1
|
Jiang L, Yang D, Zhang Z, Xu L, Jiang Q, Tong Y, Zheng L. Elucidating the role of Rhodiola rosea L. in sepsis-induced acute lung injury via network pharmacology: emphasis on inflammatory response, oxidative stress, and the PI3K-AKT pathway. PHARMACEUTICAL BIOLOGY 2024; 62:272-284. [PMID: 38445620 PMCID: PMC10919309 DOI: 10.1080/13880209.2024.2319117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
CONTEXT Sepsis-induced acute lung injury (ALI) is associated with high morbidity and mortality. Rhodiola rosea L. (Crassulaceae) (RR) and its extracts have shown anti-inflammatory, antioxidant, immunomodulatory, and lung-protective effects. OBJECTIVE This study elucidates the molecular mechanisms of RR against sepsis-induced ALI. MATERIALS AND METHODS The pivotal targets of RR against sepsis-induced ALI and underlying mechanisms were revealed by network pharmacology and molecular docking. Human umbilical vein endothelial cells (HUVECs) were stimulated by 1 μg/mL lipopolysaccharide for 0.5 h and treated with 6.3, 12.5, 25, 50, 100, and 200 μg/mL RR for 24 h. Then, the lipopolysaccharide-stimulated HUVECs were subjected to cell counting kit-8 (CCK-8), enzyme-linked immunosorbent, apoptosis, and Western blot analyses. C57BL/6 mice were divided into sham, model, low-dose (40 mg/kg), mid-dose (80 mg/kg), and high-dose (160 mg/kg) RR groups. The mouse model was constructed through caecal ligation and puncture, and histological, apoptosis, and Western blot analyses were performed for further validation. RESULTS We identified six hub targets (MPO, HRAS, PPARG, FGF2, JUN, and IL6), and the PI3K-AKT pathway was the core pathway. CCK-8 assays showed that RR promoted the viability of the lipopolysaccharide-stimulated HUVECs [median effective dose (ED50) = 18.98 μg/mL]. Furthermore, RR inhibited inflammation, oxidative stress, cell apoptosis, and PI3K-AKT activation in lipopolysaccharide-stimulated HUVECs and ALI mice, which was consistent with the network pharmacology results. DISCUSSION AND CONCLUSION This study provides foundational knowledge of the effective components, potential targets, and molecular mechanisms of RR against ALI, which could be critical for developing targeted therapeutic strategies for sepsis-induced ALI.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Dongdong Yang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zhuoyi Zhang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Liying Xu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qingyu Jiang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yixin Tong
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Lanzhi Zheng
- Department of Medical Administration, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Huang Y, Li G, Chen Z, Chen M, Zhai W, Li D, Xu Q. Exosomal Drug Delivery Systems: A Novel Therapy Targeting PD-1 in Septic-ALI. Stem Cell Rev Rep 2024; 20:2253-2267. [PMID: 39235552 DOI: 10.1007/s12015-024-10784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The cytokine storm triggered by sepsis can lead to the development of acute lung injury (ALI). Human umbilical cord Mesenchymal stem cells derived exosomes (HucMSCs-EXOs) have been demonstrated to possess immunosuppressive and anti-inflammatory properties. Programmed cell death receptor 1 (PD-1) plays a crucial role in maintaining the inflammatory immune homeostasis. The aim of this study is to investigate the synergistic therapeutic effect of EXOs loaded with anti-PD-1 peptide on septic-ALI. METHODS This study prepares a novel EXOs-based drug, named MEP, by engineering modification of HucMSCs-EXOs, which are non-immunogenic extracellular vesicles, loaded with anti-PD-1 peptide. The therapeutic effect and potential mechanism of MEP on septic-ALI are elucidated through in vivo and in vitro experiments, providing experimental evidence for the treatment of septic acute lung injury with MEP. RESULTS We found that, compared to individual components (anti-PD-1 peptide or EXOs), MEP treatment can more effectively improve the lung injury index of septic-ALI mice, significantly reduce the expression levels of inflammatory markers CRP and PCT, as well as pro-inflammatory cytokines TNF-α and IL-1β in serum, decrease lung cell apoptosis, and significantly increase the expression of anti-inflammatory cytokine IL-10 and CD68+ macrophages. In vitro, MEP co-culture promotes the proliferation of CD206+ macrophages, increases the M2/M1 macrophage ratio, and attenuates the inflammatory response. GEO data analysis and qRT-PCR validation show that MEP reduces the expression of inflammasome-related genes and M1 macrophage marker iNOS. CONCLUSION In both in vitro and in vivo settings, MEP demonstrates superior therapeutic efficacy compared to individual components in the context of septic-ALI.
Collapse
Affiliation(s)
- Yuanlan Huang
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Gang Li
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Zeqi Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Mengying Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Weibin Zhai
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Dan Li
- Special Food Equipment Research Laboratory, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China.
| | - Qingqiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China.
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
3
|
Li Y, Huang L, Li J, Li S, Lv J, Zhong G, Gao M, Yang S, Han S, Hao W. Targeting TLR4 and regulating the Keap1/Nrf2 pathway with andrographolide to suppress inflammation and ferroptosis in LPS-induced acute lung injury. Chin J Nat Med 2024; 22:914-928. [PMID: 39428183 DOI: 10.1016/s1875-5364(24)60727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 10/22/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory condition with a high mortality rate, often precipitated by sepsis. The pathophysiology of ALI involves complex mechanisms, including inflammation, oxidative stress, and ferroptosis, a novel form of regulated cell death. This study explores the therapeutic potential of andrographolide (AG), a bioactive compound derived from Andrographis, in mitigating Lipopolysaccharide (LPS)-induced inflammation and ferroptosis. Our research employed in vitro experiments with RAW264.7 macrophage cells and in vivo studies using a murine model of LPS-induced ALI. The results indicate that AG significantly suppresses the production of pro-inflammatory cytokines and inhibits ferroptosis in LPS-stimulated RAW264.7 cells. In vivo, AG treatment markedly reduces lung edema, decreases inflammatory cell infiltration, and mitigates ferroptosis in lung tissues of LPS-induced ALI mice. These protective effects are mediated via the modulation of the Toll-like receptor 4 (TLR4)/Kelch-like ECH-associated protein 1(Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Molecular docking simulations identified the binding sites of AG on the TLR4 protein (Kd value: -33.5 kcal·mol-1), and these interactions were further corroborated by Cellular Thermal Shift Assay (CETSA) and SPR assays. Collectively, our findings demonstrate that AG exerts potent anti-inflammatory and anti-ferroptosis effects in LPS-induced ALI by targeting TLR4 and modulating the Keap1/Nrf2 pathway. This study underscores AG's potential as a therapeutic agent for ALI and provides new insights into its underlying mechanisms of action.
