1
|
Lin MT, Vinit S, Lee KZ. Functional role of carbon dioxide on intermittent hypoxia induced respiratory response following mid-cervical contusion in the rat. Exp Neurol 2021; 339:113610. [PMID: 33453216 DOI: 10.1016/j.expneurol.2021.113610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/17/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Intermittent hypoxia induces respiratory neuroplasticity to enhance respiratory motor outputs and is a potential rehabilitative strategy to improve respiratory function following cervical spinal injury. The present study was designed to evaluate the functional role of intermittent and sustained carbon dioxide (CO2) on intermittent hypoxia-induced ventilatory responses in rats with mid-cervical spinal contusion. The breathing pattern of unanesthetized rats at the subchronic and chronic injured stages was measured in response to one of the following treatments: (1) Intermittent hypercapnic-hypoxia (10 × 5 min 10%O2 + 4%CO2 with 5 min normoxia interval); (2) Intermittent hypoxia with sustained hypercapnia (10 × 5 min 10%O2 + 4%CO2 with 5 min 21%O2 + 4%CO2 interval); (3) Intermittent hypoxia (10 × 5 min 10%O2 with 5 min normoxia interval); (4) Intermittent hypercapnia (10 × 5 min 21%O2 + 4%CO2 with 5 min normoxia interval); (5) Sustained hypercapnia (100 min, 21% O2 + 4% CO2); (6) Sustained normoxia (100 min, 21% O2). The results demonstrated that intermittent hypoxia associated with intermittent hypercapnia or sustained hypercapnia induced a greater ventilatory response than sustained hypercapnia during stimulus exposure. The tidal volume was significantly enhanced to a similar magnitude following intermittent hypercapnic-hypoxia, intermittent hypoxia with sustained hypercapnia, and intermittent hypoxia in subchronically injured animals; however, only intermittent hypercapnic-hypoxia and intermittent hypoxia were able to evoke long-term facilitation of the tidal volume at the chronic injured stage. These results suggest that mild intermittent hypercapnia did not further enhance the therapeutic effectiveness of intermittent hypoxia-induced respiratory recovery in mid-cervical contused animals. However, sustained hypercapnia associated with intermittent hypoxia may blunt ventilatory responses following intermittent hypoxia at the chronic injured stage.
Collapse
Affiliation(s)
- Mei-Tsen Lin
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Stéphane Vinit
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Zhou XL, Wei XJ, Li SP, Ma HL, Zhao Y. Lung-protective ventilation worsens ventilator-induced diaphragm atrophy and weakness. Respir Res 2020; 21:16. [PMID: 31924204 PMCID: PMC6954632 DOI: 10.1186/s12931-020-1276-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Lung–protective ventilation (LPV) has been found to minimize the risk of ventilator–induced lung injury (VILI). However, whether LPV is able to diminish ventilator–induced diaphragm dysfunction (VIDD) remains unknown. This study was designed to test the hypothesis that LPV protects the diaphragm against VIDD. Methods Adult male Wistar rats received either conventional mechanical (tidal volume [VT]: 10 ml/kg, positive end–expiratory pressure [PEEP]: 2 cm H2O; CV group) or lung-protective (VT: 5 ml/kg, PEEP: 10 cm H2O; LPV group) ventilation for 12 h. Then, diaphragms and lungs were collected for biochemical and histological analyses. Transcriptome sequencing (RNA–seq) was performed to determine the differentially expressed genes in the diaphragms between groups. Results Our results suggested that LPV was associated with diminished pulmonary injuries and reduced oxidative stress compared with the effects of the CV strategy in rats. However, animals that received LPV showed increased protein degradation, decreased cross–sectional areas (CSAs) of myofibers, and reduced forces of the diaphragm compared with the same parameters in animals receiving CV (p < 0.05). In addition, the LPV group showed a higher level of oxidative stress in the diaphragm than the CV group (p < 0.05). Moreover, RNA–seq and western blots revealed that the peroxisome proliferator–activated receptor γ coactivator–1alpha (PGC–1α), a powerful reactive oxygen species (ROS) inhibitor, was significantly downregulated in the LPV group compared with its expression in the CV group (p < 0.05). Conclusions Compared with the CV strategy, the LPV strategy did not protect the diaphragm against VIDD in rats. In contrast, the LPV strategy worsened VIDD by inducing oxidative stress together with the downregulation of PGC–1α in the diaphragm. However, further studies are required to determine the roles of PGC–1α in ventilator-induced diaphragmatic oxidative stress.
