1
|
Wong D, Seitz F, Bauer V, Giessmann T, Schulze F. Safety, tolerability, pharmacokinetics, and pharmacodynamics of BI 685509, a soluble guanylyl cyclase activator, in healthy volunteers: Results from two randomized controlled trials. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8101-8116. [PMID: 38789635 PMCID: PMC11449976 DOI: 10.1007/s00210-024-03165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This study evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of BI 685509 after oral single rising doses (SRDs) or multiple rising doses (MRDs) in healthy volunteers. In the SRD trial (NCT02694354; February 29, 2016), within each of the three dose groups (DGs), six subjects received BI 685509 (1.0, 2.5, or 5.0 mg) and two received placebo (N = 24). In the MRD trial (NCT03116906; April 17, 2017), within each of the five DGs, nine subjects received BI 685509 (uptitrated to 1 mg once daily [qd; DG1], 2.5 mg twice daily [DG2], 5.0 mg qd [DG3]; 3.0 mg three times daily [tid; DG4] or 4.0 mg tid [DG5]) and three received placebo, for 14-17 days (N = 60). In the SRD trial, 7/24 subjects (29.2%) had ≥ 1 adverse event (AE), most frequently orthostatic dysregulation (n = 4). In the MRD trial, 26/45 subjects (57.8%) receiving BI 685509 had ≥ 1 AE, most frequently orthostatic dysregulation and fatigue (each n = 12). Tolerance development led to a marked decrease in orthostatic dysregulation events (DG3). BI 685509 was rapidly absorbed after oral administration, and exposure increased in a dose-proportional manner after single doses. Multiple dosing resulted in near-dose-proportional increase in exposure and limited accumulation. BI 685509 pharmacokinetics appeared linear with time; steady state occurred 3-5 days after each multiple-dosing period. Increased plasma cyclic guanosine monophosphate and decreased blood pressure followed by a compensatory increase in heart rate indicated target engagement. BI 685509 was generally well tolerated; orthostatic dysregulation may be appropriately countered by careful uptitration.
Collapse
Affiliation(s)
- Diane Wong
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, 06877, USA.
| | | | - Verena Bauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an Der Riss, Germany
| | - Thomas Giessmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an Der Riss, Germany
| | | |
Collapse
|
2
|
Huo Y, Cheng Y, Dong X, Cheng Q, Liang X, Duan P, Yu Y, Yan L, Qiu T, Pan Z, Dai H. Pleiotropic effects of nitric oxide sustained-release system for peripheral nerve repair. Acta Biomater 2024; 182:28-41. [PMID: 38761961 DOI: 10.1016/j.actbio.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
The regenerative microenvironment after peripheral nerve injury is imbalanced and difficult to rebalance, which is mainly affected by inflammation, oxidative stress, and inadequate blood supply. The difficulty in remodeling the nerve regeneration microenvironment is the main reason for slow nerve regeneration. Traditional drug treatments have certain limitations, such as difficulty in penetrating the blood-nerve barrier and lack of pleiotropic effects. Therefore, there is an urgent need to build multifunctional nerve grafts that can effectively regulate the regenerative microenvironment and promote nerve regeneration. Nitric oxide (NO), a highly effective gas transmitter with diatomic radicals, is an important regulator of axonal growth and migration, synaptic plasticity, proliferation of neural precursor cells, and neuronal survival. Moreover, NO provides potential anti-inflammation, anti-oxidation, and blood vessel promotion applications. However, excess NO may cause cell death and neuroinflammatory cell damage. The prerequisite for NO treatment of peripheral nerve injury is that it is gradually released over time. In this study, we constructed an injectable NO slow-release system with two main components, including macromolecular NO donor nanoparticles (mPEG-P(MSNO-EG) nanoparticles, NO-NPs) and a carrier for the nanoparticles, mPEG-PA-PP injectable temperature-sensitive hydrogel. Due to the multiple physiological regulation of NO and better physiological barrier penetration, the conduit effectively regulates the inflammatory response and oxidative stress of damaged peripheral nerves, promotes nerve vascularization, and nerve regeneration and docking, accelerating the nerve regeneration process. STATEMENT OF SIGNIFICANCE: The slow regeneration speed of peripheral nerves is mainly due to the destruction of the regeneration microenvironment. Neural conduits with drug delivery capabilities have the potential to improve the microenvironment of nerve regeneration. However, traditional drugs are hindered by the blood nerve barrier and cannot effectively target the injured area. NO, an endogenous gas signaling molecule, can freely cross the blood nerve barrier and act on target cells. However, excessive NO can lead to cell apoptosis. In this study, a NO sustained-release system was constructed to regulate the microenvironment of nerve regeneration through various pathways and promote nerve regeneration.
Collapse
Affiliation(s)
- Yuanfang Huo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Yannan Cheng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Qiang Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Xinyue Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Ping Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongle Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Zhenyu Pan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China; Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China.
| |
Collapse
|
3
|
Alrashdan MS, Leao JC, Doble A, McCullough M, Porter S. The Effects of Antimicrobial Mouthwashes on Systemic Disease: What Is the Evidence? Int Dent J 2023; 73 Suppl 2:S82-S88. [PMID: 37867067 PMCID: PMC10690546 DOI: 10.1016/j.identj.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
The potential association between antimicrobial mouthwash use and systemic health has gained attention in recent years with reports highlighting how some common systemic conditions are influenced by the use of different types of mouthwashes. In this context, links between mouthwash use and cardiovascular disease, diabetes mellitus, oral cancer, Alzheimer's disease, and preeclampsia have been proposed, albeit with limited levels of evidence. Chlorhexidine mouthwash in particular has been the most widely studied agent while available data on other types of over-the-counter mouthwashes are generally scarce. Furthermore, there is currently no evidence-based recommendations on the appropriate use of mouthwashes during pregnancy. This article will present the current evidence on the association between mouthwash use and the aforementioned conditions with emphasis on the mechanisms that may underlie such an association.
Collapse
Affiliation(s)
- Mohammad S Alrashdan
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, UAE; Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Jair Carneiro Leao
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Odontologia, Recife PE, Brazil
| | - Amazon Doble
- Peninsula Dental School, Plymouth University, Portland Square, Plymouth, UK
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, Australia.
| | | |
Collapse
|
4
|
Oyagbemi AA, Adebayo AK, Adebiyi OE, Adigun KO, Folarin OR, Esan OO, Ajibade TO, Ogunpolu BS, Falayi OO, Ogunmiluyi IO, Olutayo Omobowale T, Ola-Davies OE, Olopade JO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Yakubu MA, Nwulia E, Oguntibeju OO. Leaf extract of Anacardium occidentale ameliorates biomarkers of neuroinflammation, memory loss, and neurobehavioral deficit in N(ω)-nitro-L-arginine methyl ester (L-NAME) treated rats. Biomarkers 2023; 28:263-272. [PMID: 36632742 DOI: 10.1080/1354750x.2022.2164354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Anacardium occidentale commonly known as Cashew is a plant that is widely used in African traditional medicine. It is endowed with phytochemical constituents that are responsible for its medicinal properties. METHODS Twenty-five male Wistar rats were grouped as follows: Control (Group A), Group B (L-NAME 40 mg/kg), Group C (100 mg/kg Anacardium occidentale extract plus 40 mg/kg L-NAME), Group D (200 mg/kg extract plus 40 mg/kg L-NAME) and Group E (10 mg/kg of Lisinopril plus 40 mg/kg L-NAME). The animals were treated with oral administration of either the extracts or Lisnopril daily for 4 weeks. Neuro-behavioural tests such as the Morris Water Maze and Hanging Wire Grip tests were carried out to evaluate memory/spatial learning and muscular strength, respectively. Makers of oxidative stress, antioxidant enzymes and immunohistochemical staining of Glial Fibrillary Acidic Protein and Ionised Calcium Binding Adaptor molecule 1 were assessed. RESULTS L-NAME administration caused significant increases in biomarkers of oxidative stress, decreased antioxidant status, acetylcholinesterase activity, altered neuro-behavioural changes, astrocytosis, and microgliosis. However, Anacardium occidentale reversed exaggerated oxidative stress biomarkers and improved neuro-behavioural changes. CONCLUSIONS Combining all, Anacardium occidentale enhanced brain antioxidant defence status, improved memory and muscular strength, thus, suggesting the neuroprotective properties of Anacardium occidentale.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedeji Kolawole Adebayo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olamide Elizabeth Adebiyi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Kabirat Oluwaseun Adigun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Sciences, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Iyanuoluwa Omolola Ogunmiluyi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa Florida Campus, University of South Africa, Roodepoort, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria, Faculty of Veterinary Science, Pretoria, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, Texas, USA