Collapse
Affiliation(s)
- Yichen Li
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Liting Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jilang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Siyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jianzhen Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Guoyue Zhong
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal. Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Ming Gao
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal. Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Wenhui Hao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
4
|
Zhou P, Yang L, Li R, Yin Y, Xie G, Liu X, Shi L, Tao K, Zhang P. IRG1/itaconate alleviates acute liver injury in septic mice by suppressing NLRP3 expression and its mediated macrophage pyroptosis via regulation of the Nrf2 pathway. Int Immunopharmacol 2024; 135:112277. [PMID: 38788445 DOI: 10.1016/j.intimp.2024.112277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Sepsis, a systemic inflammatory response triggered by infection, has a considerably high mortality rate. However, effective prevention and intervention measures against sepsis remain insufficient. Therefore, this study aimed to investigate the mechanisms underlying the protective properties of immune response gene-1 (IRG1) and 4-Octyl itaconate (OI) during acute liver damage in mice with sepsis. A sepsis mouse model was established to compare wild-type and IRG1-/- groups. The impact of IRG1/Itaconate on pro- and anti-inflammatory cytokines was evaluated using J774A.1 cells. IRG1/Itaconate substantially reduced pro-inflammatory cytokines and increased the release of anti-inflammatory cytokines. It reduced pathological damage to liver tissues, preserved normal liver function, decreased the release of reactive oxygen species (ROS) and LDH, and enhanced the GSH/GSSG ratio. Moreover, IRG1 and itaconic acid activated the Nrf2 signaling pathway, regulating the expression of its downstream antioxidative stress-related proteins. Additionally, they inhibited the activity of NLRP3 inflammatory vesicles to suppress the expression of macrophage-associated pyroptosis signaling molecules. Our findings demonstrate that IRG1/OI inhibits NLRP3 inflammatory vesicle activation and macrophage pyroptosis by modulating the Nrf2 signaling pathway, thereby attenuating acute liver injury in mice with sepsis. These findings could facilitate the clinical application of IRG1/Itaconate to prevent sepsis-induced acute liver injury.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Lei Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Gengchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Xinghua Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China.
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China.
| |
Collapse
|
5
|
Lv H, Huang L, Yang X, Zhang C, Yu H, Shang X. The clinical effectiveness of sivelestat in treating sepsis patients with both acute respiratory distress syndrome and septic cardiomyopathy. J Cardiothorac Surg 2024; 19:399. [PMID: 38937755 PMCID: PMC11210008 DOI: 10.1186/s13019-024-02835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND We aimed to assess the efficacy of the neutrophil elastase inhibitor, sivelestat, in the treatment of sepsis-induced acute respiratory distress syndrome (ARDS) and septic cardiomyopathy (SCM). METHODS Between January 2019 and December 2021, we conducted a randomized trial on patients who had been diagnosed with sepsis-induced acute respiratory distress syndrome (ARDS) and septic cardiomyopathy (SCM) at Wuhan Union Hospital. The patients were divided into two groups by random envelop method, the Sivelestat group and the Control group. We measured the serum concentrations of Interleukin (IL)-6, IL-8, Tumor necrosis factor-α (TNF-α), and High-mobility group box 1 (HMGB1) at five time points, which were the baseline, 12 h, 24 h, 48 h, and 72 h after admission to the ICU. We evaluated the cardiac function by sonography and the heart rate variability (HRV) with 24-hour Holter recording between the time of admission to the intensive care unit (ICU) and 72 h after Sivelestat treatment. RESULTS From January 2019 to December 2021, a total of 70 patients were included in this study. The levels of IL-6, IL-8, and TNF-α were significantly lower in the Sivelestat group at different time points (12 h, 24 h, 48 h, and 72 h). HMGB1 levels were significantly lower at 72 h after Sivelestat treatment (19.46 ± 2.63pg/mL vs. 21.20 ± 2.03pg/mL, P = 0.003). The stroke volume (SV), tricuspid annular plane systolic excursion (TAPSE), early to late diastolic transmitral flow velocity (E/A), early (e') and late (a') diastoles were significantly low in the Control group compared with the Sivelestat group. Tei index was high in the Control group compared with the Sivelestat group (0.60 ± 0.08 vs. 0.56 ± 0.07, P = 0.029). The result of HRV showed significant differences in standard deviation of normal-to-normal intervals (SDNN), low frequency (LF), and LF/HF (high frequency) between the two groups. CONCLUSIONS Sivelestat can significantly reduce the levels of serum inflammatory factors, improve cardiac function, and reduce heart rate variability in patients with Sepsis-induced ARDS and SCM.
Collapse
Affiliation(s)
- Hui Lv
- Department of ICU, Wuhan No.1 Hospital, No.215 Zhongshan Avenue, Wuhan, China
| | - Langjing Huang
- Department of Cardiovascular Medicine, Changsha Economic Development Zone Hospital, Changsha, China
| | - Xiuhong Yang
- Department of ICU, Wuhan No.1 Hospital, No.215 Zhongshan Avenue, Wuhan, China
| | - Changdong Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Jianghan District, Wuhan, 430022, Hubei Province, China
| | - Hao Yu
- Department of Cardiology, Wuhan No.1 Hospital, No.215 Zhongshan Avenue, Wuhan, China
| | - Xiaoke Shang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Jianghan District, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
6
|
Lv H, Yu J, Qian X, Shu J, Qian Q, Shen L, Shi D, Tao Z, Fan G, Zhuang B, Lu B. USP7 upregulated by TGF-β1 promotes ferroptosis via inhibiting LATS1-YAP axis in sepsis-induced acute lung injury. iScience 2024; 27:109667. [PMID: 38966570 PMCID: PMC11223090 DOI: 10.1016/j.isci.2024.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/27/2023] [Accepted: 04/02/2024] [Indexed: 07/06/2024] Open
Abstract
Our work aimed to investigate the interactive roles of transforming growth factor β1 (TGF-β1), ubiquitin-specific-processing protease 7 (USP7), and Yes-associated protein (YAP) in ferroptosis during sepsis-secondary acute lung injury (ALI). Our study demonstrated that ferroptosis was aggravated by TGF-β1 in both cellular and animal models of acute lung injury. Additionally, YAP upregulated glutathione peroxidase 4 (GPX4) and SLC7A11 by regulating the binding of TEAD4 to GPX4/SLC7A11 promoters. Furthermore, large tumor suppressor kinase 1 (LATS1) knockdown resulted in YAP expression stimulation, while USP7 downregulated YAP via deubiquitinating and stabilizing LATS1/2. YAP overexpression or USP7/LATS1 silencing reduced ferroptosis process, which regulated YAP through a feedback loop. However, TGF-β1 annulled the repression of ferroptosis by YAP overexpression or LATS1/USP7 knockdown. By elucidating the molecular interactions between TGF-β1, USP7, LATS1/2, and YAP, we identified a new regulatory axis of ferroptosis in sepsis-secondary ALI. Our study sheds light on the pathophysiology of ferroptosis and proposes a potential therapeutic approach for sepsis-induced ALI.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Jing Yu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Jun Shu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Luhong Shen