Collapse
Affiliation(s)
- Xian-Long Zhou
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xiao-Jun Wei
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Shao-Ping Li
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Hao-Li Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
3
|
Peñuelas O, Keough E, López-Rodríguez L, Carriedo D, Gonçalves G, Barreiro E, Lorente JÁ. Ventilator-induced diaphragm dysfunction: translational mechanisms lead to therapeutical alternatives in the critically ill. Intensive Care Med Exp 2019; 7:48. [PMID: 31346802 PMCID: PMC6658639 DOI: 10.1186/s40635-019-0259-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Mechanical ventilation [MV] is a life-saving technique delivered to critically ill patients incapable of adequately ventilating and/or oxygenating due to respiratory or other disease processes. This necessarily invasive support however could potentially result in important iatrogenic complications. Even brief periods of MV may result in diaphragm weakness [i.e., ventilator-induced diaphragm dysfunction [VIDD]], which may be associated with difficulty weaning from the ventilator as well as mortality. This suggests that VIDD could potentially have a major impact on clinical practice through worse clinical outcomes and healthcare resource use. Recent translational investigations have identified that VIDD is mainly characterized by alterations resulting in a major decline of diaphragmatic contractile force together with atrophy of diaphragm muscle fibers. However, the signaling mechanisms responsible for VIDD have not been fully established. In this paper, we summarize the current understanding of the pathophysiological pathways underlying VIDD and highlight the diagnostic approach, as well as novel and experimental therapeutic options.
Collapse
Affiliation(s)
- Oscar Peñuelas
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain.
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain.
| | - Elena Keough
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Lucía López-Rodríguez
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Demetrio Carriedo
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Gesly Gonçalves
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
| | - Esther Barreiro
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department [CEXS], Barcelona, Spain
- Universitat Pompeu Fabra [UPF], Barcelona Biomedical Research Park [PRBB], Barcelona, Spain
| | - José Ángel Lorente
- Intensive Care Unit, Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias [CIBERES], Instituto de Salud Carlos III [ISCIII], Madrid, Spain
- Universidad Europea, Madrid, Spain
| |
Collapse
|
4
|
Schreiber A, Bertoni M, Goligher EC. Avoiding Respiratory and Peripheral Muscle Injury During Mechanical Ventilation: Diaphragm-Protective Ventilation and Early Mobilization. Crit Care Clin 2018; 34:357-381. [PMID: 29907270 DOI: 10.1016/j.ccc.2018.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Both limb muscle weakness and respiratory muscle weakness are exceedingly common in critically ill patients. Respiratory muscle weakness prolongs ventilator dependence, predisposing to nosocomial complications and death. Limb muscle weakness persists for months after discharge from intensive care and results in poor long-term functional status and quality of life. Major mechanisms of muscle injury include critical illness polymyoneuropathy, sepsis, pharmacologic exposures, metabolic derangements, and excessive muscle loading and unloading. The diaphragm may become weak because of excessive unloading (leading to atrophy) or because of excessive loading (either concentric or eccentric) owing to insufficient ventilator assistance.
Collapse
Affiliation(s)
- Annia Schreiber
- Respiratory Intensive Care Unit and Pulmonary Rehabilitation Unit, Istituti Clinici Scientifici Maugeri, Scientific Institute of Pavia, Via Salvatore Maugeri 10, Pavia 27100, Italy
| | - Michele Bertoni
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Piazzale Spedali Civili 1, Brescia 25123, Italy
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto General Hospital, 585 University Avenue, Peter Munk Building, 11th Floor Room 192, Toronto, ON M5G 2N2, Canada.
