1
|
Chen R, Liu D, Zhao H, Wang X. Renal medullary perfusion differs from that in renal cortex in patients with sepsis associated acute kidney injury and correlates with renal function prognosis: A prospective cohort study. Clin Hemorheol Microcirc 2024; 88:181-198. [PMID: 39121113 PMCID: PMC11492038 DOI: 10.3233/ch-242296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
BACKGROUND Renal perfusion status remains poorly studied at the bedside during sepsis associated acute kidney injury (AKI). The aim of the study is to examine renal cortical and medullary perfusion using renal contrast enhanced ultrasound (CEUS) in septic patients. METHODS In this single-center, prospective longitudinal study, septic patients were enrolled. Renal ultrasonography was performed within 24 hours of ICU admission (D1), then repeated at D3, D5 and D7. Each measurement consisted of three destruction replenishment sequences that were recorded for delayed analysis with dedicated software (Vuebox). Renal cortex and medulla perfusion were quantified by measuring time to peak (TTP). Receiver operating characteristic (ROC) analysis was used to evaluate 28-day renal prognosis. RESULTS The study included 149 septic patients, including 70 non-AKI patients and 79 AKI patients. Both renal cortical and medullary TTP was longer in the AKI group than in the non-AKI group. The difference of TTP between renal cortex and medulla in AKI group was higher than that in the non-AKI group (p = 0.000). Medullary TTP on day 3 had the best performance in predicting the prognosis of 28-day renal function (AUC 0.673, 95% confidence interval 0.528-0.818, p = 0.024), and its cut-off value was 45 s with a sensitivity 52.2% and a specificity of 82.1%. Cortical TTP on day 3 also had the performance in predicting the prognosis of 28-day renal function (AUC 0.657, 95% confidence interval 0.514-0.800, p = 0.039), and its cut-off value was 33 s with a sensitivity 78.3% and a specificity of 55.0%. CONCLUSION Renal medullary perfusion alterations differ from those in cortex, with the medulla is worse. Simultaneous and dynamic assessment of cortical and medullary microcirculatory flow alterations necessary. TTP on day 3, especially medullary TTP, seems to be a relatively stable and useful indicator, which correlates with 28-day renal function prognosis in septic patients. Early correction of renal cortical and medullary perfusion alterations reduces the incidence of adverse renal events.
Collapse
Affiliation(s)
- Rongping Chen
- Peking Union Medical College Hospital, Beijing, China
| | - Dawei Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Hua Zhao
- Peking Union Medical College Hospital, Beijing, China
| | - Xiaoting Wang
- Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
2
|
Ding L, Yin J, Xu X, Xie D, Xiang D, Tong P, Liu S, Yang X. Bufalin alleviates acute kidney injury by regulating NLRP3 inflammasome-mediated pyroptosis. Apoptosis 2023; 28:539-548. [PMID: 36652129 DOI: 10.1007/s10495-023-01815-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recently, there has been an increasing clinical incidence of acute kidney injury (AKI), which rapidly declines renal function and leads to massive tubular cell necrosis. Pyroptosis is an inflammatory process of cell death that is more rapid than apoptosis, which is accompanied by a massive release of inflammasome activation. In the study, we aim to explore whether Bufalin regulates the AKI through the pyroptosis pathway. METHODS We have established gentamicin (GM)-induced AKI animal and cell models to simulate the pathological conditions of kidney injury. The expression of renal injury and pyroptosis-related indicators were detected by western blot. PAS staining and IHC staining were used to analyze renal function. CCK-8 assay was performed to detect cell viability after AKI with different treatments. TUNEL staining, flow cytometry and immunofluorescence assays were performed to measure pyroptosis. RESULTS After intraperitoneal injection of GM in rats, renal function was significantly decreased, along with a significant increase of damaged and necrotic cells as suggested by renal tubular epithelial tissue sections. In addition, there was an increase in the pyroptosis-related markers expression and pyroptosis-induced cell death. Consistently, studies in vitro found that GM significantly induced pyroptosis and its associated protein expression in NRK52e cells. Whereas, the administration of Bufalin reversed these effects of GM in vivo and in vitro. Further, we found that Nigericin (NLRP3 agonist) could reversed the effects of bufalin on GM-induced pyroptosis. CONCLUSION Bufalin attenuates pyroptosis generated AKI by inhibiting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ling Ding
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Infectious Department, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueping Xu
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Xie
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongxiao Xiang
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pingfan Tong
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuyu Liu
- Department of General Practice, The Fourth Affiliated Hospital of Nanjing Medical University, 298 Nanpu road, Jiangbei New District, Nanjing, Jiangsu, China
| | - Xilan Yang
- Department of General Practice, The Fourth Affiliated Hospital of Nanjing Medical University, 298 Nanpu road, Jiangbei New District, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Vintrych P, Al-Obeidallah M, Horák J, Chvojka J, Valešová L, Nalos L, Jarkovská D, Matějovič M, Štengl M. Modeling sepsis, with a special focus on large animal models of porcine peritonitis and bacteremia. Front Physiol 2023; 13:1094199. [PMID: 36703923 PMCID: PMC9871395 DOI: 10.3389/fphys.2022.1094199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Infectious diseases, which often result in deadly sepsis or septic shock, represent a major global health problem. For understanding the pathophysiology of sepsis and developing new treatment strategies, reliable and clinically relevant animal models of the disease are necessary. In this review, two large animal (porcine) models of sepsis induced by either peritonitis or bacteremia are introduced and their strong and weak points are discussed in the context of clinical relevance and other animal models of sepsis, with a special focus on cardiovascular and immune systems, experimental design, and monitoring. Especially for testing new therapeutic strategies, the large animal (porcine) models represent a more clinically relevant alternative to small animal models, and the findings obtained in small animal (transgenic) models should be verified in these clinically relevant large animal models before translation to the clinical level.
Collapse
Affiliation(s)
- Pavel Vintrych
- Department of Cardiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Mahmoud Al-Obeidallah
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jan Horák
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Jiří Chvojka
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Lenka Valešová
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Lukáš Nalos
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Dagmar Jarkovská
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Martin Matějovič
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Milan Štengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia,*Correspondence: Milan Štengl,
| |
Collapse
|
4
|
Langaa SS, Mose FH, Fynbo CA, Theil J, Bech JN. Reliability of rubidium-82 PET/CT for renal perfusion determination in healthy subjects. BMC Nephrol 2022; 23:379. [DOI: 10.1186/s12882-022-02962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Changes in renal perfusion may play a pathophysiological role in hypertension and kidney disease, however to date, no method for renal blood flow (RBF) determination in humans has been implemented in clinical practice. In a previous study, we demonstrated that estimation of renal perfusion based on a single positron emission tomography/computed tomography (PET/CT) scan with Rubidium-82 (82Rb) is feasible and found an approximate 5% intra-assay coefficient of variation for both kidneys, indicative of a precise method.This study’s aim was to determine the day-to day variation of 82Rb PET/CT and to test the method’s ability to detect increased RBF induced by infusion of amino acids.
Methods
Seventeen healthy subjects underwent three dynamic 82Rb PET/CT scans over two examination days comprising: Day A, a single 8-minute dynamic scan and Day B, two scans performed before (baseline) and after RBF stimulation by a 2-hour amino acid-infusion. The order of examination days was determined by randomization. Time activity curves for arterial and renal activity with a 1-tissue compartment model were used for flow estimation; the K1 kinetic parameter representing renal 82Rb clearance. Day-to-day variation was calculated based on the difference between the unstimulated K1 values on Day A and Day B and paired t-testing was performed to compare K1 values at baseline and after RBF stimulation on Day B.
Results
Day-to-day variation was observed to be 5.5% for the right kidney and 6.0% for the left kidney (n = 15 quality accepted scans). K1 values determined after amino acid-infusion were significantly higher than pre-infusion values (n = 17, p = 0.001). The mean percentage change in K1 from baseline was 13.2 ± 12.9% (range − 10.4 to 35.5) for the right kidney; 12.9 ± 13.2% (range − 15.7 to 35.3) for the left kidney.
Conclusion
Day-to-day variation is acceptably low. A significant K1 increase from baseline is detected after application of a known RBF stimulus, indicating that 82Rb PET/CT scanning can provide a precise method for evaluation of RBF and it is able to determine changes herein.
Clinical Trial Registration
EU Clinical Trials Register, 2017-005008-88. Registered 18/01/2018.
Collapse
|
5
|
Watchorn J, Huang D, Bramham K, Hutchings S. Decreased renal cortical perfusion, independent of changes in renal blood flow and sublingual microcirculatory impairment, is associated with the severity of acute kidney injury in patients with septic shock. Crit Care 2022; 26:261. [PMID: 36050737 PMCID: PMC9438253 DOI: 10.1186/s13054-022-04134-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background Reduced renal perfusion has been implicated in the development of septic AKI. However, the relative contributions of macro- and microcirculatory blood flow and the extent to which impaired perfusion is an intrinsic renal phenomenon or part of a wider systemic shock state remains unclear.
Methods Single-centre prospective longitudinal observational study was carried out. Assessments were made at Day 0, 1, 2 and 4 after ICU admission of renal cortical perfusion in 50 patients with septic shock and ten healthy volunteers using contrast-enhanced ultrasound (CEUS). Contemporaneous measurements were made using transthoracic echocardiography of cardiac output. Renal artery blood flow was calculated using velocity time integral and vessel diameter. Assessment of the sublingual microcirculation was made using handheld video microscopy. Patients were classified based on the degree of AKI: severe = KDIGO 3 v non-severe = KDIGO 0–2. Results At study enrolment, patients with severe AKI (37/50) had prolonged CEUS mean transit time (mTT) (10.2 vs. 5.5 s, p < 0.05), and reduced wash-in rate (WiR) (409 vs. 1203 au, p < 0.05) and perfusion index (PI) (485 vs. 1758 au, p < 0.05); differences persisted throughout the entire study. Conversely, there were no differences in either cardiac index, renal blood flow or renal resistive index. Sublingual microcirculatory variables were not significantly different between groups at study enrolment or at any subsequent time point. Although lactate was higher in the severe AKI group at study enrolment, these differences did not persist, and there were no differences in either ScvO2 or ScvCO2-SaCO2 between groups. Patients with severe AKI received higher doses of noradrenaline (0.34 vs. 0.21mcg/kg/min, p < 0.05). Linear regression analysis showed no correlation between mTT and cardiac index (R-0.18) or microcirculatory flow index (R-0.16). Conclusion Renal cortical hypoperfusion is a persistent feature in critically ill septic patients who develop AKI and does not appear to be caused by reductions in macrovascular renal blood flow or cardiac output. Cortical hypoperfusion appears not be associated with changes in the sublingual microcirculation, raising the possibility of a specific renal pathogenesis that may be amenable to therapeutic intervention. Trial Registration Clinical Trials.gov NCT03713307, 19 Oct 2018.