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Dongfang Shi
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Zhengzheng Tao
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
- Soochow University School of Medicine, Suzhou, Jiangsu Province 215031, P.R. China
| | - Bufeng Zhuang
- Department of Thoracic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affliated to Nanjing University of Chinese Medicine, Taicang, Jiangsu Province 215499, P.R. China
| |
Collapse
|
7
|
Zhang H, Liu D, Xu QF, Wei J, Zhao Y, Xu DF, Wang Y, Liu YJ, Zhu XY, Jiang L. Endothelial RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of β-catenin and ILK signaling pathways after inflammatory vascular injury. Int J Biol Macromol 2024; 269:131805. [PMID: 38677673 DOI: 10.1016/j.ijbiomac.2024.131805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Endothelial repair is essential for restoring tissue fluid homeostasis following lung injury. R-spondin3 (RSPO3), a secreted protein mainly produced by endothelial cells (ECs), has shown its protective effect on endothelium. However, the specific mechanisms remain unknown. To explore whether and how RSPO3 regulates endothelial regeneration after inflammatory vascular injury, the role of RSPO3 in sepsis-induced pulmonary endothelial injury was investigated in EC-specific RSPO3 knockdown, inducible EC-specific RSPO3 deletion mice, EC-specific RSPO3 overexpression mice, systemic RSPO3-administration mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in plasma from septic patients. Here we show that plasma RSPO3 levels are decreased in septic patients and correlated with endothelial injury markers and PaO2/FiO2 index. Both pulmonary EC-specific knockdown of RSPO3 and inducible EC-specific RSPO3 deletion inhibit pulmonary ECs proliferation and exacerbate ECs injury, whereas intra-pulmonary EC-specific RSPO3 overexpression promotes endothelial recovery and attenuates ECs injury during endotoxemia. We show that RSPO3 mediates pulmonary endothelial regeneration by a LGR4-dependent manner. Except for β-catenin, integrin-linked kinase (ILK)/Akt is also identified as a novel downstream effector of RSPO3/LGR4 signaling. These results conclude that EC-derived RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of β-catenin and ILK signaling pathways after inflammatory vascular injury.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Qing-Feng Xu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Juan Wei
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Ying Zhao
- Department of Anesthesiology, Zhejiang Cancer Hospital, 310022, PR China
| | - Dun-Feng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Yu-Jian Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai 200438, PR China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, PR China.
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Wang W, Xu R, He P, Xiong Y, Zhao H, Fu X, Lin J, Ye L. CircEXOC5 Aggravates Sepsis-Induced Acute Lung Injury by Promoting Ferroptosis Through the IGF2BP2/ATF3 Axis. J Infect Dis 2024; 229:522-534. [PMID: 37647879 DOI: 10.1093/infdis/jiad337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Patients with sepsis resulting in acute lung injury (ALI) usually have increased mortality. Ferroptosis is a vital regulator in sepsis-induced ALI. Exploring the association of ferroptosis and sepsis-induced ALI is crucial for the management of sepsis-induced ALI. METHODS Whole blood was collected from sepsis patients. Mice were treated with cecal ligation and puncture (CLP) to model sepsis. Primary murine pulmonary microvascular endothelial cells were treated with lipopolysaccharide as a cell model. Ferroptosis was evaluated by analyzing levels of iron, malonaldehyde, glutathione, nonheme iron, ferroportin, ferritin, and GPX4. Hematoxylin and eosin and Masson's trichrome staining were applied to examine lung injury and collagen deposition. Cell apoptosis was analyzed by caspase-3 activity and TUNEL assays. Gene regulatory relationship was verified using RNA pull-down and immunoprecipitation assays. RESULTS CircEXOC5 was highly expressed in sepsis patients and CLP-treated mice, in which knockdown alleviated CLP-induced pulmonary inflammation and injury, and ferroptosis. CircEXOC5 recruited IGF2BP2 to degrade ATF3 mRNA. The demethylase ALKBH5 was responsible for circEXOC5 upregulation through demethylation. CircEXOC5 silencing significantly improved sepsis-induced ALI and survival rate of mice by downregulating ATF3. CONCLUSIONS ALKBH5-mediated upregulation of circEXOC5 exacerbates sepsis-induced ALI by facilitating ferroptosis through IGF2BP2 recruitment to degrade ATF3 mRNA.
Collapse
Affiliation(s)
- Wei Wang
- Geriatric Medicine Department, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, P.R.China
| | - Rongli Xu
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Ping He
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Yuqing Xiong
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Haomiao Zhao
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Xuewei Fu
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Jie Lin
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| | - Lijiao Ye
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R.China
| |
Collapse
|
9
|
Zhang X, Wang L, Li M, Dong S. Predictive value of miR-7110-5p and miR-223-3p as biomarkers for sepsis secondary to pneumonia. Technol Health Care 2024; 32:2931-2939. [PMID: 38759032 DOI: 10.3233/thc-231137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
BACKGROUND Investigating the secondary sepsis of pneumonia is of great significance for rapid diagnosis and early treatment of sepsis. OBJECTIVE This study aimed to investigate the predictive value of micro ribonucleic acids (miRNA) 7110-5p and miR-223-3p in sepsis secondary to pneumonia. A miRNA microarray was used to analyze the differences in miRNA expression between patients with pneumonia and those with sepsis secondary to pneumonia. METHODS The study included a total of 50 patients with pneumonia and 42 patients with sepsis secondary to pneumonia. Quantitative polymerase chain reaction analysis was conducted to measure the circulating miRNA expression levels in patients and assess their correlations with clinical characteristics and prognosis. In this study, nine miRNAs - hsa-miR-4689-5p, hsa-miR-4621-5p, hsa-miR-6740-5p, hsa-miR-7110-5p, hsa-miR-765, hsa-miR-940, hsa-miR-213-5p, hsa-miR-223-3p, and hsa-miR-122 - met the screening criteria of having a fold change ⩾ 2 or < 0.5; p< 0.01 indicated significant differences in the results. RESULTS The expression levels of miR-7110-5p and miR-223-3p differed between the two patient groups, being up-regulated in the plasma of patients with sepsis secondary to pneumonia. miR-7110-5p and miR-223-3p showed higher expression levels in both patients with pneumonia and sepsis compared to healthy controls. Moreover, the receiver operating characteristic curve revealed that the areas under the curve for predicting pneumonia using miR-7110-5p were 0.781 while those for predicting sepsis secondary to pneumonia were 0.862. For miR-223-3p, the corresponding values for predicting pneumonia and sepsis secondary to pneumonia were 0.879 and 0.924, respectively. However, there were no significant differences in the levels of miR-7110-5p and miR-223-3p between the plasma of survived and deceased patients with sepsis. CONCLUSIONS MiR-7110-5p and miR-223-3p have the potential to serve as biological indicators for predicting sepsis secondary to pneumonia.