| |
Collapse
|
5
|
Lindqvist J, van den Berg M, van der Pijl R, Hooijman PE, Beishuizen A, Elshof J, de Waard M, Girbes A, Spoelstra-de Man A, Shi ZH, van den Brom C, Bogaards S, Shen S, Strom J, Granzier H, Kole J, Musters RJP, Paul MA, Heunks LMA, Ottenheijm CAC. Positive End-Expiratory Pressure Ventilation Induces Longitudinal Atrophy in Diaphragm Fibers. Am J Respir Crit Care Med 2018; 198:472-485. [PMID: 29578749 PMCID: PMC6118031 DOI: 10.1164/rccm.201709-1917oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/26/2018] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Diaphragm weakness in critically ill patients prolongs ventilator dependency and duration of hospital stay and increases mortality and healthcare costs. The mechanisms underlying diaphragm weakness include cross-sectional fiber atrophy and contractile protein dysfunction, but whether additional mechanisms are at play is unknown. OBJECTIVES To test the hypothesis that mechanical ventilation with positive end-expiratory pressure (PEEP) induces longitudinal atrophy by displacing the diaphragm in the caudal direction and reducing the length of fibers. METHODS We studied structure and function of diaphragm fibers of mechanically ventilated critically ill patients and mechanically ventilated rats with normal and increased titin compliance. MEASUREMENTS AND MAIN RESULTS PEEP causes a caudal movement of the diaphragm, both in critically ill patients and in rats, and this caudal movement reduces fiber length. Diaphragm fibers of 18-hour mechanically ventilated rats (PEEP of 2.5 cm H2O) adapt to the reduced length by absorbing serially linked sarcomeres, the smallest contractile units in muscle (i.e., longitudinal atrophy). Increasing the compliance of titin molecules reduces longitudinal atrophy. CONCLUSIONS Mechanical ventilation with PEEP results in longitudinal atrophy of diaphragm fibers, a response that is modulated by the elasticity of the giant sarcomeric protein titin. We postulate that longitudinal atrophy, in concert with the aforementioned cross-sectional atrophy, hampers spontaneous breathing trials in critically ill patients: during these efforts, end-expiratory lung volume is reduced, and the shortened diaphragm fibers are stretched to excessive sarcomere lengths. At these lengths, muscle fibers generate less force, and diaphragm weakness ensues.
Collapse
Affiliation(s)
- Johan Lindqvist
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Robbert van der Pijl
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology
| | | | - Albertus Beishuizen
- Department of Intensive Care, Medisch Spectrum Twente, Enschede, the Netherlands; and
| | | | | | | | | | - Zhong-Hua Shi
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | | | | | - Shengyi Shen
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Joshua Strom
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Henk Granzier
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Marinus A. Paul
- Department of Cardiothoracic Surgery, Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | | | - Coen A. C. Ottenheijm
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology
| |
Collapse
|
6
|
Morales Quinteros L, Bringué Roque J, Kaufman D, Artigas Raventós A. Importance of carbon dioxide in the critical patient: Implications at the cellular and clinical levels. Med Intensiva 2018; 43:234-242. [PMID: 29486904 DOI: 10.1016/j.medin.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/22/2023]
Abstract
Important recent insights have emerged regarding the cellular and molecular role of carbon dioxide (CO2) and the effects of hypercapnia. The latter may have beneficial effects in patients with acute lung injury, affording reductions in pulmonary inflammation, lessened oxidative alveolar damage, and the regulation of innate immunity and host defenses by inhibiting the expression of inflammatory cytokines. However, other studies suggest that CO2 can have deleterious effects upon the lung, reducing alveolar wound repair in lung injury, decreasing the rate of reabsorption of alveolar fluid, and inhibiting alveolar cell proliferation. Clearly, hypercapnia has both beneficial and harmful consequences, and it is important to determine the net effect under specific conditions. The purpose of this review is to describe the immunological and physiological effects of carbon dioxide, considering their potential consequences in patients with acute respiratory failure.