Collapse
|
6
|
Liu PQ, Ding CW, Zhang YC, Ma Q, Liu LJ. Diagnostic value of ultrasound and contrast-enhanced ultrasound in septic acute kidney injury. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:505-514. [PMID: 34965309 DOI: 10.1002/jcu.23118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE This study aimed to explore the clinical value of ultrasonic Doppler examination and contrast-enhanced ultrasound (US) in the circulation of septic acute kidney injury (AKI). METHODS Patients with intensive care unit-related infection were divided into AKI group and control groups. The AKI group was divided into three subgroups according to the serum creatinine value: stage 1, stage 2, and stage 3. Relevant parameters and blood flow of the renal artery were measured, and further contrast-enhanced US was performed and time-intensity curve was analyzed. RESULTS The renal blood flow (RBF) and time-averaged velocity decreased significantly in the AKI group compared with the control group (p = .021 and p = .001). The peak value decreased and time to peak (TTP) prolonged in the AKI group (p < .001). With the aggravation of the disease, the RBF decreased slightly among subgroups (p = 0.124). However, the peak value gradually decreased and the TTP prolonged (all p < .05). The multiple linear regression model showed that only PI, RI, and TTP were independently and linearly correlated with the serum creatinine value. CONCLUSIONS Doppler US and contrast-enhanced US are of great help in the detection of condition changes and prognosis of patients with sepsis-induced AKI.
Collapse
Affiliation(s)
- Pei Qing Liu
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Wei Ding
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Chun Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Ma
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Jun Liu
- Department of critical medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Experimental models of acute kidney injury for translational research. Nat Rev Nephrol 2022; 18:277-293. [PMID: 35173348 DOI: 10.1038/s41581-022-00539-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Preclinical models of human disease provide powerful tools for therapeutic discovery but have limitations. This problem is especially apparent in the field of acute kidney injury (AKI), in which clinical trial failures have been attributed to inaccurate modelling performed largely in rodents. Multidisciplinary efforts such as the Kidney Precision Medicine Project are now starting to identify molecular subtypes of human AKI. In addition, over the past decade, there have been developments in human pluripotent stem cell-derived kidney organoids as well as zebrafish, rodent and large animal models of AKI. These organoid and AKI models are being deployed at different stages of preclinical therapeutic development. However, the traditionally siloed, preclinical investigator-driven approaches that have been used to evaluate AKI therapeutics to date rarely account for the limitations of the model systems used and have given rise to false expectations of clinical efficacy in patients with different AKI pathophysiologies. To address this problem, there is a need to develop more flexible and integrated approaches, involving teams of investigators with expertise in a range of different model systems, working closely with clinical investigators, to develop robust preclinical evidence to support more focused interventions in patients with AKI.
Collapse
|
8
|
Zhang Y, Zhu J, Zhang C, Xiao J, Liu C, Wang S, Zhao P, Zhu Y, Wang L, Li Q, Luo Y. Non-invasive Early Prediction of Septic Acute Kidney Injury by Doppler-Based Renal Resistive Indexes Combined With Echocardiographic Parameters: An Experimental Study. Front Med (Lausanne) 2021; 8:723837. [PMID: 34926487 PMCID: PMC8671634 DOI: 10.3389/fmed.2021.723837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/27/2021] [Indexed: 11/15/2022] Open
Abstract
Non-invasive early prediction of septic acute kidney injury (S-AKI) is still urgent and challenging. Increased Doppler-based renal resistive index (RRI) has been shown to be associated with S-AKI, but its clinical use is limited, which may be explained by the complex effects of systemic circulation. Echocardiogram allows non-invasive assessment of systemic circulation, which may provide an effective supplement to RRI. To find the value of RRI combined with echocardiographic parameters in the non-invasive early prediction of S-AKI, we designed this experiment with repeated measurements of ultrasonographic parameters in the early stage of sepsis (3, 6, 12, and 24 h) in cecum ligation and puncture (CLP) rats (divided into AKI and non-AKI groups at 24 h based on serum creatinine), with sham-operated group serving as controls. Our results found that RRI alone could not effectively predict S-AKI, but when combined with echocardiographic parameters (heart rate, left ventricular end-diastolic internal diameter, and left ventricular end-systolic internal diameter), the predictive value was significantly improved, especially in the early stage of sepsis (3 h, AUC: 0.948, 95% CI 0.839–0.992, P < 0.001), and far earlier than the conventional renal function indicators (serum creatinine and blood urea nitrogen), which only significantly elevated at 24 h. Our method showed novel advances and potential in the early detection of S-AKI.
Collapse
Affiliation(s)
- Ying Zhang
- School of Medicine, Nankai University, Tianjin, China.,Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jianing Zhu
- Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Chuyue Zhang
- School of Medicine, Nankai University, Tianjin, China.,Department of Nephrology, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jing Xiao
- School of Medicine, Nankai University, Tianjin, China.,Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Chao Liu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Nephrology, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Critical Care Medicine, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shuo Wang
- Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Ping Zhao
- Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Yaqiong Zhu
- Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Li Wang
- Department of Critical Care Medicine, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qiuyang Li
- Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yukun Luo
- School of Medicine, Nankai University, Tianjin, China.,Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
9
|
Wang S, Zhao P, Zhang Y, Zhu L, Zhu J, Luo Y, Li Q. The Therapeutic Effects of Curcumin in Early Septic Acute Kidney Injury: An Experimental Study. Drug Des Devel Ther 2021; 15:4243-4255. [PMID: 34675487 PMCID: PMC8504871 DOI: 10.2147/dddt.s332623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Sepsis is the leading condition associated with acute kidney injury (AKI) in the hospital and intensive care unit (ICU), sepsis-induced AKI (S-AKI) is strongly associated with poor clinical outcomes. Curcumin possesses an ability to ameliorate renal injury from ischemia-reperfusion, but it is still unknown whether they have the ability to reduce S-AKI. The aim of this study was to investigate the protective effects of curcumin on S-AKI and to assess its therapeutic potential on renal function, inflammatory response, and microcirculatory perfusion. METHODS Male Sprague-Dawley (SD) rats underwent cecal ligation and puncture (CLP) to induce S-AKI and immediately received vehicle (CLP group) or curcumin (CLP+Cur group) after surgery. At 12 and 24h after surgery, serum indexes, inflammatory factors, cardiac output (CO), renal blood flow and microcirculatory flow were measured. RESULTS Serum levels of creatinine (Scr), cystatin C (CysC), IL-6 and TNF-α were significantly lower in the CLP+Cur group than those in the CLP group (P < 0.05). Treatment with curcumin improved renal microcirculation at 24h by measurement of contrast enhanced ultrasound (CEUS) quantitative parameters [peak intensity (PI); half of descending time (DT/2); area under curve (AUC); P < 0.05]. In histopathological analysis, treatment with curcumin reduced damage caused by CLP. CONCLUSION Curcumin can alleviate S-AKI in rats by improving renal microcirculatory perfusion and reducing inflammatory response. Curcumin may be a potential novel therapeutic agent for the prevention or reduction of S-AKI.
Collapse
Affiliation(s)
- Shuo Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ping Zhao
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ying Zhang
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Lianhua Zhu
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jianing Zhu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yukun Luo
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qiuyang Li
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Kidney Microcirculation as a Target for Innovative Therapies in AKI. J Clin Med 2021; 10:jcm10184041. [PMID: 34575154 PMCID: PMC8471583 DOI: 10.3390/jcm10184041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a serious multifactorial conditions accompanied by the loss of function and damage. The renal microcirculation plays a crucial role in maintaining the kidney’s functional and structural integrity for oxygen and nutrient supply and waste product removal. However, alterations in microcirculation and oxygenation due to renal perfusion defects, hypoxia, renal tubular, and endothelial damage can result in AKI and the loss of renal function regardless of systemic hemodynamic changes. The unique structural organization of the renal microvasculature and the presence of autoregulation make it difficult to understand the mechanisms and the occurrence of AKI following disorders such as septic, hemorrhagic, or cardiogenic shock; ischemia/reperfusion; chronic heart failure; cardiorenal syndrome; and hemodilution. In this review, we describe the organization of microcirculation, autoregulation, and pathophysiological alterations leading to AKI. We then suggest innovative therapies focused on the protection of the renal microcirculation and oxygenation to prevent AKI.
Collapse
|
11
|
Liu J, Wang Z, Lin J, Li T, Guo X, Pang R, Dong L, Duan M. Xuebijing injection in septic rats mitigates kidney injury, reduces cortical microcirculatory disorders, and suppresses activation of local inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114199. [PMID: 33989736 DOI: 10.1016/j.jep.2021.114199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuebijing injections originate from the traditional Chinese medicine (TCM) prescription XuefuZhuyu Decoction. It is composed of five Chinese herbal extracts; Carthami flos, Paeoniae radix rubra, Chuanxiong rhizoma, Salviae miltiorrhizae, and Angelicae Sinensis radix. The China Food and Drug Administration approved Xuebijing injections as a TCM preparation for the adjuvant treatment of sepsis. AIM OF THE STUDY This study aims to determine the effects of Xuebijing injections as an adjuvant to antibiotics for the treatment of renal microcirculatory dysfunction and renal inflammation in rats with sepsis. MATERIALS AND METHODS The rats received a sham operation (Sham), sham operation followed by Xuebijign injection (Sxbj), cecal ligation and puncture (CLP), or CLP followed by Xuebijing injection (Cxbj). Renal microvascular perfusion in the cortex and oxygenation were assessed at different times after sepsis induction. Renal levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and high mobility group box (HMGB)-1 were measured. Urinary TIMP-2 × IGFBP-7 and neutrophil gelatinase-associated lipocalin (NGAL) were measured as kidney biomarkers, and serum creatinine (SCr) was used to assess kidney injury. Tissue samples were stained for histologic evaluation. RESULTS The induction of sepsis increased local inflammation and decreased renal microvascular perfusion and oxygenation. Compared with the CLP group, the Cxbj group displayed improvements in microvascular perfusion and oxygenation (p < 0.05). The CLP group had significant increases in renal inflammatory biomarkers (IL-1β, IL-6, TNF-α, and HMGB-1; p < 0.05) and Xuebijing injection reduced the levels of these markers. The levels of urinary TIMP-2 × IGFBP-7, NAGL, and SCr were lower in the Cxbj group than in the CLP group (p < 0.05), and the CLP group had a higher Paller score than the Cxbj group (p < 0.05). However, the CLP and Cxbj groups had no significant difference in mortality. CONCLUSIONS This study into the early stages of sepsis in a rat model indicated that as an adjuvant therapy to antibiotics, Xuebijing injection improved renal perfusion and oxygenation, suppressed renal inflammation, and ameliorated kidney dysfunction. However, Xuebijing injection had no impact on mortality.
Collapse
Affiliation(s)
- Jingfeng Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Zhenzhou Wang
- National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration, Trauma Center, Peking University People's Hospital, Beijing, 100000, China.