Collapse
Affiliation(s)
- Xinliang Zhang
- Department of Emergency Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Wang
- Department of Trauma Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mei Li
- Department of Emergency Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shimin Dong
- Department of Emergency Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Chang B, Wang Z, Cheng H, Xu T, Chen J, Wu W, Li Y, Zhang Y. Acacetin protects against sepsis-induced acute lung injury by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis. Innate Immun 2024; 30:11-20. [PMID: 38043934 PMCID: PMC10720600 DOI: 10.1177/17534259231216852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
Acute lung injury (ALI) is the leading cause of death in patients with sepsis syndrome and without effective protective or therapeutic treatments. Acacetin, a natural dietary flavonoid, reportedly exerts several biological effects, such as anti-tumor, anti-inflammatory, and anti-oxidative effects. However, acacetin's effect and underlying mechanism on sepsis-induced ALI remain unclear. Here, the mouse model was established to explore the impact of acacetin on sepsis-induced ALI. Acacetin significantly increased ALI murine survival and attenuated lung injury in histological examinations. Additionally, acacetin down-regulated myeloperoxidase activity, protein concentration, and number of neutrophils and macrophages in bronchoalveolar lavage fluid. Subsequently, inflammatory cytokines, including TNF-α, IL-1β, and IL-6, were examined. Results showed that acacetin dramatically suppressed the production of TNF-α, IL-1β, and IL-6. These above results indicated that acacetin attenuated sepsis-induced ALI by inhibiting the inflammatory response. Moreover, acacetin inhibited the expression of markers for M1-type (iNOS, CD86) macrophages and promoted the expression of markers for M2-type (CD206, Arg1) macrophages by western blot. In addition, acacetin down-regulated the expression TRAF6, NF-κB, and Cyclooxygenase-2 (COX2) by western blot. The high concentration of acacetin had a better effect than the low concentration. Besides, over-expression of TRAF6 up-regulated the expression of COX2, CD86, and iNOS, and the ratio of p-NF-κB to NF-κB increased the mRNA levels of TNF-α, IL-1β, and IL-6, down-regulated the expression of CD206 and Arg1. The effects of TRAF6 were the opposite of acacetin. And TRAF6 could offset the impact of acacetin. This study demonstrated that acacetin could prevent sepsis-induced ALI by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis.
Collapse
Affiliation(s)
- Binbin Chang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhang Wang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hui Cheng
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Tingyuan Xu
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jieyu Chen
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Wan Wu
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yizhi Li
- Department of Anesthesiology, The 944 Hospital of the PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Zhang H, Xu Y, Huang X, Yang S, Li R, Wu Y, Zou X, Yu Y, Shang Y. Extracorporeal membrane oxygenation in adult patients with sepsis and septic shock: Why, how, when, and for whom. JOURNAL OF INTENSIVE MEDICINE 2024; 4:62-72. [PMID: 38263962 PMCID: PMC10800772 DOI: 10.1016/j.jointm.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 01/25/2024]
Abstract
Sepsis and septic shock remain the leading causes of death in intensive care units. Some patients with sepsis fail to respond to routine treatment and rapidly progress to refractory respiratory and circulatory failure, necessitating extracorporeal membrane oxygenation (ECMO). However, the role of ECMO in adult patients with sepsis has not been fully established. According to existing studies, ECMO may be a viable salvage therapy in carefully selected adult patients with sepsis. The choice of venovenous, venoarterial, or hybrid ECMO modes is primarily determined by the patient's oxygenation and hemodynamics (distributive shock with preserved cardiac output, septic cardiomyopathy (left, right, or biventricular heart failure), or right ventricular failure caused by acute respiratory distress syndrome). Veno-venous ECMO can be used in patients with sepsis and severe acute respiratory distress syndrome when conventional mechanical ventilation fails, and early application of veno-arterial ECMO in patients with sepsis-induced refractory cardiogenic shock may be critical in improving their chances of survival. When ECMO is indicated, the choice of an appropriate mode and determination of the optimal timing of initiation and weaning are critical, particularly in an experienced ECMO center. Furthermore, some special issues, such as ECMO flow, anticoagulation, and antibiotic therapy, should be noted during the management of ECMO support.
Collapse
Affiliation(s)
- Hongling Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, Anhui, 237000, China
| | - Youdong Xu
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, Anhui, 237000, China
| | - Xin Huang
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, Anhui, 237000, China
| | - Shunyin Yang
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, Anhui, 237000, China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yongran Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
12
|
Deng W, Lu Y, Hu P, Zhang Q, Li S, Yang D, Zhao N, Qian K, Liu F. Integrated Analysis of Non-Coding RNA and mRNA Expression Profiles in Exosomes from Lung Tissue with Sepsis-Induced Acute Lung Injury. J Inflamm Res 2023; 16:3879-3895. [PMID: 37674532 PMCID: PMC10478974 DOI: 10.2147/jir.s419491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023] Open
Abstract
Background Acute lung injury (ALI) is associated with a high mortality rate; however, the underlying molecular mechanisms are poorly understood. The purpose of this study was to investigate the expression profile and related networks of long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in lung tissue exosomes obtained from sepsis-induced ALI. Methods A mouse model of sepsis was established using the cecal ligation and puncture method. RNA sequencing was performed using lung tissue exosomes obtained from mice in the sham and CLP groups. Hematoxylin-eosin staining, Western blotting, immunofluorescence, quantitative real-time polymerase chain reaction, and nanoparticle tracking analysis were performed to identify relevant phenotypes, and bioinformatic algorithms were used to evaluate competitive endogenous RNA (ceRNA) networks. Results Thirty lncRNA-miRNA-mRNA interactions were identified, including two upregulated lncRNAs, 30 upregulated miRNAs, and two downregulated miRNAs. Based on the expression levels of differentially expressed mRNAs(DEmRNAs), differentially expressed LncRNAs(DELncRNAs), and differentially expressed miRNAs(DEmiRNAs), 30 ceRNA networks were constructed. Conclusion Our study revealed, for the first time, the expression profiles of lncRNA, miRNA, and mRNA in exosomes isolated from the lungs of mice with sepsis-induced ALI, and the exosome co-expression network and ceRNA network related to ALI in sepsis.