Collapse
Affiliation(s)
| | | | - David Kaufman
- Division of Pulmonary, Critical Care & Sleep, NYU School of Medicine, New York, NY, Estados Unidos
| | - Antonio Artigas Raventós
- Servicio de Medicina Intensiva, Hospital Universitario Sagrat Cor, Barcelona, España; Universidad Autónoma de Barcelona, Sabadell, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, España
| |
Collapse
|
7
|
van den Berg M, Hooijman PE, Beishuizen A, de Waard MC, Paul MA, Hartemink KJ, van Hees HWH, Lawlor MW, Brocca L, Bottinelli R, Pellegrino MA, Stienen GJM, Heunks LMA, Wüst RCI, Ottenheijm CAC. Diaphragm Atrophy and Weakness in the Absence of Mitochondrial Dysfunction in the Critically Ill. Am J Respir Crit Care Med 2017; 196:1544-1558. [PMID: 28787181 DOI: 10.1164/rccm.201703-0501oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE The clinical significance of diaphragm weakness in critically ill patients is evident: it prolongs ventilator dependency and increases morbidity, duration of hospital stay, and health care costs. The mechanisms underlying diaphragm weakness are unknown, but might include mitochondrial dysfunction and oxidative stress. OBJECTIVES We hypothesized that weakness of diaphragm muscle fibers in critically ill patients is accompanied by impaired mitochondrial function and structure, and by increased markers of oxidative stress. METHODS To test these hypotheses, we studied contractile force, mitochondrial function, and mitochondrial structure in diaphragm muscle fibers. Fibers were isolated from diaphragm biopsies of 36 mechanically ventilated critically ill patients and compared with those isolated from biopsies of 27 patients with suspected early-stage lung malignancy (control subjects). MEASUREMENTS AND MAIN RESULTS Diaphragm muscle fibers from critically ill patients displayed significant atrophy and contractile weakness, but lacked impaired mitochondrial respiration and increased levels of oxidative stress markers. Mitochondrial energy status and morphology were not altered, despite a lower content of fusion proteins. CONCLUSIONS Critically ill patients have manifest diaphragm muscle fiber atrophy and weakness in the absence of mitochondrial dysfunction and oxidative stress. Thus, mitochondrial dysfunction and oxidative stress do not play a causative role in the development of atrophy and contractile weakness of the diaphragm in critically ill patients.
Collapse
Affiliation(s)
| | | | - Albertus Beishuizen
- 2 Department of Intensive Care, Medisch Spectrum Twente, Enschede, the Netherlands
| | | | - Marinus A Paul
- 4 Department of Cardiothoracic Surgery, Vrije Universiteit (VU) University Medical Center, Amsterdam, the Netherlands
| | - Koen J Hartemink
- 5 Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | | | - Michael W Lawlor
- 7 Division of Pediatric Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Roberto Bottinelli
- 8 Department of Molecular Medicine.,10 Interdepartmental Center for Biology and Sport Medicine, and.,9 Fondazione Salvatore Maugeri (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| | - Maria A Pellegrino
- 8 Department of Molecular Medicine.,10 Interdepartmental Center for Biology and Sport Medicine, and.,11 Interuniversity Institute of Myology, University of Pavia, Pavia, Italy
| | - Ger J M Stienen
- 1 Department of Physiology, Amsterdam Cardiovascular Sciences.,12 Faculty of Science, Department of Physics and Astronomy, VU Amsterdam, Amsterdam, the Netherlands
| | | | - Rob C I Wüst
- 1 Department of Physiology, Amsterdam Cardiovascular Sciences.,13 Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands; and
| | - Coen A C Ottenheijm
- 1 Department of Physiology, Amsterdam Cardiovascular Sciences.,14 Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
8
|
Critical illness-associated diaphragm weakness. Intensive Care Med 2017; 43:1441-1452. [DOI: 10.1007/s00134-017-4928-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/31/2017] [Indexed: 11/26/2022]
|
9
|
Abstract
PURPOSE OF REVIEW The purpose of the review is to summarize and discuss recent research regarding the role of mechanical ventilation in producing weakness and atrophy of the diaphragm in critically ill patients, an entity termed ventilator-induced diaphragmatic dysfunction (VIDD). RECENT FINDINGS Severe weakness of the diaphragm is frequent in mechanically ventilated patients, in whom it contributes to poor outcomes including increased mortality. Significant progress has been made in identifying the molecular mechanisms responsible for VIDD in animal models, and there is accumulating evidence for occurrence of the same cellular processes in the diaphragms of human patients undergoing prolonged mechanical ventilation. SUMMARY Recent research is pointing the way to novel pharmacologic therapies as well as nonpharmacologic methods for preventing VIDD. The next major challenge in the field will be to move these findings from the bench to the bedside in critically ill patients.