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Howard University Hospital, Howard University, Washington, District of Columbia, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
5
|
Honore PM, Afonso EDP, Blot S. Dental care and hospital mortality in ICU patients. Am J Infect Control 2022; 50:714-715. [PMID: 35623669 DOI: 10.1016/j.ajic.2022.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Patrick M Honore
- Intensive Care Unit Department, Faculty of Medicine of the Université Libre de Bruxelles, Brugmann University Hospital, Brussels, Belgium
| | - Elsa da Palma Afonso
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Senior Lecturer, School of Nursing and Midwifery, Anglia Ruskin University, Cambridge, UK
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
7
|
ADMA and homoarginine independently predict mortality in critically ill patients. Nitric Oxide 2022; 122-123:47-53. [DOI: 10.1016/j.niox.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/20/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022]
|
8
|
Liu R, Kang Y, Chen L. Activation mechanism of human soluble guanylate cyclase by stimulators and activators. Nat Commun 2021; 12:5492. [PMID: 34535643 PMCID: PMC8448884 DOI: 10.1038/s41467-021-25617-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Soluble guanylate cyclase (sGC) is the receptor for nitric oxide (NO) in human. It is an important validated drug target for cardiovascular diseases. sGC can be pharmacologically activated by stimulators and activators. However, the detailed structural mechanisms, through which sGC is recognized and positively modulated by these drugs at high spacial resolution, are poorly understood. Here, we present cryo-electron microscopy structures of human sGC in complex with NO and sGC stimulators, YC-1 and riociguat, and also in complex with the activator cinaciguat. These structures uncover the molecular details of how stimulators interact with residues from both β H-NOX and CC domains, to stabilize sGC in the extended active conformation. In contrast, cinaciguat occupies the haem pocket in the β H-NOX domain and sGC shows both inactive and active conformations. These structures suggest a converged mechanism of sGC activation by pharmacological compounds. Soluble guanylate cyclase (sGC) is a validated drug target for cardiovascular diseases. Here, the authors report structures of human sGC in complex with NO and sGC stimulators or activator, providing insight into the mechanism of sGC activation by pharmacological compounds.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Yunlu Kang
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
9
|
Zieniewska I, Maciejczyk M, Zalewska A. The Effect of Selected Dental Materials Used in Conservative Dentistry, Endodontics, Surgery, and Orthodontics as Well as during the Periodontal Treatment on the Redox Balance in the Oral Cavity. Int J Mol Sci 2020; 21:ijms21249684. [PMID: 33353105 PMCID: PMC7767252 DOI: 10.3390/ijms21249684] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress (OS) is a redox homeostasis disorder that results in oxidation of cell components and thus disturbs cell metabolism. OS is induced by numerous internal as well as external factors. According to recent studies, dental treatment may also be one of them. The aim of our work was to assess the effect of dental treatment on the redox balance of the oral cavity. We reviewed literature available in PubMed, Medline, and Scopus databases, including the results from 2010 to 2020. Publications were searched according to the keywords: oxidative stress and dental monomers; oxidative stress and amalgam; oxidative stress and periodontitis, oxidative stress and braces, oxidative stress and titanium; oxidative stress and dental implants, oxidative stress and endodontics treatment, oxidative stress and dental treatment; and oxidative stress and dental composite. It was found that dental treatment with the use of composites, amalgams, glass-ionomers, materials for root canal filling/rinsing, orthodontic braces (made of various metal alloys), titanium implants, or whitening agents can disturb oral redox homeostasis by affecting the antioxidant barrier and increasing oxidative damage to salivary proteins, lipids, and DNA. Abnormal saliva secretion/composition was also observed in dental patients in the course of OS. It is suggested that the addition of antioxidants to dental materials or antioxidant therapy applied during dental treatment could protect the patient against harmful effects of OS in the oral cavity.
Collapse
Affiliation(s)
- Izabela Zieniewska
- Doctoral Studies, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-274 Bialystok, Poland
- Correspondence: (I.Z.); (A.Z.)
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-022 Bialystok, Poland;
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-274 Bialystok, Poland
- Correspondence: (I.Z.); (A.Z.)
| |
Collapse
|
10
|
Sperber J, Nyberg A, Krifors A, Skorup P, Lipcsey M, Castegren M. Pre-exposure to mechanical ventilation and endotoxemia increases Pseudomonas aeruginosa growth in lung tissue during experimental porcine pneumonia. PLoS One 2020; 15:e0240753. [PMID: 33108383 PMCID: PMC7591049 DOI: 10.1371/journal.pone.0240753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/01/2020] [Indexed: 01/14/2023] Open
Abstract
Background Immune system suppression during critical care contributes to the risk of acquired bacterial infections with Pseudomonas (P.) aeruginosa. Repeated exposure to endotoxin can attenuate systemic inflammatory cytokine responses. Mechanical ventilation affects the systemic inflammatory response to various stimuli. Aim To study the effect of pre-exposure to mechanical ventilation with and without endotoxin-induced systemic inflammation on P. aeruginosa growth and wet-to-dry weight measurements on lung tissue and plasma and bronchoalveolar lavage levels of tumor necrosis factor alpha, interleukins 6 and 10. Methods Two groups of pigs were exposed to mechanical ventilation for 24 hours before bacterial inoculation and six h of experimental pneumonia (total experimental time 30 h): A30h+Etx (n = 6, endotoxin 0.063 μg x kg-1 x h-1) and B30h (n = 6, saline). A third group, C6h (n = 8), started the experiment at the bacterial inoculation unexposed to endotoxin or mechanical ventilation (total experimental time 6 h). Bacterial inoculation was performed by tracheal instillation of 1x1011 colony-forming units of P. aeruginosa. Bacterial cultures and wet-to-dry weight ratio analyses were done on lung tissue samples postmortem. Separate group comparisons were done between A30h+Etx vs.B30h (Inflammation) and B30h vs. C6h (Ventilation Time) during the bacterial phase of 6 h. Results P. aeruginosa growth was highest in A30h+Etx, and lowest in C6h (Inflammation and Ventilation Time both p<0.05). Lung wet-to-dry weight ratios were highest in A30h+Etx and lowest in B30h (Inflammation p<0.01, Ventilation Time p<0.05). C6h had the highest TNF-α levels in plasma (Ventilation Time p<0.01). No differences in bronchoalveolar lavage variables between the groups were observed. Conclusions Mechanical ventilation and systemic inflammation before the onset of pneumonia increase the growth of P. aeruginosa in lung tissue. The attenuated growth of P. aeruginosa in the non-pre-exposed animals (C6h) was associated with a higher systemic TNF-α production elicited from the bacterial challenge.
Collapse
Affiliation(s)
- Jesper Sperber
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Axel Nyberg
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Krifors
- Centre for Clinical Research, Region of Västmanland, Uppsala University, Uppsala, Sweden
- Department of Physiology and Pharmacology, FyFa, Karolinska Institutet, Stockholm, Sweden
| | - Paul Skorup
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Hedenstierna laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Department of Physiology and Pharmacology, FyFa, Karolinska Institutet, Stockholm, Sweden
- Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Antiseptic mouthwash, the nitrate-nitrite-nitric oxide pathway, and hospital mortality: a hypothesis generating review. Intensive Care Med 2020; 47:28-38. [PMID: 33067640 PMCID: PMC7567004 DOI: 10.1007/s00134-020-06276-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022]
Abstract
Meta-analyses and several large cohort studies have demonstrated that antiseptic mouthwashes are associated with mortality in hospitalized patients. A clear pathogenic mechanism is lacking, leading to controversy and a reluctance to abandon or limit the use of antiseptic mouthwashes. Here, we generate the hypothesis that a disturbance in nitric oxide homeostasis by antiseptic mouthwashes may be responsible for the observed increase in mortality risk. Nitric oxide is essential in multiple physiological processes, and a reduction in nitric oxide bioavailability is associated with the occurrence or worsening of pathologies, such as atherosclerosis, diabetes, and sepsis. Oral facultative anaerobic bacteria are essential for the enterosalivary nitrate–nitrite–nitric oxide pathway due to their capacity to reduce nitrate to nitrite. Nitrate originates from dietary sources or from the active uptake by salivary glands of circulating nitrate, which is then excreted in the saliva. Because antiseptic mouthwashes eradicate the oral bacterial flora, this nitric oxide-generating pathway is abolished, which may result in nitric oxide-deficient conditions potentially leading to life-threatening complications such as ischaemic heart events or sepsis.