Collapse
Affiliation(s)
- Wei Deng
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Yanhua Lu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ping Hu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Qingqing Zhang
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Shuangyan Li
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Dong Yang
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ning Zhao
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Kejian Qian
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Fen Liu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
13
|
Xiong C, Huang X, Chen S, Li Y. Role of Extracellular microRNAs in Sepsis-Induced Acute Lung Injury. J Immunol Res 2023; 2023:5509652. [PMID: 37378068 PMCID: PMC10292948 DOI: 10.1155/2023/5509652] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening pathological disease characterized by the damage of pulmonary endothelial cells and epithelial cell barriers by uncontrolled inflammation. During sepsis-induced ALI, multiple cells cooperate and communicate with each other to respond to the stimulation of inflammatory factors. However, the underlying mechanisms of action have not been fully identified, and the modes of communication therein are also being investigated. Extracellular vesicles (EVs) are a heterogeneous population of spherical membrane structures released by almost all types of cells, containing various cellular components. EVs are primary transport vehicles for microRNAs (miRNAs), which play essential roles in physiological and pathological processes in ALI. EV miRNAs from different sources participated in regulating the biological function of pulmonary epithelial cells, endothelial cells, and phagocytes by transferring miRNA through EVs during ALI induced by sepsis, which has great potential diagnostic and therapeutic values. This study aims to summarize the role and mechanism of extracellular vesicle miRNAs from different cells in the regulation of sepsis-induced ALI. It provides ideas for further exploring the role of extracellular miRNA secreted by different cells in the ALI induced by sepsis, to make up for the deficiency of current understanding, and to explore the more optimal scheme for diagnosis and treatment of ALI.
Collapse
Affiliation(s)
- Chenlu Xiong
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Shibiao Chen
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Wan Y, Wang S, Niu Y, Duo B, Liu Y, Lu Z, Zhu R. Effect of metformin on sepsis-associated acute lung injury and gut microbiota in aged rats with sepsis. Front Cell Infect Microbiol 2023; 13:1139436. [PMID: 36968119 PMCID: PMC10034768 DOI: 10.3389/fcimb.2023.1139436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundRecent studies reported the association between the changes in gut microbiota and sepsis, but there is unclear for the gut microbes on aged sepsis is associated acute lung injury (SALI), and metformin treatment for the change in gut microbiota. This study aimed to investigate the effect of metformin on gut microbiota and SALI in aged rats with sepsis. It also explored the therapeutic mechanism and the effect of metformin on aged rats with SALI.MethodsAged 20-21 months SD rats were categorized into three groups: sham-operated rats (AgS group), rats with cecal ligation and puncture (CLP)-induced sepsis (AgCLP group), and rats treated with metformin (100 mg/kg) orally 1 h after CLP treatment (AgMET group). We collected feces from rats and analyzed them by 16S rRNA sequencing. Further, the lung samples were collected for histological analysis and quantitative real-time PCR (qPCR) assay and so on.ResultsThis study showed that some pathological changes occurring in the lungs of aged rats, such as hemorrhage, edema, and inflammation, improved after metformin treatment; the number of hepatocyte death increased in the AgCLP group, and decreased in the AgMET group. Moreover, metformin relieved SALI inflammation and damage. Importantly, the gut microbiota composition among the three groups in aged SALI rats was different. In particular, the proportion of E. coli and K. pneumoniae was higher in AgCLP group rats than AgS group rats and AgMET group rats; while metformin could increase the proportion of Firmicutes, Lactobacillus, Ruminococcus_1 and Lactobacillus_johnsonii in aged SALI rats. Moreover, Prevotella_9, Klebsiella and Escherichia_Shigella were correlated positively with the inflammatory factor IL-1 in the lung tissues; Firmicutes was correlated negatively with the inflammatory factor IL-1 and IL-6 in the lung tissues.ConclusionsOur findings suggested that metformin could improve SALI and gut microbiota in aged rats, which could provide a potential therapeutic treatment for SALI in aged sepsis.
Collapse
Affiliation(s)
- Youdong Wan
- Department of Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuya Wang
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Yifan Niu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Boyang Duo
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Yinshuang Liu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Lu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Ruixue Zhu
- Department of Health Management, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Ruixue Zhu,
| |
Collapse
|
15
|
Zhang H, Liu Z, Shu H, Yu Y, Yang X, Li R, Xu J, Zou X, Shang Y. Prone positioning in ARDS patients supported with VV ECMO, what we should explore? J Intensive Care 2022; 10:46. [PMID: 36195935 PMCID: PMC9531855 DOI: 10.1186/s40560-022-00640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS), a prevalent cause of admittance to intensive care units, is associated with high mortality. Prone positioning has been proven to improve the outcomes of moderate to severe ARDS patients owing to its physiological effects. Venovenous extracorporeal membrane oxygenation (VV ECMO) will be considered in patients with severe hypoxemia. However, for patients with severe hypoxemia supported with VV ECMO, the potential effects and optimal strategies of prone positioning remain unclear. This review aimed to present these controversial questions and highlight directions for future research. Main body The clinically significant benefit of prone positioning and early VV ECMO alone was confirmed in patients with severe ARDS. However, a number of questions regarding the combination of VV ECMO and prone positioning remain unanswered. We discussed the potential effects of prone positioning on gas exchange, respiratory mechanics, hemodynamics, and outcomes. Strategies to achieve optimal outcomes, including indications, timing, duration, and frequency of prone positioning, as well as the management of respiratory drive during prone positioning sessions in ARDS patients receiving VV ECMO, are challenging and controversial. Additionally, whether and how to implement prone positioning according to ARDS phenotypes should be evaluated. Lung morphology monitored by computed tomography, lung ultrasound, or electrical impedance tomography might be a potential indication to make an individualized plan for prone positioning therapy in patients supported with VV ECMO. Conclusion For patients with ARDS supported with VV ECMO, the potential effects of prone positioning have yet to be clarified. Ensuring an optimal strategy, especially an individualized plan for prone positioning therapy during VV ECMO, is particularly challenging and requires further research.
