust minigene construct of the breast cancer gene BRCA2 in order to investigate the impact of variants on splicing. BRCA2 exons 19-27 (MGBR2_ex19-27) were cloned in the new vector pSAD. It produced a large transcript of the expected size (2,174 nucleotides) and exon structure (V1-ex19-27-V2). Splicing assays showed that 18 (17 splice-site and 1 silencer variants) out of 40 candidate DNA variants induced aberrant patterns. Twenty-four anomalous transcripts were accurately detected by fluorescent-RT-PCR that were generated by exon-skipping, alternative site usage, and intron-retention events. Fourteen variants induced major anomalies and were predicted to disrupt protein function so they could be classified as pathogenic. Furthermore, minigene mimicked previously reported patient RNA outcomes of seven variants supporting the reproducibility of minigene assays. Therefore, a relevant fraction of variants are involved in breast cancer through splicing alterations. MGBR2_ex19-27 is the largest reported BRCA2 minigene and constitutes a valuable tool for the functional and clinical classification of sequence variations.
Collapse
Affiliation(s)
- Alberto Acedo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | | | | | | | | |
Collapse
|
39
|
van der Klift HM, Jansen AML, van der Steenstraten N, Bik EC, Tops CMJ, Devilee P, Wijnen JT. Splicing analysis for exonic and intronic mismatch repair gene variants associated with Lynch syndrome confirms high concordance between minigene assays and patient RNA analyses. Mol Genet Genomic Med 2015; 3:327-45. [PMID: 26247049 PMCID: PMC4521968 DOI: 10.1002/mgg3.145] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
A subset of DNA variants causes genetic disease through aberrant splicing. Experimental splicing assays, either RT-PCR analyses of patient RNA or functional splicing reporter minigene assays, are required to evaluate the molecular nature of the splice defect. Here, we present minigene assays performed for 17 variants in the consensus splice site regions, 14 exonic variants outside these regions, and two deep intronic variants, all in the DNA mismatch-repair (MMR) genes MLH1, MSH2, MSH6, and PMS2, associated with Lynch syndrome. We also included two deep intronic variants in APC and PKD2. For one variant (MLH1 c.122A>G), our minigene assay and patient RNA analysis could not confirm the previously reported aberrant splicing. The aim of our study was to further investigate the concordance between minigene splicing assays and patient RNA analyses. For 30 variants results from patient RNA analyses were available, either performed by our laboratory or presented in literature. Some variants were deliberately included in this study because they resulted in multiple aberrant transcripts in patient RNA analysis, or caused a splice effect other than the prevalent exon skip. While both methods were completely concordant in the assessment of splice effects, four variants exhibited major differences in aberrant splice patterns. Based on the present and earlier studies, together showing an almost 100% concordance of minigene assays with patient RNA analyses, we discuss the weight given to minigene splicing assays in the current criteria proposed by InSiGHT for clinical classification of MMR variants.
Collapse
Affiliation(s)
- Heleen M van der Klift
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands ; Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| | - Anne M L Jansen
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands
| | | | - Elsa C Bik
- Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| | - Carli M J Tops
- Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands ; Department of Pathology, Leiden University Medical Center Leiden, The Netherlands
| | - Juul T Wijnen
- Department of Human Genetics, Leiden University Medical Center Leiden, The Netherlands ; Department of Clinical Genetics, Leiden University Medical Center Leiden, The Netherlands
| |
Collapse
|
40
|
Lara B, Martínez MT, Blanco I, Hernández-Moro C, Velasco EA, Ferrarotti I, Rodriguez-Frias F, Perez L, Vazquez I, Alonso J, Posada M, Martínez-Delgado B. Severe alpha-1 antitrypsin deficiency in composite heterozygotes inheriting a new splicing mutation QOMadrid. Respir Res 2014; 15:125. [PMID: 25287719 PMCID: PMC4194419 DOI: 10.1186/s12931-014-0125-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/01/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Severe Alpha-1 Antitrypsin (AAT) deficiency is a hereditary condition caused by mutations in the SERPINA1 gene, which predisposes to lung emphysema and liver disease. It is usually related to PI*Z alleles, and less frequent to rare and null (QO) alleles. Null-AAT alleles represent the end of a continuum of variants associated with profound AAT deficiency and extremely increased risk of emphysema. METHODS A family with severe AAT deficiency was analyzed to achieve genetic diagnosis. The complete exons and introns of the SERPINA1 gene were sequenced and transcriptional analysis by RT-PCR was performed to characterize the effect of splicing variants found in the patients. In addition, a minigene MGserpa1_ex1b-1c was cloned into the pSAD vector to in vitro investigate the independent impact of variants on splicing process. RESULTS We report a new identified null allele (PI*QOMadrid) in two adult siblings with practically no detectable serum AAT. The PI*QOMadrid allele consist of a duplication of the thymine (T) in position +2 of the donor splice site of exon 1C (+2dupT). In these two subjects, PI*QOMadrid occurred in compound heterozygote combination with the previously described variant PI*QOPorto. Both QOMadrid and QOPorto variants are located very close together in a regulatory region of the SERPINA1 gene. Analysis of transcripts revealed that QOMadrid variant prevented the expression of transcripts from exon 1C, and then normally spliced RNA products are not expected in the liver of these patients. In addition, aberrant splicing patterns of both variants were clearly distinguished and quantified by functional in vitro assays lending further support to their pathogenicity. CONCLUSION Finding pathogenic mutations in non-coding regions of the SERPINA1 highlight the importance that regulatory regions might have in the disease. Regulatory regions should be seriously considered in discordant cases with severe AAT deficiency where no coding mutations were found.