Collapse
|
12
|
Corliss BA, Delalio LJ, Stevenson Keller TC, Keller AS, Keller DA, Corliss BH, Beers JM, Peirce SM, Isakson BE. Vascular Expression of Hemoglobin Alpha in Antarctic Icefish Supports Iron Limitation as Novel Evolutionary Driver. Front Physiol 2019; 10:1389. [PMID: 31780954 PMCID: PMC6861181 DOI: 10.3389/fphys.2019.01389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Frigid temperatures of the Southern Ocean are known to be an evolutionary driver in Antarctic fish. For example, many fish have reduced red blood cell (RBC) concentration to minimize vascular resistance. Via the oxygen-carrying protein hemoglobin, RBCs contain the vast majority of the body's iron, which is known to be a limiting nutrient in marine ecosystems. Since lower RBC levels also lead to reduced iron requirements, we hypothesize that low iron availability was an additional evolutionary driver of Antarctic fish speciation. Antarctic Icefish of the family Channichthyidae are known to have an extreme alteration of iron metabolism due to loss of RBCs and two iron-binding proteins, hemoglobin and myoglobin. Loss of hemoglobin is considered a maladaptive trait allowed by relaxation of predator selection since extreme adaptations are required to compensate for the loss of oxygen-carrying capacity. However, iron dependency minimization may have driven hemoglobin loss instead of a random evolutionary event. Given the variety of functions that hemoglobin serves in the endothelium, we suspected the protein corresponding to the 3' truncated Hbα fragment (Hbα-3'f) that was not genetically excluded by icefish may still be expressed as a protein. Using whole mount confocal microscopy, we show that Hbα-3'f is expressed in the vascular endothelium of icefish retina, suggesting this Hbα fragment may still serve an important role in the endothelium. These observations support a novel hypothesis that iron minimization could have influenced icefish speciation with the loss of the iron-binding portion of Hbα in Hbα-3'f, as well as hemoglobin β and myoglobin.
Collapse
Affiliation(s)
- Bruce A Corliss
- Biomedical Engineering Department, University of Virginia, Charlottesville, VA, United States
| | - Leon J Delalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | | | - Bruce H Corliss
- Graduate School of Oceanography, University of Rhode Island, Kingston, RI, United States
| | - Jody M Beers
- Department of Biology, College of Charleston, Charleston, SC, United States
| | - Shayn M Peirce
- Biomedical Engineering Department, University of Virginia, Charlottesville, VA, United States
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
13
|
Structural insights into the mechanism of human soluble guanylate cyclase. Nature 2019; 574:206-210. [PMID: 31514202 DOI: 10.1038/s41586-019-1584-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023]
Abstract
Soluble guanylate cyclase (sGC) is the primary sensor of nitric oxide. It has a central role in nitric oxide signalling and has been implicated in many essential physiological processes and disease conditions. The binding of nitric oxide boosts the enzymatic activity of sGC. However, the mechanism by which nitric oxide activates the enzyme is unclear. Here we report the cryo-electron microscopy structures of the human sGCα1β1 heterodimer in different functional states. These structures revealed that the transducer module bridges the nitric oxide sensor module and the catalytic module. Binding of nitric oxide to the β1 haem-nitric oxide and oxygen binding (H-NOX) domain triggers the structural rearrangement of the sensor module and a conformational switch of the transducer module from bending to straightening. The resulting movement of the N termini of the catalytic domains drives structural changes within the catalytic module, which in turn boost the enzymatic activity of sGC.
Collapse
|
14
|
Orbegozo D, Mongkolpun W, Stringari G, Markou N, Creteur J, Vincent JL, De Backer D. Skin microcirculatory reactivity assessed using a thermal challenge is decreased in patients with circulatory shock and associated with outcome. Ann Intensive Care 2018; 8:60. [PMID: 29725778 PMCID: PMC5934288 DOI: 10.1186/s13613-018-0393-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/12/2018] [Indexed: 11/24/2022] Open
Abstract
Background Shock states are characterized by impaired tissue perfusion and microcirculatory alterations, which are directly related to outcome. Skin perfusion can be noninvasively evaluated using skin laser Doppler (SLD), which, when coupled with a local thermal challenge, may provide a measure of microcirculatory reactivity. We hypothesized that this microvascular reactivity would be impaired in patients with circulatory shock and would be a marker of severity. Methods We first evaluated skin blood flow (SBF) using SLD on the forearm and on the palm in 18 healthy volunteers to select the site with maximal response. Measurements were taken at 37 °C (baseline) and repeated at 43 °C. The 43 °C/37 °C SBF ratio was calculated as a measure of microvascular reactivity. We then evaluated the SBF in 29 patients with circulatory shock admitted to a 35-bed department of intensive care and in a confirmatory cohort of 35 patients with circulatory shock. Results In the volunteers, baseline SBF was higher in the hand than in the forearm, but the SBF ratio was lower (11.2 [9.4–13.4] vs. 2.0 [1.7–2.6], p < 0.01) so we used the forearm for our patients. Baseline forearm SBF was similar in patients with shock and healthy volunteers, but the SBF ratio was markedly lower in the patients (2.6 [2.0–3.6] vs. 11.2 [9.4–13.4], p < 0.01). Shock survivors had a higher SBF ratio than non-survivors (3.2 [2.2–6.2] vs. 2.3 [1.7–2.8], p < 0.01). These results were confirmed in the second cohort of 35 patients. In multivariable analysis, the APACHE II score and the SBF ratio were independently associated with mortality. Conclusions Microcirculatory reactivity is decreased in patients with circulatory shock and has prognostic value. This simple, noninvasive test could help in monitoring the peripheral microcirculation in acutely ill patients. Electronic supplementary material The online version of this article (10.1186/s13613-018-0393-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego Orbegozo
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Wasineenart Mongkolpun
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Gianni Stringari
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Nikolaos Markou
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| | - Daniel De Backer
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|
15
|
Prondzinsky R, Hirsch K, Wachsmuth L, Buerke M, Unverzagt S. Vasopressors for acute myocardial infarction complicated by cardiogenic shock. Med Klin Intensivmed Notfmed 2017; 114:21-29. [DOI: 10.1007/s00063-017-0378-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/03/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022]
|
16
|
Unverzagt S, Hirsch K, Prondzinsky R. Vasopressors and predominantly vasoconstrictive drugs for acute myocardial infarction complicated by cardiogenic shock. Hippokratia 2016. [DOI: 10.1002/14651858.cd011582.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Susanne Unverzagt
- Martin Luther University Halle-Wittenberg; Institute of Medical Epidemiology, Biostatistics and Informatics; Magdeburge Straße 8 Halle/Saale Germany 06097
| | - Katharina Hirsch
- Martin Luther University Halle-Wittenberg; Institute of Medical Epidemiology, Biostatistics and Informatics; Magdeburge Straße 8 Halle/Saale Germany 06097
| | - Roland Prondzinsky
- Carl von Basedow Klinikum Merseburg; Cardiology/Intensive Care Medicine; Weisse Mauer 42 Merseburg Germany 06217
| |
Collapse
|
17
|
A Randomized Controlled Trial Comparing the Effects of Sitagliptin and Glimepiride on Endothelial Function and Metabolic Parameters: Sapporo Athero-Incretin Study 1 (SAIS1). PLoS One 2016; 11:e0164255. [PMID: 27711199 PMCID: PMC5053511 DOI: 10.1371/journal.pone.0164255] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022] Open
Abstract
Objectives The DPP-4 inhibitors are incretin-related drugs that improve hyperglycemia in a glucose-dependent manner and have been reported to exert favorable effects on atherosclerosis. However, it has not been fully elucidated whether DPP-4 inhibitors are able to improve endothelial function in patients with type 2 diabetes. Therefore, we investigated the efficacy of sitagliptin, a DPP-4 inhibitor, on endothelial function and glycemic metabolism compared with that of the sulfonylurea glimepiride. Materials and Methods In this multicenter, prospective, randomized parallel-group comparison study, 103 outpatients with type 2 diabetes (aged 59.9 ± 9.9 years with HbA1c levels of 7.5 ± 0.4%) with dietary cure only and/or current metformin treatment were enrolled and randomly assigned to receive sitagliptin or glimepiride therapy once daily for 26 weeks. Flow-mediated dilation (FMD), a comprehensive panel of hemodynamic parameters (Task Force® Monitor), and serum metabolic markers were assessed before and after the treatment. Results During the study period, no statistically significant change in %FMD was seen in both groups (sitagliptin, 5.6 to 5.6%; glimepiride, 5.6 to 6.0%). Secretory units of islets in transplantation, TNF-α, adiponectin and biological antioxidant potential significantly improved in the sitagliptin group, and superoxide dismutase also tended to improve in the sitagliptin group, while improvements in HbA1c levels were similar between groups. Cardiac index, blood pressure and most other metabolic parameters were not different. Conclusions Regardless of glycemic improvement, early sitagliptin therapy did not affect endothelial function but may provide favorable effects on beta-cell function and on inflammatory and oxidative stress in patients with type 2 diabetes without advanced atherosclerosis. Trial Registration UMIN Clinical Trials Registry System UMIN 000004955
Collapse
|
18
|
Ku HC, Lee SY, Lee SS, Su MJ. Thaliporphine, an alkaloid from Neolitsea konishii , exerts antioxidant, anti-inflammatory, and anti-apoptotic responses in guinea pig during cardiovascular collapse in inflammatory disease. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Mikami Y, Kakizawa S, Yamazawa T. Essential Roles of Natural Products and Gaseous Mediators on Neuronal Cell Death or Survival. Int J Mol Sci 2016; 17:E1652. [PMID: 27690018 PMCID: PMC5085685 DOI: 10.3390/ijms17101652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Although precise cellular and molecular mechanisms underlying neurodegeneration still remain enigmatic, key factors associated with degenerative disorders, such as glutamate toxicity and oxidative stress, have been recently identified. Accordingly, there has been growing interest in examining the effects of exogenous and endogenous molecules on neuroprotection and neurodegeneration. In this paper, we review recent studies on neuroprotective and/or neurodegenerative effects of natural products, such as caffeic acid and chlorogenic acid, and gaseous mediators, including hydrogen sulfide and nitric oxide. Furthermore, possible molecular mechanisms of these molecules in relation to glutamate signals are discussed. Insight into the pathophysiological role of these molecules will make progress in our understanding of molecular mechanisms underlying neurodegenerative diseases, and is expected to lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Yoshinori Mikami
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
| | - Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
20
|
Abstract
OBJECTIVE The objective of this study was to investigate the relationship between asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, oxidative-nitrosative damage, and glucoregulation in acute pancreatitis (AP). METHODS The study evaluated serum levels of ADMA, nitrotyrosine, and urinary 8-hydroxydeoxyguanosine in 40 male patients hospitalized for AP at baseline and at 2 and 10 days of treatment, respectively. The patients were classified into a mild and a moderately severe AP group (MAP and MSAP, respectively) according to Atlanta classification criteria. Glycemic status was evaluated by a 75-g oral glucose tolerance test 1 month after AP onset. Forty age-matched healthy subjects served as control subjects. RESULTS Significant decrease of ADMA and increased levels of nitrotyrosine and urinary 8-hydroxydeoxyguanosine were found in MSAP, but not in MAP at baseline, with ADMA correction toward control levels at the 10th day of treatment. Fructosamine was found to significantly influence ADMA levels (r = -0.362, P = 0.002). After AP recovery, either impaired glucose tolerance or diabetes was identified with the oral glucose tolerance test in 10.5% and 92.8% of patients with MAP and MSAP, respectively. CONCLUSIONS Insufficient inhibition of nitric oxide synthesis, through reduced bioavailability of ADMA, might be a novel significant contributory factor to the severity of AP and subsequent development of hyperglycemia.