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Tian Li
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Xinjie Guo
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Ran Pang
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Lei Dong
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
12
|
Yang X, Zheng E, Ma Y, Chatterjee V, Villalba N, Breslin JW, Liu R, Wu MH, Yuan SY. DHHC21 deficiency attenuates renal dysfunction during septic injury. Sci Rep 2021; 11:11146. [PMID: 34045489 PMCID: PMC8159935 DOI: 10.1038/s41598-021-89983-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Renal dysfunction is one of the most common complications of septic injury. One critical contributor to septic injury-induced renal dysfunction is renal vascular dysfunction. Protein palmitoylation serves as a novel regulator of vascular function. Here, we examined whether palmitoyl acyltransferase (PAT)-DHHC21 contributes to septic injury-induced renal dysfunction through regulating renal hemodynamics. Multispectral optoacoustic imaging showed that cecal ligation and puncture (CLP)-induced septic injury caused impaired renal excretion, which was improved in DHHC21 functional deficient (Zdhhc21dep/dep) mice. DHHC21 deficiency attenuated CLP-induced renal pathology, characterized by tissue structural damage and circulating injury markers. Importantly, DHHC21 loss-of-function led to better-preserved renal perfusion and oxygen saturation after CLP. The CLP-caused reduction in renal blood flow was also ameliorated in Zdhhc21dep/dep mice. Next, CLP promoted the palmitoylation of vascular α1-adrenergic receptor (α1AR) and the activation of its downstream effector ERK, which were blunted in Zdhhc21dep/dep mice. Vasoreactivity analysis revealed that renal arteries from Zdhhc21dep/dep mice displayed reduced constriction response to α1AR agonist phenylephrine compared to those from wild-type mice. Consistently, inhibiting PATs with 2-bromopalmitate caused a blunted vasoconstriction response to phenylephrine in small arteries isolated from human kidneys. Therefore, DHHC21 contributes to impaired renal perfusion and function during septic injury via promoting α1AR palmitoylation-associated vasoconstriction.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Nuria Villalba
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA. .,Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, 33612, USA.
| |
Collapse
|
13
|
Abstract
The kidney is a highly metabolic organ that requires substantial adenosine triphosphate for the active transport required to maintain water and solute reabsorption. Aberrations in energy availability and energy utilization can lead to cellular dysfunction and death. Mitochondria are essential for efficient energy production. The pathogenesis of acute kidney injury is complex and varies with different types of injury. However, multiple distinct acute kidney injury syndromes share a common dysregulation of energy metabolism. Pathways of energy metabolism and mitochondrial dysfunction are emerging as critical drivers of acute kidney injury and represent new potential targets for treatment. This review shows the basic metabolic pathways that all cells depend on for life; describes how the kidney optimizes those pathways to meet its anatomic, physiologic, and metabolic needs; summarizes the importance of metabolic and mitochondrial dysfunction in acute kidney injury; and analyzes the mitochondrial processes that become dysregulated in acute kidney injury including mitochondrial dynamics, mitophagy, mitochondrial biogenesis, and changes in mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Amanda J Clark
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Samir M Parikh
- Division of Nephrology, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
14
|
Abstract
Pigs represent a potentially attractive model for medical research. Similar body size and physiological patterns of kidney injury that more closely mimic those described in humans make larger animals attractive for experimentation. Using larger animals, including pigs, to investigate the pathogenesis of acute kidney injury (AKI) also serves as an experimental bridge, narrowing the gap between clinical disease and preclinical discoveries. This article compares the advantages and disadvantages of large versus small AKI animal models and provides a comprehensive overview of the development and application of porcine models of AKI induced by clinically relevant insults, including ischemia-reperfusion, sepsis, and nephrotoxin exposure. The primary focus of this review is to evaluate the use of pigs for AKI studies by current investigators, including areas where more information is needed.
Collapse
Affiliation(s)
- Jianni Huang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
15
|
Martínez-Rueda AJ, Álvarez RD, Méndez-Pérez RA, Fernández-Camargo DA, Gaytan-Arocha JE, Berman-Parks N, Flores-Camargo A, Comunidad-Bonilla RA, Mejia-Vilet JM, Arvizu-Hernandez M, Ramirez-Sandoval JC, Correa-Rotter R, Vega-Vega O. Community- and Hospital-Acquired Acute Kidney Injury in COVID-19: Different Phenotypes and Dismal Prognosis. Blood Purif 2021; 50:931-941. [PMID: 33744901 PMCID: PMC8089414 DOI: 10.1159/000513948] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Acute kidney injury (AKI) is common in coronavirus disease 2019 (COVID-19). It is unknown if hospital-acquired AKI (HA-AKI) and community-acquired AKI (CA-AKI) convey a distinct prognosis. METHODS The study aim was to evaluate the incidence and risk factors associated with both CA-AKI and HA-AKI. Consecutive patients hospitalized at a reference center for COVID-19 were included in this prospective cohort study. RESULTS We registered 349 (30%) AKI episodes in 1,170 hospitalized patients, 224 (19%) corresponded to CA-AKI, and 125 (11%) to HA-AKI. Compared to patients with HA-AKI, subjects with CA-AKI were older (61 years [IQR 49-70] vs. 50 years [IQR 43-61]), had more comorbidities (hypertension [44 vs. 26%], CKD [10 vs. 3%]), higher Charlson Comorbidity Index (2 points [IQR 1-4] vs. 1 point [IQR 0-2]), and presented to the emergency department with more severe disease. Mortality rates were not different between CA-AKI and HA-AKI (119 [53%] vs. 63 [50%], p = 0.66). In multivariate analysis, CA-AKI was strongly associated to a history of CKD (OR 4.17, 95% CI 1.53-11.3), hypertension (OR 1.55, 95% CI 1.01-2.36), Charlson Comorbidity Index (OR 1.16, 95% CI 1.02-1.32), and SOFA score (OR 2.19, 95% CI 1.87-2.57). HA-AKI was associated with the requirement for mechanical ventilation (OR 68.2, 95% CI 37.1-126), elevated troponin I (OR 1.95, 95% CI 1.01-3.83), and glucose levels at admission (OR 1.05, 95% CI 1.02-1.08). DISCUSSION/CONCLUSIONS CA-AKI and HA-AKI portend an adverse prognosis in CO-VID-19. Nevertheless, CA-AKI was associated with a higher comorbidity burden (including CKD and hypertension), while HA-AKI occurred in younger patients by the time severe multiorgan disease developed.
Collapse
Affiliation(s)
- Armando J Martínez-Rueda
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rigoberto D Álvarez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - R Angélica Méndez-Pérez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Dheni A Fernández-Camargo
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jorge E Gaytan-Arocha
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nathan Berman-Parks
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Areli Flores-Camargo
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Roque A Comunidad-Bonilla
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan M Mejia-Vilet
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Mauricio Arvizu-Hernandez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan C Ramirez-Sandoval
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Correa-Rotter
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Olynka Vega-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico,
| |
Collapse
|
16
|
The Protective Effect of Anthocyanins Extracted from Aronia Melanocarpa Berry in Renal Ischemia-Reperfusion Injury in Mice. Mediators Inflamm 2021; 2021:7372893. [PMID: 33551679 PMCID: PMC7846408 DOI: 10.1155/2021/7372893] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/25/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background Our previous research showed the antioxidant activity of anthocyanins extracted from Aronia melanocarpa of black chokeberry in vitro. Ischemia acute kidney injury is a significant risk in developing progressive and deterioration of renal function leading to clinic chronic kidney disease. There were many attempts to protect the kidney against this progression of renal damage. Current study was designed to examine the effect of pretreatment with three anthocyanins named cyanidin-3-arabinoside, cyanidin-3-glucodise, and cyaniding-3-galactoside against acute ischemia-reperfusion injury in mouse kidney. Methods Acute renal injury model was initiated by 30 min clamping bilateral renal pedicle and followed by 24-hour reperfusion in C57Bl/6J mice. Four groups of mice were orally pretreated in 50 mg/g/12 h for two weeks with cyanidin-3-arabinoside, cyanidin-3-glucodise, and cyaniding-3-galactoside and anthocyanins (three-cyanidin mixture), respectively, sham-control group and the renal injury-untreated groups only with saline. Results The model resulted in renal dysfunction with high serum creatinine, blood urea nitrogen, and changes in proinflammatory cytokines (TNF-ɑ, IL-1β, IL-6, and MCP-1), renal oxidative stress (SOD, GSH, and CAT), lipid peroxidation (TBARS and MDA), and apoptosis (caspase-9). Pretreatment of two weeks resulted in different extent amelioration of renal dysfunction and tubular damage and suppression of proinflammatory cytokines, oxidative stress, lipid peroxidation, and apoptosis, thus suggesting that cyanidins are potentially effective in acute renal ischemia by the decrease of inflammation, oxidative stress, and lipid peroxidation, as well as apoptosis. Conclusion the current study provided the first attempt to investigate the role of anthocyanins purified from Aronia melanocarpa berry in amelioration of acute renal failure via antioxidant and cytoprotective effects.
Collapse
|
17
|
Merz T, Denoix N, Huber-Lang M, Singer M, Radermacher P, McCook O. Microcirculation vs. Mitochondria-What to Target? Front Med (Lausanne) 2020; 7:416. [PMID: 32903633 PMCID: PMC7438707 DOI: 10.3389/fmed.2020.00416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Circulatory shock is associated with marked disturbances of the macro- and microcirculation and flow heterogeneities. Furthermore, a lack of tissue adenosine trisphosphate (ATP) and mitochondrial dysfunction are directly associated with organ failure and poor patient outcome. While it remains unclear if microcirculation-targeted resuscitation strategies can even abolish shock-induced flow heterogeneity, mitochondrial dysfunction and subsequently diminished ATP production could still lead to organ dysfunction and failure even if microcirculatory function is restored or maintained. Preserved mitochondrial function is clearly associated with better patient outcome. This review elucidates the role of the microcirculation and mitochondria during circulatory shock and patient management and will give a viewpoint on the advantages and disadvantages of tailoring resuscitation to microvascular or mitochondrial targets.
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Nicole Denoix
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
18
|
Li Y, Nourbakhsh N, Pham H, Tham R, Zuckerman JE, Singh P. Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F229-F244. [PMID: 32538150 DOI: 10.1152/ajprenal.00390.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sepsis-associated acute kidney injury (s-AKI) has a staggering impact in patients and lacks any treatment. Incomplete understanding of the pathogenesis of s-AKI is a major barrier to the development of effective therapies. We address the gaps in knowledge regarding renal oxygenation, tubular metabolism, and mitochondrial function in the pathogenesis of s-AKI using the cecal ligation and puncture (CLP) model in mice. At 24 h after CLP, renal oxygen delivery was reduced; however, fractional oxygen extraction was unchanged, suggesting inefficient renal oxygen utilization despite decreased glomerular filtration rate and filtered load. To investigate the underlying mechanisms, we examined temporal changes in mitochondrial function and metabolism at 4 and 24 h after CLP. At 4 h after CLP, markers of mitochondrial content and biogenesis were increased in CLP kidneys, but mitochondrial oxygen consumption rates were suppressed in proximal tubules. Interestingly, at 24 h, proximal tubular mitochondria displayed high respiratory capacity, but with decreased mitochondrial content, biogenesis, fusion, and ATP levels in CLP kidneys, suggesting decreased ATP synthesis efficiency. We further investigated metabolic reprogramming after CLP and observed reduced expression of fatty acid oxidation enzymes but increased expression of glycolytic enzymes at 24 h. However, assessment of functional glycolysis revealed lower glycolytic capacity, glycolytic reserve, and compensatory glycolysis in CLP proximal tubules, which may explain their susceptibility to injury. In conclusion, we demonstrated significant alterations in renal oxygenation, tubular mitochondrial function, and metabolic reprogramming in s-AKI, which may play an important role in the progression of injury and recovery from AKI in sepsis.