Collapse
|
10
|
Berger D, Bloechlinger S, von Haehling S, Doehner W, Takala J, Z'Graggen WJ, Schefold JC. Dysfunction of respiratory muscles in critically ill patients on the intensive care unit. J Cachexia Sarcopenia Muscle 2016; 7:403-12. [PMID: 27030815 PMCID: PMC4788634 DOI: 10.1002/jcsm.12108] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/18/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
Muscular weakness and muscle wasting may often be observed in critically ill patients on intensive care units (ICUs) and may present as failure to wean from mechanical ventilation. Importantly, mounting data demonstrate that mechanical ventilation itself may induce progressive dysfunction of the main respiratory muscle, i.e. the diaphragm. The respective condition was termed 'ventilator-induced diaphragmatic dysfunction' (VIDD) and should be distinguished from peripheral muscular weakness as observed in 'ICU-acquired weakness (ICU-AW)'. Interestingly, VIDD and ICU-AW may often be observed in critically ill patients with, e.g. severe sepsis or septic shock, and recent data demonstrate that the pathophysiology of these conditions may overlap. VIDD may mainly be characterized on a histopathological level as disuse muscular atrophy, and data demonstrate increased proteolysis and decreased protein synthesis as important underlying pathomechanisms. However, atrophy alone does not explain the observed loss of muscular force. When, e.g. isolated muscle strips are examined and force is normalized for cross-sectional fibre area, the loss is disproportionally larger than would be expected by atrophy alone. Nevertheless, although the exact molecular pathways for the induction of proteolytic systems remain incompletely understood, data now suggest that VIDD may also be triggered by mechanisms including decreased diaphragmatic blood flow or increased oxidative stress. Here we provide a concise review on the available literature on respiratory muscle weakness and VIDD in the critically ill. Potential underlying pathomechanisms will be discussed before the background of current diagnostic options. Furthermore, we will elucidate and speculate on potential novel future therapeutic avenues.
Collapse
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| | - Stefan Bloechlinger
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland; Department of Clinical Cardiology, Inselspital University Hospital of Bern Bern Switzerland
| | - Stephan von Haehling
- Department of Cardiology and Center for Innovative Clinical Trials University of Göttingen Göttingen Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin Charite Universitätsmedizin Berlin Berlin Germany
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| | - Werner J Z'Graggen
- Department of Neurosurgery and Dept. of Neurology, Inselspital University Hospital of Bern Bern Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| |
Collapse
|
11
|
Schellekens WJM, van Hees HWH, Doorduin J, Roesthuis LH, Scheffer GJ, van der Hoeven JG, Heunks LMA. Strategies to optimize respiratory muscle function in ICU patients. Crit Care 2016; 20:103. [PMID: 27091359 PMCID: PMC4835880 DOI: 10.1186/s13054-016-1280-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory muscle dysfunction may develop rapidly in critically ill ventilated patients and is associated with increased morbidity, length of intensive care unit stay, costs, and mortality. This review briefly discusses the pathophysiology of respiratory muscle dysfunction in intensive care unit patients and then focuses on strategies that prevent the development of muscle weakness or, if weakness has developed, how respiratory muscle function may be improved. We propose a simple strategy for how these can be implemented in clinical care.
Collapse
Affiliation(s)
- Willem-Jan M Schellekens
- Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Hieronymus W H van Hees
- Department of Pulmonary Diseases, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Jonne Doorduin
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Lisanne H Roesthuis
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Gert Jan Scheffer
- Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands
| | - Leo M A Heunks
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, 6500 HB, The Netherlands.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Multiple clinical and laboratory studies have been conducted to illustrate the effects of hypercapnia in a range of injuries, and to understand the mechanisms underlying these effects. The aim of this review is to highlight and interpret information obtained from these recent reports and discuss how they may inform the clinical context. RECENT FINDINGS In the last decade, several important articles have addressed key elements of how carbon dioxide interacts in critical illness states. Among them the most important insights relate to how hypercapnia affects critical illness and include the effects and mechanisms of carbon dioxide in pulmonary hypertension, infection, inflammation, diaphragm dysfunction, and cerebral ischemia. In addition, we discuss molecular insights that apply to multiple aspects of critical illness. SUMMARY Experiments involving hypercapnia have covered a wide range of illness models with varying degrees of success. It is becoming evident that deliberate hypercapnia in the clinical setting should seldom be used, except wherever necessitated to avoid ventilator-associated lung injury. A more complete understanding of the molecular mechanisms must be established.