Collapse
|
21
|
Lauer S, Fischer LG, Van Aken HK, Nofer JR, Freise H. Gadolinium chloride modulates bradykinin-induced pulmonary vasoconstriction and hypoxic pulmonary vasoconstriction during polymicrobial abdominal sepsis in rats. Exp Lung Res 2016; 41:270-82. [PMID: 26052827 DOI: 10.3109/01902148.2015.1018557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Macrophages importantly contribute to sepsis-induced lung injury. As their impact on pulmonary endothelial injury and dysregulation of hypoxic pulmonary vasoconstriction (HPV) remains unclear, we assessed pulmonary endothelial dysfunction and HPV by macrophage inhibition via gadolinium chloride (GC) pre-treatment in rats with peritonitis (cecal ligation and puncture [CLP]). METHODS The following four study groups were made: Group I: SHAM and group II: SHAM + GC (pre-treatment with NaCl 0.9% or GC 14 mg/kg body weight (b.w.) intravenously 24 hours prior to sham laparotomy); group III: CLP and group IV: CLP + GC (pre-treatment with NaCl 0.9% or GC 14 mg/kg b.w. 24 hours prior to induction of peritonitis). Exhaled nitric oxide (exNO), bradykinin-induced pulmonary vasoconstriction (=surrogate marker of endothelial dysfunction) and HPV were investigated in isolated and perfused lungs (n = 40). Using the same protocol wet to dry lung weight ratio and myeloperoxidase (MPO) activity were investigated in separate rats (n = 28). In additional rats (n = 12) of groups III and IV nitrite levels in alveolar macrophages (AM) were measured. RESULTS In sepsis, GC pre-treatment significantly attenuated exNO levels, AM-derived nitrite levels, lung MPO activity, and restored blunted HPV, but severely enhanced endothelial dysfunction in healthy and septic animals. CONCLUSION Macrophages exhibit a controversial role in sepsis-induced lung injury. The GC-induced restoration of inflammation parameters to sham levels is clearly limited by the negative impact on CLP-induced endothelial injury in this setting. The exact link between the GC-associated modulation of the NO pathway demonstrated and septic lung injury needs to be determined in future studies.
Collapse
Affiliation(s)
- Stefan Lauer
- 1Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Muenster , Muenster , Germany
| | | | | | | | | |
Collapse
|
22
|
Nomoto H, Miyoshi H, Furumoto T, Oba K, Tsutsui H, Miyoshi A, Kondo T, Tsuchida K, Atsumi T, Manda N, Kurihara Y, Aoki S. A Comparison of the Effects of the GLP-1 Analogue Liraglutide and Insulin Glargine on Endothelial Function and Metabolic Parameters: A Randomized, Controlled Trial Sapporo Athero-Incretin Study 2 (SAIS2). PLoS One 2015; 10:e0135854. [PMID: 26284918 PMCID: PMC4540491 DOI: 10.1371/journal.pone.0135854] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/26/2015] [Indexed: 02/06/2023] Open
Abstract
Objectives GLP-1 improves hyperglycemia, and it has been reported to have favorable effects on atherosclerosis. However, it has not been fully elucidated whether GLP-1 is able to improve endothelial function in patients with type 2 diabetes. Therefore, we investigated the efficacy of the GLP-1 analogue, liraglutide on endothelial function and glycemic metabolism compared with insulin glargine therapy. Materials and Methods In this multicenter, prospective randomized parallel-group comparison study, 31 diabetic outpatients (aged 60.3 ± 10.3 years with HbA1c levels of 8.6 ± 0.8%) with current metformin and/or sulfonylurea treatment were enrolled and randomly assigned to receive liraglutide or glargine therapy once daily for 14 weeks. Flow mediated dilation (FMD), a comprehensive panel of hemodynamic parameters (Task Force Monitor), and serum metabolic markers were assessed before and after the treatment period. Results A greater reduction (worsening) in %FMD was observed in the glargine group, although this change was not statistically different from the liraglutide group (liraglutide; 5.7 to 5.4%, glargine 6.7 to 5.7%). The augmentation index, C-peptide index, derivatives of reactive oxygen metabolites and BMI were significantly improved in the liraglutide group. Central systolic blood pressure and NT-proBNP also tended to be improved in the liraglutide-treated group, while improvements in HbA1c levels were similar between groups. Cardiac index, blood pressure and most other metabolic parameters were not different. Conclusions Regardless of glycemic improvement, early liraglutide therapy did not affect endothelial function but may provide favorable effects on beta-cell function and cardioprotection in type 2 diabetics without advanced atherosclerosis. Trial Registration UMIN Clinical Trials Registry System as trial ID UMIN000005331.
Collapse
Affiliation(s)
- Hiroshi Nomoto
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideaki Miyoshi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- * E-mail:
| | - Tomoo Furumoto
- Department of Cardiovascular Medicine, NTT East Japan Sapporo Hospital, Sapporo, Japan
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Oba
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Arina Miyoshi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takuma Kondo
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Tatsuya Atsumi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
23
|
Wang CN, Duan GL, Liu YJ, Yu Q, Tang XL, Zhao W, Li XH, Zhu XY, Ni X. Overproduction of nitric oxide by endothelial cells and macrophages contributes to mitochondrial oxidative stress in adrenocortical cells and adrenal insufficiency during endotoxemia. Free Radic Biol Med 2015; 83:31-40. [PMID: 25744413 DOI: 10.1016/j.freeradbiomed.2015.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/08/2015] [Accepted: 02/21/2015] [Indexed: 01/20/2023]
Abstract
We have recently demonstrated that lipopolysaccharide (LPS) causes mitochondrial oxidative stress and dysfunction in adrenal glands, thereby leading to adrenocortical insufficiency. Since nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) leads to mitochondrial damage in various tissues, the present study aims to investigate whether NO contributes to mitochondrial oxidative stress in adrenal cortex and adrenocortical insufficiency during endotoxemia. Systemic administration of LPS increased iNOS expression and NO production in adrenal glands of mice. The specific iNOS inhibitor 1400 W significantly attenuated the LPS-induced mitochondrial superoxide production and dysfunction in adrenal glands, and reversed the LPS-induced adrenocortical hyporesponsiveness to adrenocorticotropic hormone (ACTH). In contrast, administration of the NO donor sodium nitroprusside (SNP) led to mitochondrial oxidative stress and dysfunction in adrenal glands, which resulted in a blunted corticosterone response to ACTH. Using double immunofluorescence staining for iNOS with the vascular endothelial cell marker CD31 or the macrophage marker CD68, we found that increased iNOS expression was found in vascular endothelial cells and macrophages, but not adrenocortical cells in the adrenal gland during endotoxemia. Administration of the hydrogen sulfide (H2S) donor GYY4137 inhibited NO production and reversed LPS-induced adrenocortical hyporesponsiveness. Our data suggest that overproduction of NO, which is mainly generated by endothelial cells and macrophages during endotoxemia, contributes to mitochondrial oxidative stress in adrenocortical cells and subsequently leads to adrenal insufficiency.