Collapse
Affiliation(s)
- Beatriz Lara
- Servicio de Neumología, Hospital Universitario Arnau de Vilanova, Lleida, Spain
| | | | - Ignacio Blanco
- Board of Directors of the Alpha-1 Antitrypsin Deficiency Spanish Registry, Lung Foundation Breathe, Spanish Society of Pneumology (SEPAR), Barcelona, Spain
| | - Cristina Hernández-Moro
- Grupo de Splicing y Cáncer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Eladio A Velasco
- Grupo de Splicing y Cáncer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Ilaria Ferrarotti
- Center for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Molecular Medicine, Section of Pneumology, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | | | - Laura Perez
- Molecular Genetics Unit, Instituto de Investigación en Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2,200, Majadahonda, Madrid, 28220 Spain
| | - Irene Vazquez
- Molecular Genetics Unit, Instituto de Investigación en Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2,200, Majadahonda, Madrid, 28220 Spain
| | - Javier Alonso
- Human Genetics Area, Instituto de Investigación en Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Posada
- Instituto de Investigación en Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Spain RDR and CIBERER, Madrid, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Instituto de Investigación en Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda-Pozuelo Km 2,200, Majadahonda, Madrid, 28220 Spain
| |
Collapse
|
41
|
Sharma N, Sosnay PR, Ramalho AS, Douville C, Franca A, Gottschalk LB, Park J, Lee M, Vecchio-Pagan B, Raraigh KS, Amaral MD, Karchin R, Cutting GR. Experimental assessment of splicing variants using expression minigenes and comparison with in silico predictions. Hum Mutat 2014; 35:1249-59. [PMID: 25066652 DOI: 10.1002/humu.22624] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/13/2014] [Indexed: 12/28/2022]
Abstract
Assessment of the functional consequences of variants near splice sites is a major challenge in the diagnostic laboratory. To address this issue, we created expression minigenes (EMGs) to determine the RNA and protein products generated by splice site variants (n = 10) implicated in cystic fibrosis (CF). Experimental results were compared with the splicing predictions of eight in silico tools. EMGs containing the full-length Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) coding sequence and flanking intron sequences generated wild-type transcript and fully processed protein in Human Embryonic Kidney (HEK293) and CF bronchial epithelial (CFBE41o-) cells. Quantification of variant induced aberrant mRNA isoforms was concordant using fragment analysis and pyrosequencing. The splicing patterns of c.1585-1G>A and c.2657+5G>A were comparable to those reported in primary cells from individuals bearing these variants. Bioinformatics predictions were consistent with experimental results for 9/10 variants (MES), 8/10 variants (NNSplice), and 7/10 variants (SSAT and Sroogle). Programs that estimate the consequences of mis-splicing predicted 11/16 (HSF and ASSEDA) and 10/16 (Fsplice and SplicePort) experimentally observed mRNA isoforms. EMGs provide a robust experimental approach for clinical interpretation of splice site variants and refinement of in silico tools.