Collapse
Affiliation(s)
- Hongling Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, 237000, China
| | - Zhengdong Liu
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, 237000, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
Hao X, Wei H. LncRNA H19 alleviates sepsis-induced acute lung injury by regulating the miR-107/TGFBR3 axis. BMC Pulm Med 2022; 22:371. [PMID: 36180862 PMCID: PMC9524034 DOI: 10.1186/s12890-022-02091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Acute lung injury (ALI) increases sepsis morbidity and mortality. LncRNA H19 plays a critical role in sepsis. miR-107 is highly-expressed and TGFβ type III receptor (TGFBR3) is poorly-expressed in sepsis, yet their roles in sepsis development require further investigation. This study aimed to investigate the mechanism of H19 in alleviating sepsis-induced ALI through the miR-107/TGFBR3 axis. METHODS Mice were intravenously injected with Ad-H19 adenovirus vector or control vector one week before establishing the mouse model of cecal ligation and puncture (CLP). Pulmonary microvascular endothelial cells (PMVECs) were transfected with oe-H19 or oe-NC plasmids and then stimulated by lipopolysaccharide (LPS). Lung injury was assessed via hematoxylin-eosin staining, measurement of wet-to-dry (W/D) ratio, and TUNEL staining. Levels of H19, miR-107, and TGFBR3 were determined by RT-qPCR. Apoptosis of PMVECs was evaluated by flow cytometry. Levels of Bax and Bcl-2 in lung tissues and PMVECs were measured using Western blot. Total protein concentration and the number of total cells, neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF) were quantified. Levels of TNF-α, IL-1β, IL-6, and IL-10 in BALF, lung tissues, and PMVECs were measured by ELISA. Cross-linking relationships among H19, miR-107 and TGFBR3 were verified by dual-luciferase and RIP assays. RESULTS H19 was poorly-expressed in CLP-operated mice. H19 overexpression attenuated sepsis-induced ALI, which was manifested with complete alveolar structure, decreased lung injury score and lung W/D ratio, and inhibited apoptosis in CLP-operated mice, which was manifested with decreased number of TUNEL-positive cells and Bax level and increased Bcl-2 level. CLP-operated mice had increased concentration of total protein and number of total cells, neutrophils, and macrophages in BALF, which was nullified by H19 overexpression. H19 overexpression declined levels of TNF-α, IL-1β, and IL-6 and elevated IL-10 levels. H19 inhibited LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production. H19 targeted TGFBR3 as the ceRNA of miR-107. miR-107 overexpression or silencing TGFBR3 partially averted the inhibition of H19 overexpression on LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production. CONCLUSION LncRNA H19 inhibited LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production and attenuated sepsis-induced ALI by targeting TGFBR3 as the ceRNA of miR-107.
Collapse
Affiliation(s)
- Xiuling Hao
- Department of Respiratory Medicine, East Hospital, The Second Hospital of Hebei Medical University, No. 80, Huanghe Avenue, East Development Zone, Shijiazhuang City, 050000, Hebei Province, People's Republic of China
| | - Huiqiang Wei
- Department of Respiratory Medicine, East Hospital, The Second Hospital of Hebei Medical University, No. 80, Huanghe Avenue, East Development Zone, Shijiazhuang City, 050000, Hebei Province, People's Republic of China.
| |
Collapse
|
17
|
CircEXOC5 facilitates cell pyroptosis via epigenetic suppression of Nrf2 in septic acute lung injury. Mol Cell Biochem 2022; 478:743-754. [PMID: 36074295 DOI: 10.1007/s11010-022-04521-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/05/2022] [Indexed: 10/14/2022]
Abstract
Acute lung injury (ALI) caused by sepsis is characterized by a destructive high inflammatory response in lungs, which is the ultimate cause of high mortality to patients diagnosed with sepsis. The objective of the present study is to explore the effect and related mechanisms of circEXOC5 on pyroptosis in septic ALI. Sepsis ALI mouse model was induced and established by CLP induction and sepsis MPVEC cell model by LPS. HE staining was used to detect lung tissue pathological changes. ELISA, flow cytometry, and Western blot were utilized to evaluate the release of inflammatory cytokines and cell pyroptosis, and RIP was applied to verify the binding relationship between EZH2 and circEXOC5 or Nrf2. Finally, the interaction between CircEXOC5 and EZH2, H3k27me3, and Nrf2 promoter regions was clarified using ChIP. CircEXOC5 levels were notably ascended in the lung tissues of septic ALI mice. And silencing circEXOC5 inhibited cell pyroptosis and the release of inflammatory cytokines in MPVEC stimulated by LPS. In addition, RIP and ChIP indicated that Nrf2 expression in MPVECs cells could be inhibited by circEXOC5 via recruiting EZH2. In addition, ML385 (a specific inhibitor of Nrf2) reversed the efficacy of Knockdown of circEXOC5 on the Inhibition of pyroptosis and inflammation of MPVEC cells stimulated by LPS. These results indicated that CircEXOC5 could promote cell pyroptosis through epigenetic inhibition of Nrf2 in septic ALI.
Collapse
|
18
|
Xiao H, Xu X, Du L, Li X, Zhao H, Wang Z, Zhao L, Yang Z, Zhang S, Yang Y, Wang C. Lycorine and organ protection: Review of its potential effects and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154266. [PMID: 35752077 DOI: 10.1016/j.phymed.2022.154266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Multiorgan dysfunction, especially sepsis-related multiorgan damage, remains a major cause of high mortality in the late stages of infection and a great clinical challenge. In recent years, natural drugs have received widespread attention because of their low cost, wide sources, high efficacy, low toxicity, and limited side effects. Lycorine, a natural compound extracted from Amaryllidaceae, exhibits multiple pharmacological activities, including in the regulation of autophagy and the induction of cancer cell apoptosis, and has anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor activities. However, studies on lycorine have mainly focused on its antitumor properties, and research on its use for organ protection, especially in sepsis-related organ injury, is relatively limited. PURPOSE To review and discuss the effects and mechanisms of lycorine in the treatment of multi-organ dysfunction, especially sepsis. METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using 'Lycorine', 'Amaryllidaceae', 'Pharmacology', 'Pharmacokinetics', 'Anti-inflammation', 'Autophagy', 'Apoptosis', 'Anti-microbial and anti-parasitic', 'Antitumor', 'Organ protection', and 'Sepsis' as keywords, the correlated literature was extracted and conducted from the databases mentioned above. RESULTS By summarizing the progress made in existing research, we found that the general effects of lycorine involve the regulation of autophagy and the induction of cancer cell apoptosis, and anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor effects; through these pathways, the compound can ameliorate organ damage. In addition, lycorine was found to have an important effect on organ damage in sepsis. CONCLUSION Lycorine is a promising natural organ protective agent. This review will provide a new theoretical basis for the treatment of organ protection, especially in sepsis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Luyang Du
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Xiyang Li
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Shaofei Zhang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China.
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
19
|
Bosáková V, De Zuani M, Sládková L, Garlíková Z, Jose SS, Zelante T, Hortová Kohoutková M, Frič J. Lung Organoids—The Ultimate Tool to Dissect Pulmonary Diseases? Front Cell Dev Biol 2022; 10:899368. [PMID: 35912110 PMCID: PMC9326165 DOI: 10.3389/fcell.2022.899368] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
Organoids are complex multicellular three-dimensional (3D) in vitro models that are designed to allow accurate studies of the molecular processes and pathologies of human organs. Organoids can be derived from a variety of cell types, such as human primary progenitor cells, pluripotent stem cells, or tumor-derived cells and can be co-cultured with immune or microbial cells to further mimic the tissue niche. Here, we focus on the development of 3D lung organoids and their use as disease models and drug screening tools. We introduce the various experimental approaches used to model complex human diseases and analyze their advantages and disadvantages. We also discuss validation of the organoids and their physiological relevance to the study of lung diseases. Furthermore, we summarize the current use of lung organoids as models of host-pathogen interactions and human lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, or SARS-CoV-2 infection. Moreover, we discuss the use of lung organoids derived from tumor cells as lung cancer models and their application in personalized cancer medicine research. Finally, we outline the future of research in the field of human induced pluripotent stem cell-derived organoids.