Collapse
Affiliation(s)
- Ying Li
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Noureddin Nourbakhsh
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Division of Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, California
| | - Hai Pham
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rick Tham
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jonathan E Zuckerman
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California
| | - Prabhleen Singh
- Division of Nephrology-Hypertension, University of California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
19
|
Mohamed MM, Lukitsch I, Torres-Ortiz AE, Walker JB, Varghese V, Hernandez-Arroyo CF, Alqudsi M, LeDoux JR, Velez JCQ. Acute Kidney Injury Associated with Coronavirus Disease 2019 in Urban New Orleans. ACTA ACUST UNITED AC 2020; 1:614-622. [DOI: 10.34067/kid.0002652020] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023]
Abstract
BackgroundAKI is a manifestation of COVID-19 (CoV-AKI). However, there is paucity of data from the United States, particularly from a predominantly black population. We report the phenotype and outcomes of AKI at an academic hospital in New Orleans.MethodsWe conducted an observational study in patients hospitalized at Ochsner Medical Center over a 1-month period with COVID-19 and diagnosis of AKI (KDIGO). We examined the rates of RRT and in-hospital mortality as outcome measures.ResultsAmong 575 admissions (70% black) with COVID-19 [173 (30%) to an intensive care unit (ICU)], we found 161 (28%) cases of AKI (61% ICU and 14% general ward admissions). Patients were predominantly men (62%) and hypertensive (83%). Median body mass index (BMI) was higher among those with AKI (34 versus 31 kg/m2, P<0.0001). AKI over preexisting CKD occurred in 35%. Median follow-up was 25 (1–45) days. The in-hospital mortality rate for the AKI cohort was 50%. Vasopressors and/or mechanical ventilation were required in 105 (65%) of those with AKI. RRT was required in 89 (55%) patients. Those with AKI requiring RRT (AKI-RRT) had higher median BMI (35 versus 33 kg/m2, P=0.05) and younger age (61 versus 68, P=0.0003). Initial values of ferritin, C-reactive protein, procalcitonin, and lactate dehydrogenase were higher among those with AKI; and among them, values were higher for those with AKI-RRT. Ischemic acute tubular injury (ATI) and rhabdomyolysis accounted for 66% and 7% of causes, respectively. In 13%, no obvious cause of AKI was identified aside from COVID-19 diagnosis.ConclusionsCoV-AKI is associated with high rates of RRT and death. Higher BMI and inflammatory marker levels are associated with AKI as well as with AKI-RRT. Hemodynamic instability leading to ischemic ATI is the predominant cause of AKI in this setting.
Collapse
|
20
|
Gold Clusters Attenuate Inflammation in Rat Mesangial Cells via Inhibiting the Activation of NF-κB Pathway. NANOMATERIALS 2020; 10:nano10040712. [PMID: 32290032 PMCID: PMC7221671 DOI: 10.3390/nano10040712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Sepsis-induced acute kidney injury (AKI) with high incidence and mortality rates remains a great challenge in the clinic; thus, novel therapies need to be developed urgently. This complication is associated with an overwhelming systemic inflammatory response. The aim of this study was to evaluate the potential effects and possible mechanisms of gold clusters on septic AKI in vitro. Rat mesangial HBZY-1 cells were treated with peptide-templated gold clusters under lipopolysaccharide (LPS) stimulation. The LPS-induced expression of pro-inflammatory cytokines was measured, including tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6). Our data showed that the LPS-induced transcription and secretion of these cytokines were suppressed by pretreatment of gold clusters in a dose-dependent manner. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) also play key roles in septic AKI and both of them are induced upon LPS-stimulation in mesangial cells. Our results further showed that pretreatment with gold clusters dramatically inhibited the LPS-stimulated transcription and expression of COX2 and iNOS, and the subsequent prostaglandin E2 (PGE2) and nitric oxide (NO) production in HBZY-1 cells. Since these factors are involved in the NF-κB pathway upon LPS stimulation, the potential roles of gold clusters on the NF-κB pathway were further determined. We found that LPS-induced NF-κB activation was suppressed in gold clusters-pretreated HBZY-1 cells. These results demonstrated that gold clusters can attenuate LPS-induced inflammation in mesangial cells, probably via inhibiting the activation of the NF-κB pathway, suggesting a potential therapeutic approach for septic AKI.
Collapse
|
21
|
van Loon LM, Rongen GA, van der Hoeven JG, Veltink PH, Lemson J. β-Blockade attenuates renal blood flow in experimental endotoxic shock by reducing perfusion pressure. Physiol Rep 2019; 7:e14301. [PMID: 31814327 PMCID: PMC6900489 DOI: 10.14814/phy2.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clinical data suggests that heart rate (HR) control with selective β1-blockers may improve cardiac function during septic shock. However, it seems counterintuitive to start β-blocker infusion in a shock state when organ blood flow is already low or insufficient. Therefore, we studied the effects of HR control with esmolol, an ultrashort- acting β1-selective adrenoceptor antagonist, on renal blood flow (RBF) and renal autoregulation during early septic shock. In 10 healthy sheep, sepsis was induced by continuous i.v. administration of lipopolysaccharide, while maintained under anesthesia and mechanically ventilated. After successful resuscitation of the septic shock with fluids and vasoactive drugs, esmolol was infused to reduce HR with 30% and was stopped 30-min after reaching this target. Arterial and venous pressures, and RBF were recorded continuously. Renal autoregulation was evaluated by the response in RBF to renal perfusion pressure (RPP) in both the time domain and frequency domain. During septic shock, β-blockade with esmolol significantly increased the pressure dependency of RBF to RPP. Stopping esmolol showed the reversibility of the impaired renal autoregulation. Showing that clinical diligence and caution are necessary when treating septic shock with esmolol in the acute phase since esmolol reduced RPP to critical values thereby significantly reducing RBF.
Collapse
Affiliation(s)
- Lex M. van Loon
- Cardiovascular and Respiratory Physiology GroupFaculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
- Department of Intensive Care MedicineRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenThe Netherlands
| | - Gerard A. Rongen
- Department of Pharmacology and ToxicologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Johannes G. van der Hoeven
- Department of Intensive Care MedicineRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenThe Netherlands
- Radboud Center for Infectious diseasesNijmegenThe Netherlands
| | - Peter H. Veltink
- Biomedical Signals and SystemsFaculty of Electrical Engineering, Mathematics and Computer ScienceTechnical Medical CentreUniversity of TwenteEnschedeThe Netherlands
| | - Joris Lemson
- Department of Intensive Care MedicineRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenThe Netherlands
| |
Collapse
|
22
|
Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury. Crit Care Med 2019; 46:1284-1292. [PMID: 29771701 DOI: 10.1097/ccm.0000000000003209] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. DESIGN Prospective controlled animal experiment study. SETTING Hospital-affiliated animal research institution. SUBJECTS Fifteen female pigs. INTERVENTIONS The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. MEASUREMENTS AND MAIN RESULTS Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. CONCLUSIONS In our lipopolysaccharide model, with resuscitation targeted at blood pressure, contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.
Collapse
|
23
|
Renal Blood Flow Measurement in Early Clinical Sepsis-Can You Catch a Shadow? Crit Care Med 2019; 46:1028-1030. [PMID: 29762410 DOI: 10.1097/ccm.0000000000003108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Beloncle F, Rousseau N, Hamel JF, Donzeau A, Foucher AL, Custaud MA, Asfar P, Robert R, Lerolle N. Determinants of Doppler-based renal resistive index in patients with septic shock: impact of hemodynamic parameters, acute kidney injury and predisposing factors. Ann Intensive Care 2019; 9:51. [PMID: 31020427 PMCID: PMC6482198 DOI: 10.1186/s13613-019-0525-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Increased renal resistive index (RI) measured by Doppler ultrasonography has been shown to be associated with acute kidney injury (AKI) in septic patients. However, its clinical use is limited by poor sensitivity and specificity which may be explained by its numerous determinants [in particular mean arterial pressure (MAP)]. We measured, in patients with septic shock, RI at different MAP levels over a short period of time on the admission day to ICU (D1) and every 3 days until day 10 (D10) to define the determinants of RI and study specifically the relationship between RI and MAP. RESULTS Consecutive patients with septic shock without preexisting chronic renal dysfunction were included in this prospective cohort study in two ICUs. Sixty-five patients were included in the study. Thirty-three (50.8%) and 15 (23.1%) patients had a history of chronic hypertension or diabetes, respectively. At D3, 35 patients presented AKI with AKIN 2 or 3 criteria (severe AKI, AKIN2-3 group) and 30 presented no AKIN or AKIN 1 criteria (AKIN0-1 group). As previously described, RI at D1 was higher in the AKIN2-3 group than in the AKIN0-1 group (0.73 interquartile range [0.67; 0.78] vs. 0.67 [0.59; 0.72], p = 0.001). A linear mixed model for predicting RI from D1 to D10 showed that an increase in pulse pressure, presence of severe AKI and additional day of ICU hospitalization were associated with an increase in RI. An increase in MAP and recovery from severe AKI were associated with a decrease in RI. In the presence of chronic hypertension or diabetes, an increase in MAP resulted in a lower decrease in RI, than in the absence of such factors. Presence of AKI at D3 did not impact the relationship between MAP and RI. CONCLUSIONS Severe AKI was associated with a reversible increase in RI without significant interaction with the relationship between MAP and RI. Conversely, the presence of chronic hypertension and/or diabetes interacted with this relationship.
Collapse
Affiliation(s)
- François Beloncle
- Département de Médecine Intensive - Réanimation et de Médecine Hyperbare, Centre Hospitalo- Universitaire d'Angers, Université d'Angers, 4 rue Larrey, 49933, Angers Cedex 9, France.
| | - Natacha Rousseau
- Service de Réanimation médicale, Centre Hospitalo-Universitaire de Poitiers, Université de Poitiers, Poitiers, France
| | - Jean-François Hamel
- Unité de Méthodologie and Biostatistique, DRCI, Centre Hospitalo-Universitaire d'Angers, Université d'Angers, Angers, France
| | - Alexis Donzeau
- Département de Médecine Intensive - Réanimation et de Médecine Hyperbare, Centre Hospitalo- Universitaire d'Angers, Université d'Angers, 4 rue Larrey, 49933, Angers Cedex 9, France
| | - Anne-Lise Foucher
- Département de Médecine Intensive - Réanimation et de Médecine Hyperbare, Centre Hospitalo- Universitaire d'Angers, Université d'Angers, 4 rue Larrey, 49933, Angers Cedex 9, France
| | - Marc-Antoine Custaud
- Centre de recherche clinique, Centre Hospitalo-Universitaire d'Angers, Université d'Angers, Angers, France
| | - Pierre Asfar
- Département de Médecine Intensive - Réanimation et de Médecine Hyperbare, Centre Hospitalo- Universitaire d'Angers, Université d'Angers, 4 rue Larrey, 49933, Angers Cedex 9, France
| | - René Robert
- Service de Réanimation médicale, Centre Hospitalo-Universitaire de Poitiers, Université de Poitiers, Poitiers, France
| | - Nicolas Lerolle
- Département de Médecine Intensive - Réanimation et de Médecine Hyperbare, Centre Hospitalo- Universitaire d'Angers, Université d'Angers, 4 rue Larrey, 49933, Angers Cedex 9, France
| |
Collapse
|
25
|
Kohoutová M, Dejmek J, Tůma Z, Kuncová J. Variability of mitochondrial respiration in relation to sepsis-induced multiple organ dysfunction. Physiol Res 2019; 67:S577-S592. [PMID: 30607965 DOI: 10.33549/physiolres.934050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ample experimental evidence suggests that sepsis could interfere with any mitochondrial function; however, the true role of mitochondrial dysfunction in the pathogenesis of sepsis-induced multiple organ dysfunction is still a matter of controversy. This review is primarily focused on mitochondrial oxygen consumption in various animal models of sepsis in relation to human disease and potential sources of variability in experimental results documenting decrease, increase or no change in mitochondrial respiration in various organs and species. To date, at least three possible explanations of sepsis-associated dysfunction of the mitochondrial respiratory system and consequently impaired energy production have been suggested: 1. Mitochondrial dysfunction is secondary to tissue hypoxia. 2. Mitochondria are challenged by various toxins or mediators of inflammation that impair oxygen utilization (cytopathic hypoxia). 3. Compromised mitochondrial respiration could be an active measure of survival strategy resembling stunning or hibernation. To reveal the true role of mitochondria in sepsis, sources of variability of experimental results based on animal species, models of sepsis, organs studied, or analytical approaches should be identified and minimized by the use of appropriate experimental models resembling human sepsis, wider use of larger animal species in preclinical studies, more detailed mapping of interspecies differences and organ-specific features of oxygen utilization in addition to use of complex and standardized protocols evaluating mitochondrial respiration.