Collapse
Affiliation(s)
- Chang-Nan Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai, 200433, China
| | - Guo-Li Duan
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai, 200433, China; The Eight-year Program on Clinical Medicine, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Qing Yu
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai, 200433, China
| | - Xiao-Lu Tang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai, 200433, China
| | - Wei Zhao
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai, 200433, China
| | - Xiao-Han Li
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai, 200433, China
| | - Xiao-Yan Zhu
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai, 200433, China.
| | - Xin Ni
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai, 200433, China.
| |
Collapse
|
24
|
Gilbert-Kawai E, Sheperdigian A, Adams T, Mitchell K, Feelisch M, Murray A, Peters M, Gilbert-Kawai G, Montgomery H, Levett D, Kumar R, Mythen M, Grocott M, Martin D. Design and conduct of Xtreme Everest 2: An observational cohort study of Sherpa and lowlander responses to graduated hypobaric hypoxia. F1000Res 2015; 4:90. [PMID: 26064476 PMCID: PMC4448741 DOI: 10.12688/f1000research.6297.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2015] [Indexed: 11/20/2022] Open
Abstract
Objective: Oxygen availability falls with ascent to altitude and also as a consequence of critical illness. Because cellular sequelae and adaptive processes may be shared in both circumstances, high altitude exposure (‘physiological hypoxia’) assists in the exploration of the response to pathological hypoxia. We therefore studied the response of healthy participants to progressive hypobaric hypoxia at altitude. The primary objective of the study was to identify differences between high altitude inhabitants (Sherpas) and lowland comparators. Methods: We performed an observational cohort study of human responses to progressive hypobaric hypoxia (during ascent) and subsequent normoxia (following descent) comparing Sherpas with lowlanders. Studies were conducted in London (35m), Kathmandu (1300m), Namche Bazaar (3500m) and Everest Base Camp (5300m). Of 180 healthy volunteers departing from Kathmandu, 64 were Sherpas and 116 were lowlanders. Physiological, biochemical, genetic and epigenetic data were collected. Core studies focused on nitric oxide metabolism, microcirculatory blood flow and exercise performance. Additional studies performed in nested subgroups examined mitochondrial and metabolic function, and ventilatory and cardiac variables. Of the 180 healthy participants who left Kathmandu, 178 (99%) completed the planned trek. Overall, more than 90% of planned testing was completed. Forty-four study protocols were successfully completed at altitudes up to and including 5300m. A subgroup of identical twins (all lowlanders) was also studied in detail. Conclusion: This programme of study (Xtreme Everest 2) will provide a rich dataset relating to human adaptation to hypoxia, and the responses seen on re-exposure to normoxia. It is the largest comprehensive high altitude study of Sherpas yet performed. Translational data generated from this study will be of relevance to diseases in which oxygenation is a major factor.
Collapse
Affiliation(s)
- Edward Gilbert-Kawai
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK
| | - Adam Sheperdigian
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK
| | - Thomas Adams
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK
| | - Kay Mitchell
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK ; Integrative Physiology and Critical Illness Group, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK ; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK ; NIHR Southampton Respiratory Biomedical Research Unit, Southampton, CB2 3EG, UK
| | - Martin Feelisch
- Integrative Physiology and Critical Illness Group, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK ; NIHR Southampton Respiratory Biomedical Research Unit, Southampton, CB2 3EG, UK
| | - Andrew Murray
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK ; Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Mark Peters
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK ; Critical Care Group Portex Unit, UCL, Institute of Child Health, London, WC1N 1EH, UK
| | - Grace Gilbert-Kawai
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK
| | - Hugh Montgomery
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK
| | - Denny Levett
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK
| | - Rajendra Kumar
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK ; Nepal Health Research Council, Kathmandu, Nepal
| | - Michael Mythen
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK
| | - Michael Grocott
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK ; Integrative Physiology and Critical Illness Group, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK ; Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK ; NIHR Southampton Respiratory Biomedical Research Unit, Southampton, CB2 3EG, UK
| | - Daniel Martin
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, W1T 7HA, UK
| |
Collapse
|
25
|
Unverzagt S, Hirsch K, Prondzinsky R. Vasopressors and predominantly vasoconstrictive drugs for acute myocardial infarction complicated by cardiogenic shock. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2015. [DOI: 10.1002/14651858.cd011582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
|
27
|
Barmaki B, Khazaei M. Effect of aminoguanidine on cardiovascular responses and survival time during blood loss: A study in normotensive and deoxycorticosterone acetate-salt hypertensive rats. Int J Appl Basic Med Res 2015; 5:12-7. [PMID: 25664261 PMCID: PMC4318093 DOI: 10.4103/2229-516x.149222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 07/18/2014] [Indexed: 11/23/2022] Open
Abstract
Introduction: Hemorrhagic shock causes more circulatory disturbances and mortality in hypertensive than normotensive subjects. In the late phase of hemorrhagic shock, nitric oxide (NO) overproduction leads to vascular decompensation. In this study, we evaluated the effect of inducible NO synthase (iNOS) inhibitor, aminoguanidine (AG), on hemodynamic parameters and serum nitrite concentration in decompensated hemorrhagic shock model in normotensive and hypertensive male rats. Materials and Methods: Twenty-four male rats were divided into hypertensive and normotensive groups (n = 12 each). Hypertension was induced by subcutaneous injection of deoxycorticoesterone acetate (DOCA), 30 mg/kg in uninephrectomized rats. Decompensated hemorrhagic shock was induced by withdrawing blood until the mean arterial pressure (MAP) reached 40 mmHg. After 120 min, each group was assigned to aminguanidine (100 mg/kg) and control group. Hemodynamic parameters were monitored for next 60 min. Blood samples were taken before and after shock period and 60 min after treatment. Survival rate was monitored for 72 h. Results: Infusion of AG in normotensive animals caused a transient increase in MAP and increase of heart rate, whereas it did not affect those parameters in hypertensive animals. Hemorrhagic shock caused a significant rise in serum nitrite concentration in normotensive and hypertensive rats and infusion of AG did not significantly change it in both groups. No significant differences observed in survival rate between AG-treated and not treated groups. Conclusion: It seems that inhibition of iNOS with AG does not have beneficial effects on hemodynamatic parameters and survival rate during decompensated hemorrhagic shock in normotensive and hypertensive animals.
Collapse
Affiliation(s)
- Babak Barmaki
- Department of Physiology, Zabol University of Medical Sciences, Zabol, Iran
| | - Majid Khazaei
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Lu M, Yang CB, Gao L, Zhao JJ. Mechanism of subclinical hypothyroidism accelerating endothelial dysfunction (Review). Exp Ther Med 2014; 9:3-10. [PMID: 25452768 PMCID: PMC4247316 DOI: 10.3892/etm.2014.2037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/02/2014] [Indexed: 12/26/2022] Open
Abstract
The association between subclinical hypothyroidism (SH) and cardiovascular disease has received increasing attention in recent years. The predisposition of patients with SH to endothelial dysfunction, an early sign of atherosclerosis, has been observed. This predisposition may be partially explained by the factors also found in patients with SH, including changes in lipid profile, low grade chronic inflammation, oxidative stress and insulin resistance. The proportional risks of endothelial dysfunction to thyroid stimulating hormone (TSH) also indicate that the action of TSH on extra thyroidal-stimulating hormone receptor (TSHR) is a possible mechanism underlying the correlation, which has later been supported by the associated basic studies. L-thyroxine replacement therapy appears to improve the aforementioned aspects, whereas there remain certain controversies, particularly for the elderly. Thus, more study data are required to confirm the benefit of L-thyroxine treatment for patients with SH.