Collapse
Affiliation(s)
- Veronika Bosáková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Lucie Sládková
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Garlíková
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Shyam Sushama Jose
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Jan Frič
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Institute of Hematology and Blood Transfusion, Prague, Czechia
- *Correspondence: Jan Frič,
| |
Collapse
|
20
|
Tanshinone IIA improves sepsis-induced acute lung injury through the ROCK2/NF-κB axis. Toxicol Appl Pharmacol 2022; 446:116021. [DOI: 10.1016/j.taap.2022.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
|
21
|
Wu W, Zhong W, Xu Q, Yan J. Silencing of long non-coding RNA ZFAS1 alleviates LPS-induced acute lung injury by mediating the miR-96-5p/OXSR1 axis in sepsis. Am J Med Sci 2022; 364:66-75. [DOI: 10.1016/j.amjms.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/20/2021] [Accepted: 03/30/2022] [Indexed: 11/01/2022]
|
22
|
Wang L, Zhao M. Suppression of NOD-like receptor protein 3 inflammasome activation and macrophage M1 polarization by hederagenin contributes to attenuation of sepsis-induced acute lung injury in rats. Bioengineered 2022; 13:7262-7276. [PMID: 35266443 PMCID: PMC9208453 DOI: 10.1080/21655979.2022.2047406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute lung injury (ALI) is a major leading cause of death in sepsis patients. Hederagenin (HG), derived from Hedera helix Linné, has anti-inflammatory effects, while its role in sepsis-induced ALI has not been elucidated. In vivo, rats were subjected to cecal ligation and puncture to induce ALI and then treated with HG (12.5, 25, or 50 mg/kg) by gavage. Administration of HG raised survival rate, ameliorated lung injury, and decreased lung wet/dry ratio and inflammatory cell accumulation in bronchoalveloar lavage fluid (BALF) of ALI rats. HG inhibited macrophage polarization toward the M1 phenotype as evidenced by decreased CD86 expression in rat lung tissues. Moreover, HG decreased the secretion of TNF-α, IL-6 and monocyte chemoattractant protein-1 (MCP-1) in BALF and the levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung tissues. In vitro, phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 macrophages were stimulated with 100 ng/mL lipopolysaccharide. HG treatment inhibited M1 macrophage polarization and the production of M1-related pro-inflammatory mediators (IL-6, MCP-1, iNOS, and COX-2). Mechanistically, HG inhibited NLRP3 inflammasome activation and subsequent release of IL-18 and IL-1β, and suppressed NF-κB signaling pathway both in vivo and in vitro. Notably, HG treatment further emphasized the inhibitory effect of NF-κB inhibitor BAY11-7082 on NLRP3 inflammasome activation and macrophage M1 polarization. Taken together, HG exerts a protective effect against sepsis-induced ALI by reducing the inflammatory response and macrophage M1 polarization, which may involve NF-κB pathway-modulated NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Deng C, Zhao L, Yang Z, Shang JJ, Wang CY, Shen MZ, Jiang S, Li T, Di WC, Chen Y, Li H, Cheng YD, Yang Y. Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury. Acta Pharmacol Sin 2022; 43:520-528. [PMID: 34040166 PMCID: PMC8888646 DOI: 10.1038/s41401-021-00676-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/01/2021] [Indexed: 02/05/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that is present in almost all cells and regulates the activity of innate immune responses in both intracellular and extracellular settings. Current evidence suggests that HMGB1 plays a pivotal role in human pathological and pathophysiological processes such as the inflammatory response, immune reactions, cell migration, aging, and cell death. Sepsis is a systemic inflammatory response syndrome (SIRS) that occurs in hosts in response to microbial infections with a proven or suspected infectious etiology and is the leading cause of death in intensive care units worldwide, particularly in the aging population. Dysregulated systemic inflammation is a classic characteristic of sepsis, and suppression of HMGB1 may ameliorate inflammation and improve patient outcomes. Here, we focus on the latest breakthroughs regarding the roles of HMGB1 in sepsis and sepsis-related organ injury, the ways by which HMGB1 are released, and the signaling pathways and therapeutics associated with HMGB1. This review highlights recent advances related to HMGB1: the regulation of HMBG1 might be helpful for both basic research and drug development for the treatment of sepsis and sepsis-related organ injury.
Collapse
Affiliation(s)
- Chao Deng
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Department of Orthopaedics, Huaian Medical District of Jingling Hospital, Medical School of Nanjing University, Huaian, 213001, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, Xi'an, 710021, China
| | - Jia-Jia Shang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, Xi'an, 710021, China
| | - Chang-Yu Wang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
| | - Ming-Zhi Shen
- Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Sanya, 572013, China
| | - Shuai Jiang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, Xi'an, 710021, China
| | - Tian Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
| | - Wen-Cheng Di
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518100, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - He Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, Xi'an, 710021, China
| | - Ye-Dong Cheng
- Department of Orthopaedics, Huaian Medical District of Jingling Hospital, Medical School of Nanjing University, Huaian, 213001, China.
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Life of Sciences, Northwest University, Xi'an, 710021, China.