Collapse
Affiliation(s)
- M Kohoutová
- Institute of Physiology, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic.
| | | | | | | |
Collapse
|
26
|
Merz T, Wepler M, Nußbaum B, Vogt J, Calzia E, Wang R, Szabo C, Radermacher P, McCook O. Cystathionine-γ-lyase expression is associated with mitochondrial respiration during sepsis-induced acute kidney injury in swine with atherosclerosis. Intensive Care Med Exp 2018; 6:43. [PMID: 30343340 PMCID: PMC6195873 DOI: 10.1186/s40635-018-0208-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Sepsis is associated with disturbed glucose metabolism and reduced mitochondrial activity and biogenesis, ultimately leading to multiple organ dysfunction, e.g., acute kidney injury (AKI). Cystathionine-γ-lyase (CSE), the major cardiovascular source of endogenous H2S release, is implicated in the regulation of glucose metabolism and mitochondrial activity through a PGC1α-dependent mechanism, and critical for kidney function. Atherosclerosis is associated with mitochondrial dysfunction and reduced CSE expression. Thus, the aim of this post hoc study was to test the hypothesis whether there is an interplay between CSE expression and kidney dysfunction, mitochondrial activity, and oxidative/nitrosative stress in porcine septic AKI with underlying coronary artery disease. Methods This study is a post hoc analysis of material from anesthetized and instrumented swine with a high fat diet-induced hypercholesterolemia and atherosclerosis undergoing faecal peritonitis-induced septic shock or sham procedure and intensive care (comprising fluid resuscitation and continuous i.v. noradrenaline (NoA) infusion) for 24 h. Glucose metabolism was quantified from blood 13C6-glucose and expiratory 13CO2/12CO2 isotope enrichment during 13C6-glucose infusion. Mitochondrial activity was determined by high-resolution respirometry. CSE and PGC1α expression, as well as nitrotyrosine formation and albumin extravasation, were quantified by immunohistochemistry of formalin-fixed kidney paraffin sections. Results Sepsis was associated with lactic acidosis (p = 0.004) and AKI (50% fall of creatinine clearance (CrCl), p = 0.019). While both whole-body glucose production (p = 0.004) and oxidation (p = 0.006) were increased, kidney tissue mitochondrial respiration was reduced (p = 0.028), coinciding with decreased CSE (p = 0.003) and PGC1α (p = 0.003) expression. Albumin extravasation (p = 0.011) and nitrotyrosine formation (p = 0.008) were increased in septic kidneys. Conclusions Sepsis-induced AKI is associated with disturbed mitochondrial respiration and biogenesis, which may be aggravated by oxidative and nitrosative stress. Our results confirm previous data in murine septic shock and porcine hemorrhage and resuscitation on the crucial role of CSE for barrier integrity and kidney function. Electronic supplementary material The online version of this article (10.1186/s40635-018-0208-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamara Merz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany.
| | - Martin Wepler
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany.,Klinik für Anästhesiologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Benedikt Nußbaum
- Klinik für Anästhesiologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Josef Vogt
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Rui Wang
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, 601 Harborside Drive, Galveston, TX, 77555, USA.,Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| |
Collapse
|
27
|
Association of Kidney Tissue Barrier Disrupture and Renal Dysfunction in Resuscitated Murine Septic Shock. Shock 2018; 46:398-404. [PMID: 26926005 DOI: 10.1097/shk.0000000000000599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Septic shock-related kidney failure is characterized by almost normal morphological appearance upon pathological examination. Endothelial barrier disrupture has been suggested to be of crucial importance for septic shock-induced organ dysfunction. Therefore, in murine resuscitated cecal ligation and puncture (CLP)-induced septic shock, we tested the hypothesis whether there is a direct relationship between the kidney endothelial barrier injury and renal dysfunction. Anesthetized mice underwent CLP, and 15 h later, were anesthetized again and surgically instrumented for a 5-h period of intensive care comprising lung-protective mechanical ventilation, fluid resuscitation, continuous i.v. norepinephrine to maintain target hemodynamics, and measurement of creatinine clearance (CrCl). Animals were stratified according to low or high CrCl. Nitrotyrosine formation, expression of the inducible isoform of the nitric oxide synthase, and blood cytokine (tumor necrosis factor, interleukin-6, interleukin-10) and chemokine (monocyte chemoattractant protein-1, keratinocyte-derived chemokine) levels were significantly higher in animals with low CrCl. When plotted against CrCl and neutrophil gelatinase-associated lipocalin levels, extravascular albumin accumulation, and tissue expression of the vascular endothelial growth factor and angiopoietin-1 showed significant mathematical relationships related to kidney (dys)function. Preservation of the constitutive expression of the hydrogen sulfide producing enzyme cystathione-γ-lyase was associated with maintenance of organ function. The direct quantitative relation between microvascular leakage and kidney (dys)function may provide a missing link between near-normal tissue morphology and septic shock-related renal failure, thus further highlighting the important role of vascular integrity in septic shock-related renal failure.
Collapse
|
28
|
|
29
|
Fani F, Regolisti G, Delsante M, Cantaluppi V, Castellano G, Gesualdo L, Villa G, Fiaccadori E. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol 2017; 31:351-359. [PMID: 29273917 DOI: 10.1007/s40620-017-0452-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023]
Abstract
Sepsis is a serious medical condition that can lead to multi-organ failure and shock, and it is associated with increased mortality. Acute kidney injury (AKI) is a frequent complication of sepsis in critically ill patients, and often requires renal replacement therapy. The pathophysiology of AKI in sepsis has not yet been fully defined. In the past, classic theories were mainly focused on systemic hemodynamic derangements, underscoring the key role of whole kidney hypoperfusion due to reduced renal blood flow. However, a growing body of experimental and clinical evidence now shows that, at least in the early phase of sepsis-associated AKI, renal blood flow is normal, or even increased. This could suggest a dissociation between renal blood flow and kidney function. In addition, the scant data available from kidney biopsies in human studies do not support diffuse acute tubular necrosis as the predominant lesion. Instead, increasing importance is now attributed to kidney damage resulting from a complex interaction between immunologic mechanisms, inflammatory cascade activation, and deranged coagulation pathways, leading to microvascular dysfunction, endothelial damage, leukocyte/platelet activation with the formation of micro-thrombi, epithelial tubular cell injury and dysfunction. Moreover, the same processes, through maladaptive responses leading to fibrosis acting from the very beginning, may set the stage for progression to chronic kidney disease in survivors from sepsis-associated AKI episodes. The aim of this narrative review is to summarize and discuss the latest evidence on the pathophysiological mechanisms involved in septic AKI, based on the most recent data from the literature.
Collapse
Affiliation(s)
- Filippo Fani
- Acute and Chronic Renal Failure Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Regolisti
- Acute and Chronic Renal Failure Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Delsante
- Acute and Chronic Renal Failure Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Eastern Piedmont "A. Avogadro", "Maggiore della Carità" University Hospital, Novara, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, University of Bari, Bari, Italy
| | - Gianluca Villa
- Anesthesiology and Intensive Care, University of Florence, Florence, Italy
| | - Enrico Fiaccadori
- Acute and Chronic Renal Failure Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
30
|
Ten Have GAM, Deutz RCI, Engelen MPKJ, Wolfe RR, Deutz NEP. Characteristics of a Pseudomonas aeruginosa induced porcine sepsis model for multi-organ metabolic flux measurements. Lab Anim 2017; 52:163-175. [DOI: 10.1177/0023677217718003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Survival of sepsis is related to loss of muscle mass. Therefore, it is imperative to further define and understand the basic alterations in nutrient metabolism in order to improve targeted sepsis nutritional therapies. We developed and evaluated a controlled hyperdynamic severe sepsis pig model that can be used for in vivo multi-organ metabolic studies in a conscious state. In this catheterized pig model, bacteremia was induced intravenously with 109 CFU/h Pseudomonas aeruginosa (PA) in 13 pigs for 18 h. Both the PA and control (nine) animals received fluid resuscitation and were continuously monitored. We examined in detail their hemodynamics, blood gases, clinical chemistry, inflammation, histopathology and organ plasma flows. The systemic inflammatory response (SIRS) diagnostic scoring system was used to determine the clinical septic state. Within 6 h from the start of PA infusion, a septic state developed, as was reflected by hyperthermia and cardiovascular changes. After 12 h of PA infusion, severe sepsis was diagnosed. Disturbed cardiovascular function, decreased portal drained viscera plasma flow (control: 37.6 ± 4.6 mL/kg body weight (bw)/min; PA 20.3 ± 2.6 mL/kg bw/min, P < 0.001), as well as moderate villous injury in the small intestines were observed. No lung, kidney or liver failure was observed. Acute phase C-reactive protein (CRP) and interleukin-6 (IL-6) levels did not change in the PA group. However, significant metabolic changes such as enhanced protein breakdown, hypocalcemia and hypocholesterolemia were found. In conclusion, PA-induced bacteremia in a catheterized pig is a clinically relevant model for acute severe sepsis and enables the study of complex multi-organ metabolisms.
Collapse
Affiliation(s)
- Gabriella A M Ten Have
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
- Donald W Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Renske C I Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
- Donald W Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert R Wolfe
- Donald W Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
- Donald W Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
31
|
Bullen A, Liu ZZ, Hepokoski M, Li Y, Singh P. Renal Oxygenation and Hemodynamics in Kidney Injury. Nephron Clin Pract 2017; 137:260-263. [PMID: 28614837 DOI: 10.1159/000477830] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/26/2022] Open
Abstract
Acute kidney injury (AKI) continues to be a major therapeutic challenge. Despite significant advances made in cellular and molecular pathophysiology of AKI, major gaps in knowledge exist regarding the changes in renal hemodynamics and oxygenation in the early stages and through the continuum of AKI. Particular features of renal hemodynamics and oxygenation increase the susceptibility of the kidney to sustain injury due to oxygen demand-supply mismatch and also play an important role in the recovery and repair from AKI as well as the transition of AKI to chronic kidney disease. However, lack of well-established physiological biomarkers and noninvasive imaging techniques limit our understanding of the interactions between renal macro and microcirculation and tissue oxygenation in AKI. Advances in our ability to assess these parameters in preclinical and clinical AKI will enable the development of targeted therapeutics to improve clinical outcomes.