Collapse
Affiliation(s)
- Ming Lu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China ; Institute of Endocrinology and Metabolic Diseases, Shandong Academy of Clinical Medicine, Jinan, Shandong, P.R. China
| | - Chong-Bo Yang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China ; Institute of Endocrinology and Metabolic Diseases, Shandong Academy of Clinical Medicine, Jinan, Shandong, P.R. China
| | - Ling Gao
- Institute of Endocrinology and Metabolic Diseases, Shandong Academy of Clinical Medicine, Jinan, Shandong, P.R. China ; Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Jia-Jun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China ; Institute of Endocrinology and Metabolic Diseases, Shandong Academy of Clinical Medicine, Jinan, Shandong, P.R. China
| |
Collapse
|
29
|
Melki V, Douhan Håkansson L, Borowiec JW. Effect of simulated extracorporeal circulation and glyceryl-tri-nitrate on leukocyte activation. SCAND CARDIOVASC J 2014; 48:59-64. [PMID: 24460523 DOI: 10.3109/14017431.2013.878468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES During extracorporeal circulation (ECC), a mechanical pump and an oxygenator replace the functions of the heart and lungs. The aim of this study is to test the effect of the nitric oxide donor glyceryl-tri-nitrate on activation markers of the innate immune system during simulated ECC. DESIGN Whole blood concentrations of selected leukocyte adhesion molecules, complement system components and myeloperoxidase (MPO) were measured in an in vitro system of simulated ECC. RESULTS Simulated ECC stimulated the expression of monocyte LPS-receptor CD14 and C3b-receptor CD35. Glyceryl-tri-nitrate significantly reduced the expression of leukocyte Fcγ receptor CD32 over time, compared to control. Simulated ECC increased the concentrations of MPO, terminal complement complex, and complement component C3a. Addition of glyceryl-tri-nitrate did not significantly affect these changes. CONCLUSIONS Simulated ECC induces the increased expression of some leukocyte markers. Glyceryl-tri-nitrate addition significantly reduces the expression of some leukocyte activation markers.
Collapse
Affiliation(s)
- Vilyam Melki
- Department of Surgical Sciences, Cardiac and Thoracic Surgery, Uppsala University , Uppsala , Sweden
| | | | | |
Collapse
|
30
|
Unverzagt S, Wachsmuth L, Hirsch K, Thiele H, Buerke M, Haerting J, Werdan K, Prondzinsky R. Inotropic agents and vasodilator strategies for acute myocardial infarction complicated by cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev 2014:CD009669. [PMID: 24385385 DOI: 10.1002/14651858.cd009669.pub2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The recently published German-Austrian S3 Guideline for the treatment of infarct related cardiogenic shock (CS) revealed a lack of evidence for all recommended therapeutic measures. OBJECTIVES To determine the effects in terms of efficacy, efficiency and safety of cardiac care with inotropic agents and vasodilator strategies versus placebo or against each other for haemodynamic stabilisation following surgical treatment, interventional therapy (angioplasty, stent implantation) and conservative treatment (that is no revascularization) on mortality and morbidity in patients with acute myocardial infarction (AMI) complicated by CS or low cardiac output syndrome (LCOS). SEARCH METHODS We searched CENTRAL, MEDLINE (Ovid), EMBASE (Ovid) and ISI Web of Science, registers of ongoing trials and proceedings of conferences in January 2013. Reference lists were scanned and experts in the field were contacted to obtain further information. No language restrictions were applied. SELECTION CRITERIA Randomised controlled trials in patients with AMI complicated by CS or LCOS. DATA COLLECTION AND ANALYSIS Data collection and analysis were performed according to the published protocol. All trials were analysed individually. Hazard ratios (HRs) and odds ratios with 95% confidence intervals (CI) were extracted but not pooled because of high heterogeneity between the control group interventions. MAIN RESULTS Four eligible, very small studies were identified from a total of 4065 references. Three trials with high overall risk of bias compared levosimendan to standard treatment (enoximone or dobutamine) or placebo. Data from a total of 63 participants were included in our comparisons, 31 were treated with levosimendan and 32 served as controls. Levosimendan showed an imprecise survival benefit in comparison with enoximone based on a very small trial with 32 participants (HR 0.33; 95% CI 0.11 to 0.97). Results from the other similarly small trials were too imprecise to provide any meaningful information about the effect of levosimendan in comparison with dobutamine or placebo. Only small differences in haemodynamics, length of hospital stay and the frequency of major adverse cardiac events or adverse events overall were found between study groups.Only one small randomised controlled trial with three participants was found for vasodilator strategies (nitric oxide gas versus placebo) in AMI complicated by CS or LCOS. This study was too small to draw any conclusions on the effects on our key outcomes. AUTHORS' CONCLUSIONS At present there are no robust and convincing data to support a distinct inotropic or vasodilator drug based therapy as a superior solution to reduce mortality in haemodynamically unstable patients with CS or low cardiac output complicating AMI.
Collapse
Affiliation(s)
- Susanne Unverzagt
- Institute of Medical Epidemiology, Biostatistics and Informatics, Martin Luther University Halle-Wittenberg, Magdeburge Straße 8, Halle/Saale, Germany, 06097
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Silver JH, Lapchak PA. Continuous monitoring of changes in plasma nitrite following cerebral ischemia in a rabbit embolic stroke model. Transl Stroke Res 2013; 2:218-26. [PMID: 21625287 DOI: 10.1007/s12975-011-0073-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this proof-of-concept study, we investigated direct, continuous monitoring of plasma nitrite as an indicator of cerebral ischemia following clot embolization of rabbits via an indwelling carotid catheter. Two groups of rabbits were studied to compare the effects of embolization on nitrite levels. In the control group, blood was continuously obtained from a jugular venous catheter. The blood was immediately passed through an ultrafiltration filter; the filtrate was chemically reduced to convert free nitrite to nitric oxide (NO) and then measured using a NO-specific electrode. In the embolized group, after a baseline nitrite level was achieved, blood clots were injected into the brain via the carotid artery catheter, and then nitrite levels were continuously measured from jugular venous blood. The stroke group showed a significantly greater increase in nitrite as compared to controls (p=0.017). Using the area-under-the-curve (AUC) method, results reached statistical significance (p<0.05) within 3 min of embolization. In embolized rabbits, NO(2) levels increased 424±256% compared to baseline. This study shows that nitrite can be measured immediately following a stroke and that our system measures nitrite independent of the extent of the stroke. This study provides evidence for the feasibility of using nitrite as a marker of ischemic stroke.
Collapse
Affiliation(s)
- James H Silver
- Silver Medical Inc., 45 Roosevelt Circle, Palo Alto, CA 94306, USA,
| | | |
Collapse
|
32
|
Castegren M, Skorup P, Lipcsey M, Larsson A, Sjölin J. Endotoxin tolerance variation over 24 h during porcine endotoxemia: association with changes in circulation and organ dysfunction. PLoS One 2013; 8:e53221. [PMID: 23326400 PMCID: PMC3542331 DOI: 10.1371/journal.pone.0053221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/27/2012] [Indexed: 01/05/2023] Open
Abstract
Endotoxin tolerance (ET), defined as reduced inflammatory responsiveness to endotoxin challenge following a first encounter with endotoxin, is an extensively studied phenomenon. Although reduced mortality and morbidity in the presence of ET has been demonstrated in animal studies, little is known about the temporal development of ET. Further, in acute respiratory distress syndrome ET correlates to the severity of the disease, suggesting a complicated relation between ET and organ dysfunction. Eighteen pigs were subjected to intensive care and a continuous endotoxin infusion for 24 h with the aim to study the time course of early ET and to relate ET to outcome in organ dysfunction. Three animals served as non-endotoxemic controls. Blood samples for cytokine analyses were taken and physiological variables registered every third hour. Production of TNF-α, IL-6, and IL-10 before and after endotoxin stimulation ex vivo was measured. The difference between cytokine values after and before ex vivo LPS stimulation (Δ-values) was calculated for all time points. ΔTNF-α was employed as the principal marker of ET and lower ΔTNF-α values were interpreted as higher levels of ET. During endotoxin infusion, there was suppression of ex vivo productions of TNF-α and IL-6 but not of IL-10 in comparison with that at 0 h. The ex vivo TNF-α values followed another time concentration curve than those in vivo. ΔTNF-α was at the lowest already at 6 h, followed by an increase during the ensuing hours. ΔTNF-α at 6 h correlated positively to blood pressure and systemic vascular resistance and negatively to cardiac index at 24 h. In this study a temporal variation of ET was demonstrated that did not follow changes in plasma TNF-α concentrations. Maximal ET occurred early in the course and the higher the ET, the more hyperdynamic the circulation 18 h later.