Collapse
Affiliation(s)
- Neeraj Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Santos C, Peixoto A, Rocha P, Pinto P, Bizarro S, Pinheiro M, Pinto C, Henrique R, Teixeira MR. Pathogenicity evaluation of BRCA1 and BRCA2 unclassified variants identified in Portuguese breast/ovarian cancer families. J Mol Diagn 2014; 16:324-34. [PMID: 24607278 DOI: 10.1016/j.jmoldx.2014.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 01/18/2023] Open
Abstract
Hereditary breast/ovarian cancer syndrome is caused by germline deleterious mutations in BRCA1 and BRCA2. A major problem of genetic testing and counseling is the finding of variants of uncertain significance (VUS). We sought to ascertain the pathogenicity of 25 BRCA1 and BRCA2 VUS identified in Portuguese families during genetic testing. We performed cosegregation analysis of VUS with cancer in families, evaluated their frequency in unaffected controls, and looked for loss of heterozygosity in tumors. In addition, three different bioinformatic algorithms were used (Interactive Biosoftware, ESEfinder, and PolyPhen). Finally, six VUS located in exon-intron boundaries were analyzed by RT-PCR. We found that seven variants segregated with the disease, six variants co-occurred with a pathogenic mutation in the same gene, and four variants co-occurred with a deleterious mutation in the other BRCA gene. By RT-PCR, we observed that four variants (BRCA1 c.4484G>T, BRCA2 c.682-2A>C, BRCA2 c.8488-1G>A, and BRCA2 c.8954-5A>G) disrupted splicing. After the combined analysis, we were able to classify 4 splicing variants as pathogenic mutations, 16 variants as neutral, and 3 variants as polymorphisms; only 2 variants remained classified as VUS. This work highlights the contribution of DNA, RNA, and in silico data to assess the pathogenicity of BRCA1/2 VUS, which, in turn, allows more accurate genetic counseling and clinical management of the families carrying them.
Collapse
Affiliation(s)
- Catarina Santos
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Patrícia Rocha
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Pedro Pinto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Susana Bizarro
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Manuela Pinheiro
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Carla Pinto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute, Porto, Portugal; Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal; Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
43
|
de Garibay GR, Acedo A, García-Casado Z, Gutiérrez-Enríquez S, Tosar A, Romero A, Garre P, Llort G, Thomassen M, Díez O, Pérez-Segura P, Díaz-Rubio E, Velasco EA, Caldés T, de la Hoya M. Capillary electrophoresis analysis of conventional splicing assays: IARC analytical and clinical classification of 31 BRCA2 genetic variants. Hum Mutat 2013; 35:53-7. [PMID: 24123850 DOI: 10.1002/humu.22456] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/23/2013] [Indexed: 11/07/2022]
Abstract
Rare sequence variants in "high-risk" disease genes, often referred as unclassified variants (UVs), pose a serious challenge to genetic testing. However, UVs resulting in splicing alterations can be readily assessed by in vitro assays. Unfortunately, analytical and clinical interpretation of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical International Agency for Research on Cancer guidelines), we performed qPCR and/or minigene assays. The latter were performed with a new splicing vector (pSAD) developed by authors of the present manuscript (patent #P201231427 CSIC). We have identified three clinically relevant Class-5 variants (c.682-2A>G, c.7617+1G>A, and c.8954-5A>G), and 27 analytical Class-2 variants (not inducing splicing alterations). In addition, we demonstrate that rs9534262 (c.7806-14T>C) is a BRCA2 splicing quantitative trait locus.
Collapse
Affiliation(s)
- Gorka Ruiz de Garibay
- Laboratorio de Oncología Molecular, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Comparative in vitro and in silico analyses of variants in splicing regions of BRCA1 and BRCA2 genes and characterization of novel pathogenic mutations. PLoS One 2013; 8:e57173. [PMID: 23451180 PMCID: PMC3579815 DOI: 10.1371/journal.pone.0057173] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/18/2013] [Indexed: 12/15/2022] Open
Abstract
Several unclassified variants (UVs) have been identified in splicing regions of disease-associated genes and their characterization as pathogenic mutations or benign polymorphisms is crucial for the understanding of their role in disease development. In this study, 24 UVs located at BRCA1 and BRCA2 splice sites were characterized by transcripts analysis. These results were used to evaluate the ability of nine bioinformatics programs in predicting genetic variants causing aberrant splicing (spliceogenic variants) and the nature of aberrant transcripts. Eleven variants in BRCA1 and 8 in BRCA2, including 8 not previously characterized at transcript level, were ascertained to affect mRNA splicing. Of these, 16 led to the synthesis of aberrant transcripts containing premature termination codons (PTCs), 2 to the up-regulation of naturally occurring alternative transcripts containing PTCs, and one to an in-frame deletion within the region coding for the DNA binding domain of BRCA2, causing the loss of the ability to bind the partner protein DSS1 and ssDNA. For each computational program, we evaluated the rate of non-informative analyses, i.e. those that did not recognize the natural splice sites in the wild-type sequence, and the rate of false positive predictions, i.e., variants incorrectly classified as spliceogenic, as a measure of their specificity, under conditions setting sensitivity of predictions to 100%. The programs that performed better were Human Splicing Finder and Automated Splice Site Analyses, both exhibiting 100% informativeness and specificity. For 10 mutations the activation of cryptic splice sites was observed, but we were unable to derive simple criteria to select, among the different cryptic sites predicted by the bioinformatics analyses, those actually used. Consistent with previous reports, our study provides evidences that in silico tools can be used for selecting splice site variants for in vitro analyses. However, the latter remain mandatory for the characterization of the nature of aberrant transcripts.
Collapse
|