Collapse
Affiliation(s)
- Alexander Bullen
- Division of Nephrology-Hypertension, University of California, San Diego School of Medicine and VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
32
|
The effects of acute renal denervation on kidney perfusion and metabolism in experimental septic shock. BMC Nephrol 2017; 18:182. [PMID: 28569187 PMCID: PMC5452298 DOI: 10.1186/s12882-017-0586-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Perfusion deficits likely play an important role in the development of renal dysfunction in sepsis. Renal denervation may improve kidney perfusion and metabolism. METHODS We randomized 14 female sheep to undergo bilateral surgical renal denervation (n = 7) or sham procedure (n = 7) prior to induction of sepsis. Renal blood flow (RBF) was measured with a pre-calibrated flowprobe. Laser Doppler probes were implanted to measure cortical and medullary perfusion. Cortical glucose, lactate and pyruvate levels were measured using the microdialysis technique. Creatinine clearance was determined. Sepsis was induced by peritonitis and fluid resuscitation was provided to avoid hypovolemia. RESULTS RBF and cortical perfusion were higher in the denervated group during the first 6 h after induction of sepsis (P < 0.001 and P < 0.05, respectively), while medullary perfusion decreased similarly in both groups. After hypotension developed, RBF decreased to similar levels in both groups. Cortical pyruvate and lactate levels were lower in the denervated animals (P < 0.001 and P < 0.001, respectively). There were no differences between groups in creatinine clearance, urine output or time to oliguria. CONCLUSION Denervation thus caused an early increase in RBF that was distributed towards the kidney cortex. Although associated with an attenuation of early cortical metabolic alterations, denervation failed to prevent the deterioration in renal function.
Collapse
|
33
|
Matejovic M, Valesova L, Benes J, Sykora R, Hrstka R, Chvojka J. Molecular differences in susceptibility of the kidney to sepsis-induced kidney injury. BMC Nephrol 2017; 18:183. [PMID: 28569136 PMCID: PMC5452356 DOI: 10.1186/s12882-017-0602-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/24/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Septic acute kidney injury affects 40-50% of all septic patients. Molecular differences between septic patients with and without acute kidney injury (AKI) are only poorly understood. Here, we investigated gene expression changes that differentiated the subjects who developed septic AKI from those who did not and coupled this approach with traditional parameters of renal physiology. METHODS In 15 anesthetized, mechanically ventilated and instrumented pigs, progressive sepsis was induced either by peritonitis or by continuous intravenous infusion of Pseudomonas aeruginosa. Animals received standard intensive care including goal-directed hemodynamic management. Analyses were performed on kidneys from sham operated animals, septic pigs without AKI, and pigs with septic AKI. Before, and at 12, 18 and 22 h of progressive sepsis, systemic and renal hemodynamics, cortex microcirculation and plasma IL-6 and TNF-α were measured. At 22 h whole kidney expression of pre-selected genes was analyzed by quantitative Real Time PCR. RESULTS Animals with septic AKI had systemic hemodynamic phenotype (normo- or hyperdynamic) comparable with non-AKI subjects, but demonstrated higher plasma levels of cytokines, an increase in renal vascular resistance and early fall in cortical microcirculatory blood flow. The genes whose expression discriminated septic AKI from non-AKI included Toll like receptor 4 (up-regulated 2.7-fold, P = 0.04); Cyclooxygenase-2 (up-regulated 14.6-fold, P = 0.01), Angiotensin II Receptor (up-regulated 8.1-fold, P = 0.01), Caspase 3 (up-regulated 5.1-fold, P = 0.02), Peroxisome Proliferator-Activated Receptor Gamma, Coactivator 1 Alpha (down-regulated 2-fold, P = 0.02). CONCLUSIONS In this preliminary experimental study, kidney gene expression was profoundly different in animals that developed septic AKI as opposed to septic animals that did not. The biological functions of the genes differentially expressed support a role of inflammatory overstimulation coupled with metabolic and apoptotic molecular responses in early septic AKI. Cyclooxygenase-2 and angiotensin type 2 receptor-dependent downstream mechanisms appear fruitful targets for future mechanistic research.
Collapse
Affiliation(s)
- Martin Matejovic
- 1st Medical Department, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic. .,Experimental Intensive Care Unit, Biomedical Centre, Faculty of Medicine in Plzen, Charles University, alej Svobody 1655/76, Plzen, Czech Republic. .,1st Medical Department, Teaching Hospital, alej Svobody 80, 304 60, Plzen, Czech Republic.
| | - Lenka Valesova
- 1st Medical Department, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.,Experimental Intensive Care Unit, Biomedical Centre, Faculty of Medicine in Plzen, Charles University, alej Svobody 1655/76, Plzen, Czech Republic
| | - Jan Benes
- Experimental Intensive Care Unit, Biomedical Centre, Faculty of Medicine in Plzen, Charles University, alej Svobody 1655/76, Plzen, Czech Republic.,Department of Anesthesia and Intensive Care Medicine, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Roman Sykora
- 1st Medical Department, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, Czech Republic
| | - Jiri Chvojka
- 1st Medical Department, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic.,Experimental Intensive Care Unit, Biomedical Centre, Faculty of Medicine in Plzen, Charles University, alej Svobody 1655/76, Plzen, Czech Republic
| |
Collapse
|
34
|
Delta neutrophil index is an independent predictor of mortality in septic acute kidney injury patients treated with continuous renal replacement therapy. BMC Nephrol 2017; 18:94. [PMID: 28320333 PMCID: PMC5358045 DOI: 10.1186/s12882-017-0507-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
Background Delta neutrophil index (DNI), representing an elevated fraction of circulating immature granulocytes in acute infection, has been reported as a useful marker for predicting mortality in patients with sepsis. The aim of this study was to evaluate the prognostic value of DNI in predicting mortality in septic acute kidney injury (S-AKI) patients treated with continuous renal replacement therapy (CRRT). Method This is a retrospective analysis of consecutively CRRT treated patients. We enrolled 286 S-AKI patients who underwent CRRT and divided them into three groups based on the tertiles of DNI at CRRT initiation (high, DNI > 12.0%; intermediate, 3.6–12.0%; low, < 3.6%). Patient survival was estimated with the Kaplan-Meier method and Cox proportional hazards models to determine the effect of DNI on the mortality of S-AKI patients. Results Patients in the highest tertile of DNI showed higher Acute Physiology and Chronic Health Evaluation II score (highest tertile, 27.9 ± 7.0; lowest tertile, 24.6 ± 8.3; P = 0.003) and Sequential Organ Failure Assessment score (highest tertile, 14.1 ± 3.0; lowest tertile, 12.1 ± 4.0; P = 0.001). The 28-day mortality rate was significantly higher in the highest tertile group than in the lower two tertile groups (P < 0.001). In the multiple Cox proportional hazard model, DNI was an independent predictor for mortality after adjusting multiple confounding factors (hazard ratio, 1.010; 95% confidence interval, 1.001–1.019; P = 0.036). Conclusion This study suggests that DNI is independently associated with mortality of S-AKI patients on CRRT.
Collapse
|
35
|
Ge QM, Huang CM, Zhu XY, Bian F, Pan SM. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS One 2017; 12:e0173292. [PMID: 28296904 PMCID: PMC5351858 DOI: 10.1371/journal.pone.0173292] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
Objective To identify specific miRNAs involved in sepsis-induced AKI and to explore their targeting pathways. Methods The expression profiles of miRNAs in serum from patients with sepsis-induced AKI (n = 6), sepsis-non AKI (n = 6), and healthy volunteers (n = 3) were investigated by microarray assay and validated by quantitative PCR (qPCR). The targets of the differentially expressed miRNAs were predicted by Target Scan, mirbase and Miranda. Then the significant functions and involvement in signaling pathways of gene ontology (GO) and KEGG pathways were analyzed. Furthermore, eight miRNAs were randomly selected out of the differentially expressed miRNAs for further testing by qPCR. Results qPCR analysis confirmed that the expressions levels of hsa-miR-23a-3p, hsa-miR-4456, hsa-miR-142-5p, hsa-miR-22-3p and hsa-miR-191-5p were significantly lower in patients with sepsis compared with the healthy volunteers, while hsa-miR-4270, hsa-miR-4321, hsa-miR-3165 were higher in the sepsis patients. Statistically, miR-4321; miR-4270 were significantly upregulated in the sepsis-induced AKI compared with sepsis-non AKI, while only miR-4321 significantly overexpressed in the sepsis groups compared with control groups. GO analysis showed that biological processes regulated by the predicted target genes included diverse terms. They were related to kidney development, regulation of nitrogen compound metabolic process, regulation of cellular metabolic process, cellular response to oxidative stress, mitochondrial outer membrane permeabilization, etc. Pathway analysis showed that several significant pathways of the predicted target genes related to oxidative stress. miR-4321 was involved in regulating AKT1, mTOR and NOX5 expression while miR-4270 was involved in regulating PPARGC1A, AKT3, NOX5, PIK3C3, WNT1 expression. Function and pathway analysis highlighted the possible involvement of miRNA-deregulated mRNAs in oxidative stress and mitochondrial dysfunction. Conclusion This study might help to improve understanding of the relationship between serum miRNAs and sepsis-induced AKI, and laid an important foundation for further identification of the potential mechanisms of sepsis-induced AKI and oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qin-Min Ge
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chun-Mei Huang
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States of America
| | - Fan Bian
- Department of Nephrology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shu-Ming Pan
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
36
|
Schöchl H, van Griensven M, Heitmeier S, Laux V, Kipman U, Roodt J, Bahrami S, Redl H. Dual inhibition of thrombin and activated factor X attenuates disseminated intravascular coagulation and protects organ function in a baboon model of severe Gram-negative sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:51. [PMID: 28288667 PMCID: PMC5348796 DOI: 10.1186/s13054-017-1636-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/15/2017] [Indexed: 12/29/2022]
Abstract
Background Inhibition of procoagulant pathways may improve outcome in sepsis. We examined whether a dual short-acting thrombin (factor II) and factor X (FX)a inhibitor (SATI) ameliorates sepsis-induced disseminated intravascular coagulation (DIC) and is organ-protective. Methods Escherichia coli were infused for 2 h in 22 anesthetized baboons. The control (CO) group (n = 8) received sterile isotonic solution only. In the treatment groups, SATI was administered starting 15 minutes after the end of the bacterial exposure. In the low-dose group (LD-SATI, n = 8), SATI was infused with 75 μg/kg/h for the first hour, followed by 23 μg/kg/h until the end of the study. In the high-dose SATI group (HD-SATI, n = 6), 225 μg/kg/h was administered for the first hour followed by continuous infusion of 69 μg/kg/h until termination of the study. Results Sepsis-induced DIC was attenuated, as reflected by lower peak thrombin-antithrombin complexes (threefold) and D-dimer levels (twofold) in both SATI groups compared to the CO. This coincided with strongly improved cell/organ protection assessed by decreased levels of lactate dehydrogenase (threefold), creatinine (twofold), aspartate aminotransferase (threefold), and amylase (twofold) compared to the CO group. Anuria, which started at 8 h in the CO group, was prevented in both SATI groups. Peak interleukin-6 release at 12 h was prevented in the treatment groups. In both SATI groups, fewer catecholamines were necessary and no bleeding complications were observed. Conclusions Dual inhibition of thrombin and FXa preserved activation of coagulation, protected organ function and ameliorated inflammation in severe Gram-negative sepsis in baboons. SATI could be a novel therapeutic agent against sepsis-induced DIC.