Collapse
Affiliation(s)
- Markus Castegren
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
33
|
Kurtz M, Martínez N, Capobianco E, Higa R, Fornes D, White V, Jawerbaum A. Increased nitric oxide production and gender-dependent changes in PPARα expression and signaling in the fetal lung from diabetic rats. Mol Cell Endocrinol 2012; 362:120-7. [PMID: 22687882 DOI: 10.1016/j.mce.2012.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/09/2012] [Accepted: 05/31/2012] [Indexed: 11/29/2022]
Abstract
The fetal lung is affected by maternal diabetes. Nuclear receptor PPARα regulates nitric oxide (NO) overproduction in different tissues. We aimed to determine whether fetal lung PPARα expression is altered by maternal diabetes, and if there are gender-dependent changes in PPARα regulation of NO production in the fetal lung. Fetal lungs from control and diabetic rats were explanted on day 21 of gestation and evaluated for PPARα expression and NO production. Fetuses were injected with the PPARα ligand LTB(4) on days 19, 20 and 21, and the fetal lung explanted on day 21 to evaluate PPARα and the inducible isoform of NO synthase (iNOS). Besides, pregnant rats were fed with olive oil- and safflower oil-supplemented diets, enriched in PPAR ligands, for evaluation of fetal lung NO production and PPARα expression. We found reduced PPARα concentrations only in the lung from male fetuses from the diabetic group when compared to controls, although maternal diabetes led to NO overproduction in both male and female fetal lungs. Fetal activation of PPARα led to changes in lung PPARα expression only in female fetuses, although this treatment increased iNOS expression in both male and female fetuses in the diabetic group. Diets supplemented with olive oil and not with safflower oil led to a reduction in NO production in male and female fetal lungs. In conclusion, there are gender-dependent changes in PPARα expression and signaling in the fetal lung from diabetic rats, although PPARα activation prevents maternal diabetes-induced lung NO overproduction in both male and female fetuses.
Collapse
Affiliation(s)
- Melisa Kurtz
- Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, School of Medicine, University of Buenos Aires, Paraguay 2155 (1121ABG) Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
34
|
Tomiyama H, Kohro T, Higashi Y, Takase B, Suzuki T, Ishizu T, Ueda S, Yamazaki T, Furumoto T, Kario K, Inoue T, Koba S, Watanabe K, Takemoto Y, Hano T, Sata M, Ishibashi Y, Node K, Maemura K, Ohya Y, Furukawa T, Ito H, Yamashina A. A multicenter study design to assess the clinical usefulness of semi-automatic measurement of flow-mediated vasodilatation of the brachial artery. Int Heart J 2012; 53:170-5. [PMID: 22790685 DOI: 10.1536/ihj.53.170] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Flow-mediated vasodilatation of the brachial artery (FMD) is a marker which is related to endothelial nitric oxide bioavailability. Commercially available ultrasound machines equipped with online computer-assisted semi-automatic analysis software to measure FMD have recently become available in Japan. These devices enable more convenient examination, enhanced reproducibility of FMD measurement, and a shortened examination time. Using such devices, in the present multicenter prospective study we propose to: 1) establish standardized FMD values and determine the annual rates of FMD change in healthy subjects; 2) confirm the predictive value of FMD for future cardiovascular events in Japanese subjects; 3) evaluate the potential usefulness of a multimarker strategy, including measurements of FMD, pulse-wave velocity (PWV), ankle-brachial pressure index, biochemical markers, and proteomic biomarkers obtained by mass spectroscopic analysis to assess the prognosis of subjects with coronary artery disease; and 4) clarify the usefulness of FMD measurement to predict the rate of progression of carotid atherosclerosis, arterial stiffness and microalbuminuria in subjects with hypertension or diabetes mellitus. In total, we estimate that approximately 4000 Japanese subjects in 3 different study groups will eventually be enrolled in this prospective observational investigation. We anticipate that the present study will provide important evidence for the usefulness of FMD measurement in the risk stratification for cardiovascular disease.
Collapse
Affiliation(s)
- Hirofumi Tomiyama
- Second Department of Internal Medicine, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Alfieri A, Watson JJ, Kammerer RA, Tasab M, Progias P, Reeves K, Brown NJ, Brookes ZL. Angiopoietin-1 variant reduces LPS-induced microvascular dysfunction in a murine model of sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R182. [PMID: 23036162 PMCID: PMC3682284 DOI: 10.1186/cc11666] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/04/2012] [Indexed: 11/10/2022]
Abstract
Introduction Severe sepsis is characterised by intravascular or extravascular infection with microbial agents, systemic inflammation and microcirculatory dysfunction, leading to tissue damage, organ failure and death. The growth factor angiopoietin (Ang-1) has therapeutic potential but recombinant Ang-1 tends to aggregate and has a short half-life in vivo. This study aimed to investigate the acute effects of the more stable Ang-1 variant matrilin-1-angiopoietin-1 (MAT.Ang-1) on the function of the microcirculation in an experimental model of sepsis, and whether any protection by MAT-Ang-1 was associated with modulation of inflammatory cytokines, angiogenic factors or the endothelial nitric oxide synthase (eNOS)-Akt and vascular endothelial (VE)-cadherin pathways. Methods Aluminium window chambers were implanted into the dorsal skinfold of male C3H/HeN mice (7 to 10 weeks old) to expose the striated muscle microcirculation. Endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (LPS, 1 mg/kg at 0 and 19 hours). MAT.Ang-1 was administered intravenously 20 hours after the onset of sepsis. Microcirculatory function was evaluated by intravital microscopy and Doppler fluximetry. Results Endotoxemia resulted in macromolecular leak, which was ameliorated by MAT.Ang-1 post-treatment. LPS induced a dramatic reduction in tissue perfusion, which was improved by MAT.Ang-1. Proteome profiler array analysis of skeletal muscle also demonstrated increased inflammatory and reduced angiogenic factors during endotoxemia. MAT.Ang-1 post-treatment reduced the level of IL-1β but did not significantly induce the expression of angiogenic factors. MAT.Ang-1 alone did not induce leak or increase angiogenic factors but did reduce vascular endothelial growth factor expression in controls. Conclusion Administration of MAT.Ang-1 after the onset of sepsis protects the microcirculation from endotoxemia-induced vascular dysfunction through reducing inflammation but without pro-angiogenic actions, thus representing a novel, potential pharmacotherapeutic agent for the treatment of sepsis.
Collapse
|
36
|
Generation of nitric oxide and reactive oxygen species by neutrophils and monocytes from septic patients and association with outcomes. Shock 2012; 38:18-23. [PMID: 22575991 DOI: 10.1097/shk.0b013e318257114e] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, our aims were to evaluate the reactive oxygen species (ROS) and nitric oxide (NO) generation by monocytes and neutrophils from septic patients and to correlate their levels with clinical outcomes. Forty-nine septic patients and 19 healthy volunteers were enrolled in the study. The ROS and NO production was quantified in monocytes and neutrophils in whole blood by flow cytometry, constitutively, and after stimulation with Staphylococcus aureus and Pseudomonas aeruginosa. Nitric oxide production by monocytes was higher in septic patients compared with healthy volunteers for all conditions and by neutrophils at baseline, and ROS generation in monocytes and neutrophils was higher in septic patients than in healthy volunteers for all conditions. Nitric oxide production by monocytes and neutrophils was decreased at day 7 compared with that at admission (day 0) in survivors at baseline and after stimulation with S. aureus. Reactive oxygen species production by the monocytes and neutrophils was decreased in survivors at day 7 compared with day 0 under all conditions, except by neutrophils at baseline. No difference was found in NO and ROS generation by monocytes and neutrophils between day 7 and day 0 in nonsurvivors. Generation of NO and ROS by neutrophils and monocytes is increased in septic patients, and their persistence is associated with poor outcome.
Collapse
|
37
|
Abstract
Shock syndromes are of three types: cardiogenic, hemorrhagic and inflammatory. Hemorrhagic shock has its initial deranged macro-hemodynamic variables in the blood volume and venous return. In cardiogenic shock there is a primary pump failure that has cardiac output/mean arterial pressure as initial deranged variables. In Inflammatory Shock it is the microcirculation that is mainly affected, while the initial deranged macrocirculation variable is the total peripheral resistance hit by systemic inflammatory response.
Collapse
|
38
|
Farina M, Aschner M, Rocha JBT. Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol 2011; 256:405-17. [PMID: 21601588 PMCID: PMC3166649 DOI: 10.1016/j.taap.2011.05.001] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 12/20/2022]
Abstract
Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically studied agents.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Pediatrics and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - João B. T. Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
39
|
Cáceres L, Necakov AS, Schwartz C, Kimber S, Roberts IJH, Krause HM. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75. Genes Dev 2011; 25:1476-85. [PMID: 21715559 DOI: 10.1101/gad.2064111] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer partner, Drosophila hormone receptor 3 (DHR3). Manipulation of these interactions leads to gross alterations in feeding behavior, fat deposition, and developmental timing. These neuroendocrine interactions and consequences appear to be conserved in vertebrates.