Collapse
|
13
|
Schellekens WJM, van Hees HWH, Heunks LMA. Letter to the Editor. J Physiol 2015; 593:3389. [PMID: 26228555 DOI: 10.1113/jp270385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
| | | | - Leo M A Heunks
- Radboud UMC, Postbox 9101 R715, Nijmegen, 6500, HB, The Netherlands.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Survivors of a critical illness may experience poor physical function and quality of life as a result of reduced skeletal muscle mass and strength during their acute illness. Patients diagnosed with sepsis are particularly at risk, and mechanical ventilation may result in diaphragm dysfunction. Interest in the interaction of these conditions is both growing and important to understand for individualized patient care. RECENT FINDINGS This review describes developments in the presentation of both diaphragm and limb myopathy in critical illness, as measured from muscle biopsy and at the bedside with various imaging and strength-testing modalities. The influence of unloading of the diaphragm with mechanical ventilation and peripheral muscles with immobilization in septic patients has been recently questioned. Systemic inflammation appears to primarily accelerate and accentuate dysfunction, which may be remedied by early mobilization and augmented with developing muscle and/or nerve stimulation techniques. SUMMARY Many acute muscle changes in septic patients are likely to stem from pre-existing impairments, which should provide context for clinical evaluations of strength. During illness, sarcolemmal injury promotes a cascade of intra-cellular abnormalities. As unique characteristics of ICU-acquired weakness and differential effects on muscle groups are understood, early diagnosis and management should be facilitated.
Collapse
Affiliation(s)
- Claire E Baldwin
- aInternational Centre for Allied Health Evidence and School of Health Sciences, University of South Australia, Adelaide bPhysiotherapy Department, Flinders Medical Centre, Bedford Park cDepartment of Critical Care Medicine, School of Medicine, Faculty of Health Sciences, Flinders University, Bedford Park dIntensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | |
Collapse
|
15
|
Schellekens WJM, van Hees HWH, Linkels M, Dekhuijzen PNR, Scheffer GJ, van der Hoeven JG, Heunks LMA. Levosimendan affects oxidative and inflammatory pathways in the diaphragm of ventilated endotoxemic mice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:69. [PMID: 25888356 PMCID: PMC4355991 DOI: 10.1186/s13054-015-0798-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/11/2015] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Controlled mechanical ventilation and endotoxemia are associated with diaphragm muscle atrophy and dysfunction. Oxidative stress and activation of inflammatory pathways are involved in the pathogenesis of diaphragmatic dysfunction. Levosimendan, a cardiac inotrope, has been reported to possess anti-oxidative and anti-inflammatory properties. The aim of the present study was to investigate the effects of levosimendan on markers for diaphragm nitrosative and oxidative stress, inflammation and proteolysis in a mouse model of endotoxemia and mechanical ventilation. METHODS Three groups were studied: (1) unventilated mice (CON, n =8), (2) mechanically ventilated endotoxemic mice (MV LPS, n =17) and (3) mechanically ventilated endotoxemic mice treated with levosimendan (MV LPS + L, n =17). Immediately after anesthesia (CON) or after 8 hours of mechanical ventilation, blood and diaphragm muscle were harvested for biochemical analysis. RESULTS Mechanical ventilation and endotoxemia increased expression of inducible nitric oxide synthase (iNOS) mRNA and cytokine levels of interleukin (IL)-1β, IL-6 and keratinocyte-derived chemokine, and decreased IL-10, in the diaphragm; however, they had no effect on protein nitrosylation and 4-hydroxy-2-nonenal protein concentrations. Levosimendan decreased nitrosylated proteins by 10% (P <0.05) and 4-hydroxy-2-nonenal protein concentrations by 13% (P <0.05), but it augmented the rise of iNOS mRNA by 47% (P <0.05). Levosimendan did not affect the inflammatory response in the diaphragm induced by mechanical ventilation and endotoxemia. CONCLUSIONS Mechanical ventilation in combination with endotoxemia results in systemic and diaphragmatic inflammation. Levosimendan partly decreased markers of nitrosative and oxidative stress, but did not affect the inflammatory response.
Collapse
Affiliation(s)
- Willem-Jan M Schellekens
- Department of Anesthesiology, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - Hieronymus W H van Hees
- Department of Pulmonary Diseases, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - Marianne Linkels
- Department of Pulmonary Diseases, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - P N Richard Dekhuijzen
- Department of Pulmonary Diseases, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - Gert Jan Scheffer
- Department of Anesthesiology, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| | - Leo M A Heunks
- Department of Intensive Care Medicine, Radboud University Medical Centre, Postbox 9101, Nijmegen, 6500 HB, the Netherlands.
| |
Collapse
|
16
|
|