Collapse
Affiliation(s)
- Herbert Schöchl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria. .,Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Dr. Franz Rehrl Platz 5, 5020, Salzburg, Austria.
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Volker Laux
- Bayer Pharma AG, Acute Care Research, Wuppertal, Germany
| | | | - Jan Roodt
- Department of Haematology and Cell Biology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Free State, South Africa
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Centre, Vienna, Austria
| |
Collapse
|
37
|
Anderberg SB, Luther T, Frithiof R. Physiological aspects of Toll-like receptor 4 activation in sepsis-induced acute kidney injury. Acta Physiol (Oxf) 2017; 219:573-588. [PMID: 27602552 PMCID: PMC5324638 DOI: 10.1111/apha.12798] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/08/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
Abstract
Sepsis‐induced acute kidney injury (SI‐AKI) is common and associated with high mortality. Survivors are at increased risk of chronic kidney disease. The precise mechanism underlying SI‐AKI is unknown, and no curative treatment exists. Toll‐like receptor 4 (TLR4) activates the innate immune system in response to exogenous microbial products. The result is an inflammatory reaction aimed at clearing a potential infection. However, the consequence may also be organ dysfunction as the immune response can cause collateral damage to host tissue. The purpose of this review is to describe the basis for how ligand binding to TLR4 has the potential to cause renal dysfunction and the mechanisms by which this may take place in gram‐negative sepsis. In addition, we highlight areas for future research that can further our knowledge of the pathogenesis of SI‐AKI in relation to TLR4 activation. TLR4 is expressed in the kidney. Activation of TLR4 causes cytokine and chemokine release as well as renal leucocyte infiltration. It also results in endothelial and tubular dysfunction in addition to altered renal metabolism and circulation. From a physiological standpoint, inhibiting TLR4 in large animal experimental SI‐AKI significantly improves renal function. Thus, current evidence indicates that TLR4 has the ability to mediate SI‐AKI by a number of mechanisms. The strong experimental evidence supporting a role of TLR4 in the pathogenesis of SI‐AKI in combination with the availability of pharmacological tools to target TLR4 warrants future human studies.
Collapse
Affiliation(s)
- S. B. Anderberg
- Department of Surgical Sciences; Section of Anesthesia & Intensive Care; Uppsala University; Uppsala Sweden
| | - T. Luther
- Department of Surgical Sciences; Section of Anesthesia & Intensive Care; Uppsala University; Uppsala Sweden
| | - R. Frithiof
- Department of Surgical Sciences; Section of Anesthesia & Intensive Care; Uppsala University; Uppsala Sweden
| |
Collapse
|
38
|
Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Di Iorio B, Cozzolino M, Ronco C. Pathophysiology of the cardio-renal syndromes types 1-5: An uptodate. Indian Heart J 2017; 69:255-265. [PMID: 28460776 PMCID: PMC5415026 DOI: 10.1016/j.ihj.2017.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/06/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
According to the recent definition proposed by the Consensus conference on Acute Dialysis Quality Initiative Group, the term cardio-renal syndrome (CRS) has been used to define different clinical conditions in which heart and kidney dysfunction overlap. Type 1 CRS (acute cardio- renal syndrome) is characterized by acute worsening of cardiac function leading to AKI (5, 6) in the setting of active cardiac disease such as ADHF, while type - 2 CRS occurs in a setting of chronic heart disease. Type 3 CRS is closely link to acute kidney injury (AKI), while type 4 represent cardiovascular involvement in chronic kidney disese (CKD) patients. Type 5 CRS represent cardiac and renal involvement in several diseases such as sepsis, hepato - renal syndrome and immune - mediated diseases.
Collapse
Affiliation(s)
- L Di Lullo
- Department of Nephrology and Dialysis, L. Parodi - Delfino Hospital, Colleferro Rome, Italy.
| | - A Bellasi
- Department of Nephrology and Dialysis, S. Anna Hospital, Como, Italy
| | - V Barbera
- Department of Nephrology and Dialysis, L. Parodi - Delfino Hospital, Colleferro Rome, Italy
| | - D Russo
- Division of Nephrology, University of Naples "Federico II", Napoli, Italy
| | - L Russo
- Division of Nephrology, University of Naples "Federico II", Napoli, Italy
| | - B Di Iorio
- Department of Nephrology and Dialysis, A. Landolfi Hospital, Solofra, Avellino, Italy
| | - M Cozzolino
- Department of Health Sciences, Renal Division, San Paolo Hospital, University of Milan, Italy
| | - C Ronco
- International Renal Research Institute, S. Bortolo Hospital, Vicenza, Italy
| |
Collapse
|
39
|
Cho JS, Soh S, Shim JK, Kang S, Choi H, Kwak YL. Effect of perioperative sodium bicarbonate administration on renal function following cardiac surgery for infective endocarditis: a randomized, placebo-controlled trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:3. [PMID: 28057030 PMCID: PMC5217446 DOI: 10.1186/s13054-016-1591-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
Abstract
Background Patients with infective endocarditis (IE) have an elevated risk of renal dysfunction because of extensive systemic inflammation and use of nephrotoxic antibiotics. In this randomized, placebo-controlled trial, we investigated whether perioperative sodium bicarbonate administration could attenuate postoperative renal dysfunction in patients with IE undergoing cardiac surgery. Methods Seventy patients randomly received sodium chloride (n = 35) or sodium bicarbonate (n = 35). Sodium bicarbonate was administered as a 0.5 mmol/kg loading dose for 1 h commencing with anesthetic induction, followed by a 0.15 mmol/kg/h infusion for 23 h. The primary outcome was peak serum creatinine (SCr) level during the first 48 h postoperatively. The incidence of acute kidney injury, SCr level, estimated glomerular filtration rate, and major morbidity endpoints were assessed postoperatively. Results The peak SCr during the first 48 h postoperatively (bicarbonate vs. control: 1.01 (0.74, 1.37) mg/dl vs. 0.88 (0.76, 1.27) mg/dl, P = 0.474) and the incidence of acute kidney injury (bicarbonate vs. control: 29% vs. 23%, P = 0.584) were similar in both groups. The postoperative increase in SCr above baseline was greater in the bicarbonate group than in the control group on postoperative day 2 (0.21 (0.07, 0.33) mg/dl vs. 0.06 (0.00, 0.23) mg/dl, P = 0.028) and postoperative day 5 (0.23 (0.08, 0.36) mg/dl vs. 0.06 (0.00, 0.23) mg/dl, P = 0.017). Conclusions Perioperative sodium bicarbonate administration had no favorable impact on postoperative renal function and outcomes in patients with IE undergoing cardiac surgery. Instead, it was associated with possibly harmful renal effects, illustrated by a greater increase in SCr postoperatively, compared to control. Trial registration ClinicalTrials.gov, NCT01920126. Registered on 31 July 2013. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1591-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Sun Cho
- Department of Anesthesiology and Pain Medicine, Yonsei Cardiovascular Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Sarah Soh
- Department of Anesthesiology and Pain Medicine, Yonsei Cardiovascular Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Jae-Kwang Shim
- Department of Anesthesiology and Pain Medicine, Yonsei Cardiovascular Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sanghwa Kang
- Department of Anesthesiology and Pain Medicine, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do, Republic of Korea
| | - Haegi Choi
- Department of Anesthesiology and Pain Medicine, Yonsei Cardiovascular Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | - Young-Lan Kwak
- Department of Anesthesiology and Pain Medicine, Yonsei Cardiovascular Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Republic of Korea. .,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Histopathological changes in septic acute kidney injury in critically ill children: a cohort of post-mortem renal biopsies. Clin Exp Nephrol 2016; 21:1075-1082. [PMID: 27738777 DOI: 10.1007/s10157-016-1343-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Septic acute kidney injury (AKI) accounts for more than half of all cases of AKI in critically ill children. The renal histology was found to alter the management in more than two-third of cases of adult acute renal failure. Better insight into the pathogenesis of pediatric septic AKI could be based on developing a clearer appreciation of the histopathological changes. No comprehensive study of the histopathological features of septic AKI in critically ill children has yet been performed. METHODS This retrospective observational study was conducted at a level-III pediatric intensive care unit (PICU) from June 2013 to July 2014. Children (<13 years of age) who had expired due to sepsis and AKI and had post-mortem renal biopsies were included. Sepsis and AKI were defined according to the International pediatric sepsis consensus conference and Acute Kidney Injury Network (AKIN) definition and classification system, respectively. RESULTS A total of 708 patients were admitted to the PICU during the study period, with mortality of 24 % (n = 170) and 62 complete data of post-mortem renal biopsies were included. The median (IQR) age was 12 (4.8-36) months, pediatric risk of mortality score (PRISM) III was 14 (12-18) and the time to biopsy after death was 24 (18-26) minutes. Normal histology was the most common change 41.9 % (n = 26), followed by acute tubular necrosis (ATN) 30.6 % (n = 19). A combination of changes involving tubules, glomeruli, interstitium, and blood vessels was noted in 21 % (n = 13) of the specimens. Eight percent (n = 5) of the specimens had features consistent with thrombotic microangiopathy. Normal histology was noted in 15.4 % (n = 4/26), 50 % (n = 13/26), and 34.6 % (n = 9/26) of AKI stage-I, II, and III, respectively. CONCLUSION The most common renal histopathological change in septic AKI in critically ill children was normal histology followed by ATN.
Collapse
|
41
|
Post EH, Kellum JA, Bellomo R, Vincent JL. Renal perfusion in sepsis: from macro- to microcirculation. Kidney Int 2016; 91:45-60. [PMID: 27692561 DOI: 10.1016/j.kint.2016.07.032] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022]
Abstract
The pathogenesis of sepsis-associated acute kidney injury is complex and likely involves perfusion alterations, a dysregulated inflammatory response, and bioenergetic derangements. Although global renal hypoperfusion has been the main target of therapeutic interventions, its role in the development of renal dysfunction in sepsis is controversial. The implications of renal hypoperfusion during sepsis probably extend beyond a simple decrease in glomerular filtration pressure, and targeting microvascular perfusion deficits to maintain tubular epithelial integrity and function may be equally important. In this review, we provide an overview of macro- and microcirculatory dysfunction in experimental and clinical sepsis and discuss relationships with kidney oxygenation, metabolism, inflammation, and function.