Collapse
Affiliation(s)
- Lucía Cáceres
- Banting and Best Department of Medical Research, Department of Molecular Biology, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Spindler V, Waschke J. Beta-adrenergic stimulation contributes to maintenance of endothelial barrier functions under baseline conditions. Microcirculation 2011; 18:118-27. [PMID: 21166930 DOI: 10.1111/j.1549-8719.2010.00072.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES cAMP signaling within the endothelium is known to reduce paracellular permeability and to protect against loss of barrier functions under various pathological conditions. Because activation of β-adrenergic receptors elevates cellular cAMP, we tested whether β-adrenergic receptor signaling contributes to the maintenance of baseline endothelial barrier properties. METHODS We compared hydraulic conductivity of rat postcapillary venules in vivo with resistance measurements and with reorganization of endothelial adherens junctions in cultured microvascular endothelial cells downstream of β-adrenergic receptor-mediated changes of cAMP levels. RESULTS Inhibition of β-adrenergic receptors by propranolol increased hydraulic conductivity, reduced both cAMP levels and TER of microvascular endothelial cell monolayers and induced fragmentation of VE-cadherin staining. In contrast, activation by epinephrine both increased cAMP levels and TER and resulted in linearized VE-cadherin distribution, however this was not sufficient to block barrier-destabilization by propranolol. Similarly, PDE inhibition did not prevent propranolol-induced TER reduction and VE-cadherin reorganization whereas increased cAMP formation by AC activation enhanced endothelial barrier functions under baseline conditions and under conditions of propranolol treatment. CONCLUSIONS Our results indicate that generation of cAMP mediated by activation of β-adrenergic receptor signaling contributes to the maintenance of endothelial barrier properties under baseline conditions.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, Würzburg, Germany
| | | |
Collapse
|
41
|
Leiper J, Nandi M. The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis. Nat Rev Drug Discov 2011; 10:277-91. [DOI: 10.1038/nrd3358] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
|
43
|
Coneski PN, Nash JA, Schoenfisch MH. Nitric oxide-releasing electrospun polymer microfibers. ACS APPLIED MATERIALS & INTERFACES 2011; 3:426-432. [PMID: 21250642 PMCID: PMC3045468 DOI: 10.1021/am101010e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The preparation of electrospun polymer microfibers with nitric oxide (NO)-release capabilities is described. Polymer solutions containing disodium 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (PROLI/NO), a low-molecular-weight NO donor, were electrospun to generate fibers ranging from 100-3000 nm in diameter capable of releasing NO upon immersion in aqueous solutions under physiological conditions (pH 7.4, 37 °C), with kinetics depending on polymer composition and fiber diameter. The NO release half-life for PROLI/NO-doped electrospun fibers was 2-200 times longer than that of PROLI/NO alone. The influence of polymer concentration, applied voltage, capillary diameter, solution conductivity, flow rate, and additives on fiber properties are reported and discussed with respect to potential applications.
Collapse
|
44
|
Abstract
Shock means inadequate tissue perfusion by oxygen-carrying blood. In vasogenic shock, this circulatory failure results from vasodilation and/or vasoplegia. There is vascular hyporeactivity with reduced vascular smooth muscle contraction in response to α1 adrenergic agonists. Considering vasogenic shock, one can understand its utmost importance, not only because of its association with sepsis but also because it can be the common final pathway for long-lasting, severe shock of any cause, even postresuscitation states. The effective management of any patient in shock requires the understanding of its underlying physiology and pathophysiology. Recent studies have provided new insights into vascular physiology by revealing the interaction of rather complicated and multifactorial mechanisms, which have not been fully elucidated yet. Some of these mechanisms, such as the induction of nitric oxide synthases, the activation of adenosine triphosphate-sensitive potassium channels, and vasopressin deficiency, have gained general acceptance and are considered to play an important role in the pathogenesis of vasodilatory shock. The purpose of this review is to provide an update on the pathogenesis of vasogenic shock.
Collapse
Affiliation(s)
- Sotiria Gkisioti
- Department of Intensive Care, Medicine, University of Athens, Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Spyros D Mentzelopoulos
- Department of Intensive Care, Medicine, University of Athens, Medical School, Evaggelismos General Hospital, Athens, Greece
| |
Collapse
|
45
|
Stahl W, Bracht H, Radermacher P, Thomas J. Year in review 2009: Critical Care--shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:239. [PMID: 21122169 PMCID: PMC3220051 DOI: 10.1186/cc9261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The research papers on shock that have been published in Critical Care throughout 2009 are related to four major subjects: first, alterations of heart function and, second, the role of the sympathetic central nervous system during sepsis; third, the impact of hemodynamic support using vasopressin or its synthetic analog terlipressin, and different types of fluid resuscitation; as well as, fourth, experimental studies on the treatment of acute respiratory distress syndrome. The present review summarizes the key results of these studies together with a brief discussion in the context of the relevant scientific and clinical background published both in this and other journals.
Collapse
Affiliation(s)
- Wolfgang Stahl
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Klinik für Anästhesiologie, Universitätsklinikum, Parkstrasse 11, D-89073 Ulm, Germany
| | | | | | | |
Collapse
|
46
|
Hauser B, Radermacher P. Right man, right time, right place?--on the time course of the mediator orchestra in septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:190. [PMID: 20804572 PMCID: PMC2945134 DOI: 10.1186/cc9219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Appropriate timing of treatment assumes particular importance in critical care. Lange and colleagues recently reported on the time course of the different nitric oxide synthase (NOS) isoforms, nitrosative stress, and poly(ADP-ribosylation) during Pseudomonas aeruginosa pneumonia-induced ovine septic shock. Initially, endothelial NOS expression was increased together with markers of peroxynitrite formation, DNA damage, and nuclear factor-kappa-B activation. Later on, measurable NOS activity and nitric oxide production resulted mainly from inducible NOS activation. These results emphasize the need for long-term, large-animal studies investigated over days so that future therapeutic interventions can be better tailored and matched to the exact time course of the activation of the mediator orchestra.
Collapse
Affiliation(s)
- Balázs Hauser
- Aneszteziológiai és Intenzív Terápiás Klinika, Semmelweis University, H-1125 Budapest, Kútvölgyi út 4, Hungary.
| | | |
Collapse
|
47
|
Effects of storage on the biology and clinical efficacy of the banked red blood cell. Transfus Apher Sci 2010; 43:45-7. [DOI: 10.1016/j.transci.2010.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Somani A, Steiner ME, Hebbel RP. The dynamic regulation of microcirculatory conduit function: features relevant to transfusion medicine. Transfus Apher Sci 2010; 43:61-8. [PMID: 20580315 DOI: 10.1016/j.transci.2010.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The microcirculation is not merely a passive conduit for red cell transport, nutrient and gas exchange, but is instead a dynamic participant contributing to the multiple processes involved in the maintenance of metabolic homeostasis and optimal end-organ function. The microcirculation's angioarchitechture and surface properties influence conduit function and flow dynamics over a wide spectrum of conditions, accommodating many different mechanical, pathological or organ-specific responses. The endothelium itself plays a critical role as the interface between tissues and blood components, participating in the regulation of coagulation, inflammation, vascular tone, and permeability. The complex nitric oxide pathways affect vasomotor tone and influence vascular conduit caliber and distribution density, alter thrombotic propensity, and modify adhesion molecule expression. Nitric oxide pathways also interact with red blood cells and free hemoglobin moieties in normal and pathological conditions. Red blood cells themselves may affect flow dynamics. Altered rheology and compromised NO bioavailability from medical storage or disease states impede microcirculatory flow and adversely modulate vasodilation. The integration of the microcirculation as a system with respect to flow modulation is delicately balanced, and can be readily disrupted in disease states such as sepsis. This review will provide a description of these varied and intricate functions of the microvasculature.
Collapse
Affiliation(s)
- Arif Somani
- Pediatric Critical Care Medicine and Vascular Biology Center, University of Minnesota, USA.
| | | | | |
Collapse
|
49
|
Tütüncü EE, Gurbuz Y, Ozturk B, Kuscu F, Sencan I. Serum nitric oxide levels in patients with Crimean-Congo haemorrhagic fever. ACTA ACUST UNITED AC 2010; 42:385-8. [PMID: 20095935 DOI: 10.3109/00365540903501624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is an acute disease affecting multiple organ systems and is characterized by fever and haemorrhages. The pathogenesis of CCHF has not been well described. Nitric oxide (NO) is an important regulator of a number of different biological processes and can participate in antimicrobial defence. In this study, we measured the level of NO in the serum of patients with CCHF and healthy controls to define the possible role of NO in the control of infection. Sixty-two patients with CCHF and 31 controls were included in the study. NO levels in CCHF patients and the control group were found to be a mean of 40.49 microM (standard deviation (SD) 23.00) and 14.89 microM (SD 7.94), respectively. NO levels were significantly higher in CCHF patients with respect to controls (p < 0.001). NO levels in the patients with non-fatal CCHF and fatal CCHF were compared and found to be a mean of 43.57 microM (SD 22.70) and 26.23 microM (SD 19.43), respectively; this difference was statistically significant (p=0.009). In conclusion, elevated levels of NO may play a protective role in CCHF.
Collapse
Affiliation(s)
- E Ediz Tütüncü
- Department of Clinical Microbiology and Infectious Diseases, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey.
| | | | | | | | | |
Collapse
|