Collapse
Affiliation(s)
- Emiel Hendrik Post
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, School of Medicine, The University of Melbourne, Parkville, Melbourne, Australia
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
42
|
Post EH, Su F, Hosokawa K, Taccone FS, Herpain A, Creteur J, Vincent JL, De Backer D. Changes in kidney perfusion and renal cortex metabolism in septic shock: an experimental study. J Surg Res 2016; 207:145-154. [PMID: 27979471 DOI: 10.1016/j.jss.2016.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The etiology of renal dysfunction in sepsis is currently attributed to altered perfusion, microcirculatory abnormalities and cellular alterations. To clarify these mechanisms, we characterized the changes in renal perfusion and cortex metabolism in a large animal model of sepsis. METHODS We studied 12 adult female sheep randomized to peritonitis-induced sepsis (n = 8) or to sham procedure (n = 4). A flow probe was positioned around the renal artery to measure renal blood flow (RBF). Laser Doppler was used to measure regional flow in the kidney cortex and medulla. A microdialysis probe was inserted into the renal cortex to measure cortical glucose, lactate, and pyruvate. Fluid resuscitation was provided to keep pulmonary artery occlusion pressure at baseline levels. All animals were observed for 18 h. RESULTS Hypotension occurred after 9 h in the septic animals (P = 0.02 versus baseline). RBF and cortical flow were significantly lower than at baseline from 12 h in the septic animals (P = 0.01 and P = 0.03, respectively). Cortical lactate and pyruvate levels increased in the septic animals from 3 and from 6 h, respectively (both P = 0.02 versus baseline), and the L/P ratio from 15 h (P = 0.01). There was a correlation between cortical flow and cortical L/P ratio after shock onset (r = -0.60, P = 0.002) but not before. CONCLUSIONS In this peritonitis model, sepsis was associated with metabolic alterations that may reflect early induction of cortical glycolysis. Septic shock was associated with reduced renal perfusion and decreased cortical and medullary blood flow, followed by signs of anaerobic metabolism in the cortex when flow reductions became critical.
Collapse
Affiliation(s)
- Emiel Hendrik Post
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fuhong Su
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Koji Hosokawa
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Herpain
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Daniel De Backer
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
43
|
Sepsis patients' renal manifestation on contrast-enhanced CT. Clin Radiol 2016; 71:617.e1-7. [PMID: 27017479 DOI: 10.1016/j.crad.2016.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/14/2016] [Accepted: 02/22/2016] [Indexed: 11/22/2022]
Abstract
AIM To evaluate renal volume and attenuation changes in patients with sepsis on contrast-enhanced computed tomography (CT) with respect to the severity of sepsis. MATERIALS AND METHODS Forty-four patients with sepsis who underwent CT before and after the onset of sepsis were retrospectively analysed. Renal volume and CT attenuation value of the renal cortex on contrast-enhanced CT were measured for each patient and changes in renal volume and CT attenuation value from before to after the onset of sepsis were calculated. The changes were correlated with the severity of sepsis (Sepsis-related Organ Failure Assessment [SOFA] score). The time course of the renal volume and CT attenuation changes were also evaluated. RESULTS Renal volume increased by 17.6% and CT attenuation value decreased by 19% after the onset of sepsis with statistically significant differences (p<0.001 for both renal volume and CT attenuation changes). The renal volume and CT attenuation changes had significant correlations with the SOFA score (r=0.36, p=0.018 and -0.43, p=0.005, respectively). The time course of the renal volume and CT attenuation changes seemed to be gradual compared to that of the SOFA score and to lag behind the peak of the SOFA score. CONCLUSION In patients with sepsis, the renal volume increases and the CT attenuation value decreases in proportion to the severity of sepsis. The changes may lag behind the peak of severity of sepsis and can be observed for a relatively long time after a patient's recovery from sepsis.
Collapse
|
44
|
Sims CR, Nguyen TC, Mayeux PR. Could Biomarkers Direct Therapy for the Septic Patient? J Pharmacol Exp Ther 2016; 357:228-39. [PMID: 26857961 DOI: 10.1124/jpet.115.230797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 01/25/2023] Open
Abstract
Sepsis is a serious medical condition caused by a severe systemic inflammatory response to a bacterial, fungal, or viral infection that most commonly affects neonates and the elderly. Advances in understanding the pathophysiology of sepsis have resulted in guidelines for care that have helped reduce the risk of dying from sepsis for both children and older adults. Still, over the past three decades, a large number of clinical trials have been undertaken to evaluate pharmacological agents for sepsis. Unfortunately, all of these trials have failed, with the use of some agents even shown to be harmful. One key issue in these trials was the heterogeneity of the patient population that participated. What has emerged is the need to target therapeutic interventions to the specific patient's underlying pathophysiological processes, rather than looking for a universal therapy that would be effective in a "typical" septic patient, who does not exist. This review supports the concept that identification of the right biomarkers that can direct therapy and provide timely feedback on its effectiveness will enable critical care physicians to decrease mortality of patients with sepsis and improve the quality of life of survivors.
Collapse
Affiliation(s)
- Clark R Sims
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| | - Trung C Nguyen
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| |
Collapse
|
45
|
Alpha-lipoic acid exerts anti-inflammatory effects on lipopolysaccharide-stimulated rat mesangial cells via inhibition of nuclear factor kappa B (NF-κB) signaling pathway. Inflammation 2015; 38:510-9. [PMID: 24962643 DOI: 10.1007/s10753-014-9957-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis is often initiated by invasive infection, characterized by overwhelming induction of pro-inflammatory cytokines. The incidence and mortality of sepsis and the associated development of acute kidney injury (AKI) remain high, and lines of research into potential treatments are needed. This study was conducted to investigate effects of alpha-lipoic acid (ALA) on septic AKI in vitro. ALA of 200 or 400 μM was used to pretreat rat HBZY-1 mesangial cells before commencement of 1 μg/mL lipopolysaccharide (LPS). Our data indicated that ALA pretreatment reduced LPS-stimulated release of inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1 beta (IL-1β), as well as IL-6, in HBZY-1 cell supernatant. Moreover, LPS-induced expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was inhibited by ALA pretreatment, and consequently, the secretion levels of their respective enzymatic products prostaglandin E2 (PGE2) and nitric oxide (NO) were significantly decreased. LPS-enhanced phosphorylation of nuclear factor kappa B (NF-κB) inhibitor alpha (IκBα) and IκB kinase alpha/beta (IKKα/β) and nuclear translocation of NF-κB subunit p65 in HBZY-1 cells were inhibited by ALA pretreatment. Additionally, the NF-κB inhibitor N-acetylcysteine (NAC) exerted similar inhibitory effects as ALA on COX-2 and iNOS expression. In summary, our study demonstrates that ALA mitigates LPS-induced inflammatory responses in rat mesangial cells probably via inhibition of NF-κB signaling pathway, suggesting a therapeutic potential of ALA in AKI related to sepsis.
Collapse
|
46
|
Prowle JR, Bellomo R. Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin Nephrol 2015; 35:64-74. [PMID: 25795500 DOI: 10.1016/j.semnephrol.2015.01.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traditionally, renal ischemia has been regarded as central to the pathogenesis of sepsis-associated acute kidney injury (SA-AKI). Accordingly, hemodynamic management of SA-AKI has emphasized restoration of renal perfusion, whereas, experimentally, ischemia reperfusion models have been emphasized. However, in human beings, SA-AKI usually is accompanied by hyperdynamic circulation. Moreover, clinical and experimental evidence now suggests the importance of inflammatory mechanisms in the development of AKI and microcirculatory dysfunction more than systemic alteration in renal perfusion. In this review, we examine systemic, regional, and microcirculatory hemodynamics in SA-AKI, and attempt to rationalize the hemodynamic management of this condition.
Collapse
Affiliation(s)
- John R Prowle
- Adult Critical Care Unit, Department of Renal Medicine and Transplantation, The Royal London Hospital, Barts Health NHS Trust, London, UK; William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, Australia; Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
47
|
Matejovic M, Ince C, Chawla LS, Blantz R, Molitoris BA, Rosner MH, Okusa MD, Kellum JA, Ronco C. Renal Hemodynamics in AKI: In Search of New Treatment Targets. J Am Soc Nephrol 2015; 27:49-58. [PMID: 26510884 DOI: 10.1681/asn.2015030234] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Novel therapeutic interventions are required to prevent or treat AKI. To expedite progress in this regard, a consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 to develop recommendations for research priorities and future directions. Here, we highlight the concepts related to renal hemodynamics in AKI that are likely to reveal new treatment targets on investigation. Overall, we must better understand the interactions between systemic, total renal, and glomerular hemodynamics, including the role of tubuloglomerular feedback. Furthermore, the net consequences of therapeutic maneuvers aimed at restoring glomerular filtration need to be examined in relation to the nature, magnitude, and duration of the insult. Additionally, microvascular blood flow heterogeneity in AKI is now recognized as a common occurrence; timely interventions to preserve the renal microcirculatory flow may interrupt the downward spiral of injury toward progressive kidney failure and should, therefore, be investigated. Finally, development of techniques that permit an integrative physiologic approach, including direct visualization of renal microvasculature and measurement of oxygen kinetics and mitochondrial function in intact tissue in all nephron segments, may provide new insights into how the kidney responds to various injurious stimuli and allow evaluation of new therapeutic strategies.
Collapse
Affiliation(s)
- Martin Matejovic
- First Medical Department and Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Teaching Hospital in Plzen, Plzen, Czech Republic
| | - Can Ince
- Department of Intensive Care, Erasmus Medical Center University Hospital, Rotterdam, The Netherlands
| | - Lakhmir S Chawla
- Department of Medicine, Division of Intensive Care Medicine and Division of Nephrology, Veterans Affairs Medical Center, Washington, DC
| | - Roland Blantz
- Nephrology-Hypertension Division, University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Bruce A Molitoris
- Department of Medicine, Division of Nephrology and Department of Cellular and Integrative Physiology, Indiana University School of Medicine and the Rouderbush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Mitchell H Rosner
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia;
| | - Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - John A Kellum
- Center for Critical Care Nephrology and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Claudio Ronco
- Department of Nephrology Dialysis and Transplantation, San Bortolo Hospital and the International Renal Research Institute, Vicenza, Italy
| | | |
Collapse
|
48
|
Recent knowledge on the pathophysiology of septic acute kidney injury: A narrative review. J Crit Care 2015; 31:82-9. [PMID: 26475099 DOI: 10.1016/j.jcrc.2015.09.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/13/2015] [Accepted: 09/13/2015] [Indexed: 01/03/2023]
Abstract
Sepsis is the commonest cause of acute kidney injury in critically ill patients. Its pathophysiology is complex and not well understood. Until recently, it was believed that kidney hypoperfusion is the major contributor of septic acute kidney injury. However, recent publications have improved our understanding on this topic. We now know that its mechanisms included the following: (1) renal macrocirculatory and microcirculatory disturbance, (2) surge of inflammatory markers and oxidative stress, (3) coagulation cascade activation, and (4) bioenergetics adaptive response with controlled cell-cycle arrest aiming to prevent cell death. Uncovering these complicated mechanisms may facilitate the development of more appropriate therapeutic measures in the future.
Collapse
|
49
|
|
50
|
Kararmaz A, Kemal Arslantas M, Cinel I. Renal Resistive Index Measurement by Transesophageal Echocardiography: Comparison With Translumbar Ultrasonography and Relation to Acute Kidney Injury. J Cardiothorac Vasc Anesth 2015; 29:875-80. [DOI: 10.1053/j.jvca.2014.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 12/29/2022]
|