| |
Collapse
|
24
|
Zhu J, Zhong F, Chen F, Yang Y, Liao Y, Cao L, Zhou Y, Bai Q. circRNA_0001679/miR-338-3p/DUSP16 axis aggravates acute lung injury. Open Med (Wars) 2022; 17:403-413. [PMID: 35291714 PMCID: PMC8886607 DOI: 10.1515/med-2022-0417] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Acute lung injury (ALI) is a respiratory disorder characterized by acute respiratory failure. circRNA mus musculus (mmu)-circ_0001679 was reported overexpressed in septic mouse models of ALI. Here the function of circ_0001679 in sepsis-induced ALI was investigated. In vitro models and animal models with ALI were, respectively, established in mouse lung epithelial (MLE)-12 cells and C57BL/6 mice. Pulmonary specimens were harvested for examination of the pathological changes. The pulmonary permeability was examined by wet-dry weight (W/D) ratio and lung permeability index. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in the bronchoalveolar lavage fluid (BALF), the lung tissues, and the supernatant of MLE-12 cells were measured by enzyme linked immunosorbent assay . Apoptosis was determined by flow cytometry. Bioinformatics analysis and luciferase reporter assay were used to assess the interactions between genes. We found that circ_0001679 was overexpressed in lipopolysaccharide (LPS)-stimulated MLE-12 cells. circ_0001679 knockdown suppressed apoptosis and proinflammatory cytokine production induced by LPS. Moreover, circ_0001679 bound to mmu-miR-338-3p and miR-338-3p targeted dual-specificity phosphatases 16 (DUSP16). DUSP16 overexpression reversed the effect of circ_0001679 knockdown in LPS-stimulated MLE-12 cells. Furthermore, circ_0001679 knockdown attenuated lung pathological changes, reduced pulmonary microvascular permeability, and suppressed inflammation in ALI mice. Overall, circ_0001679 knockdown inhibits sepsis-induced ALI progression through the miR-338-3p/DUSP16 axis.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Respiratory, The Second People’s Hospital of Lianyungang, Lianyungang 222023, Jiangsu, China
| | - Fukuan Zhong
- Department of Respiratory, The Second People’s Hospital of Lianyungang, Lianyungang 222023, Jiangsu, China
| | - Futao Chen
- Department of Respiratory, The Second People’s Hospital of Lianyungang, Lianyungang 222023, Jiangsu, China
| | - Yang Yang
- Department of Respiratory, The Second People’s Hospital of Lianyungang, Lianyungang 222023, Jiangsu, China
| | - Yingying Liao
- Department of Respiratory, The Second People’s Hospital of Lianyungang, Lianyungang 222023, Jiangsu, China
| | - Lifeng Cao
- Department of Respiratory, The Second People’s Hospital of Lianyungang, Lianyungang 222023, Jiangsu, China
| | - Yong Zhou
- Department of Respiratory, The Second People’s Hospital of Lianyungang, Lianyungang 222023, Jiangsu, China
| | - Qiaohong Bai
- Department of Respiratory, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhongfu Road 1, Gulou District, Nanjing 210003, Jiangsu, China
| |
Collapse
|
25
|
He R, Liu B, Xiong R, Geng B, Meng H, Lin W, Hao B, Zhang L, Wang W, Jiang W, Li N, Geng Q. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury. Cell Death Discov 2022; 8:43. [PMID: 35110526 PMCID: PMC8810876 DOI: 10.1038/s41420-021-00807-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Itaconate, a metabolite produced during inflammatory macrophage activation, has been extensively described to be involved in immunoregulation, oxidative stress, and lipid peroxidation. As a form of iron and lipid hydroperoxide-dependent regulated cell death, ferroptosis plays a critical role in sepsis-induced acute lung injury (ALI). However, the relationship between itaconate and ferroptosis remains unclear. This study aims to explore the regulatory role of itaconate on ferroptosis in sepsis-induced ALI. In in vivo experiments, mice were injected with LPS (10 mg/kg) for 12 h to generate experimental sepsis models. Differential gene expression analysis indicated that genes associated with ferroptosis existed significant differences after itaconate pretreatment. 4-octyl itaconate (4-OI), a cell-permeable derivative of endogenous itaconate, can significantly alleviate lung injury, increase LPS-induced levels of glutathione peroxidase 4 (GPX4) and reduce prostaglandin-endoperoxide synthase 2 (PTGS2), malonaldehyde (MDA), and lipid ROS. In vitro experiments showed that both 4-OI and ferrostatin-1 inhibited LPS-induced lipid peroxidation and injury of THP-1 macrophage. Mechanistically, we identified that 4-OI inhibited the GPX4-dependent lipid peroxidation through increased accumulation and activation of Nrf2. The silence of Nrf2 abolished the inhibition of ferroptosis from 4-OI in THP-1 cells. Additionally, the protection of 4-OI for ALI was abolished in Nrf2-knockout mice. We concluded that ferroptosis was one of the critical mechanisms contributing to sepsis-induced ALI. Itaconate is promising as a therapeutic candidate against ALI through inhibiting ferroptosis.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Boxin Geng
- School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Heng Meng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weichen Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyang Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Li R, Hu X, Chen H, Zhao Y, Gao X, Yuan Y, Guo H, Huang H, Zou X, Qi H, Liu H, Shang Y. Role of Cholinergic Anti-Inflammatory Pathway in Protecting Sepsis-Induced Acute Lung Injury through Regulation of the Conventional Dendritic Cells. Mediators Inflamm 2022; 2022:1474891. [PMID: 35125962 PMCID: PMC8813293 DOI: 10.1155/2022/1474891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway connects the immune response system and the nervous system via the vagus nerve. The key regulatory receptor is the α7-subtype of the nicotinic acetylcholine receptor (α7nAChR). Cholinergic anti-inflammatory pathway has been proved to be effective in suppressing the inflammation responses in acute lung injury (ALI). Dendritic cells (DCs), the important antigen-presenting cells, also express the α7nAChR. Past studies have indicated that reducing the quantity of mature conventional DCs and inhibiting the maturation of pulmonary DCs may prove effective for the treatment of ALI. However, the effects of cholinergic anti-inflammatory pathway on maturation, function, and quantity of DCs and conventional DCs in ALI remain unclear. OBJECTIVE It was hypothesized that cholinergic anti-inflammatory pathway may inhibit the inflammatory response of ALI by regulating maturation, phenotype, and quantity of DCs and conventional DCs. METHODS GTS-21 (GTS-21 dihydrochloride), an α7nAchR agonist, was prophylactically administered in sepsis-induced ALI mouse model and LPS-primed bone marrow-derived dendritic cells. The effects of GTS-21 were observed with respect to maturation, phenotype, and quantity of DCs, conventional DCs, and conventional DCs2 (type 2 conventional DCs) and the release of DC-related proinflammatory cytokines in vivo and in vitro. RESULTS The results of the present study revealed that GTS-21 treatment decreased the maturation of DCs and the production of DC-related proinflammatory cytokines in vitro and in sepsis-induced ALI mouse model; it reduced the quantity of CD11c+MHCII+ conventional DCs and CD11c+CD11b+ conventional DCs2 in vivo experiment. CONCLUSIONS Cholinergic anti-inflammatory pathway contributes to the reduction in the inflammatory response in ALI by regulating maturation, phenotype, and quantity of DCs, conventional DCs, and conventional DCs2.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xuemei Hu
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province 442000, China
| | - Huibin Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province 442000, China
| | - Yue Zhao
- Department of Critical Care Medicine, Jin Yin-tan Hospital, Wuhan, Hubei 430048, China
| | - Xuehui Gao
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yin Yuan
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Huiling Guo
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Haiyan Huang
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hong Qi
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hong Liu
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
27
|
Zhong P, Zhou M, Zhang J, Peng J, Zeng G, Huang H. The role of Cold-Inducible RNA-binding protein in respiratory diseases. J Cell Mol Med 2021; 26:957-965. [PMID: 34953031 PMCID: PMC8831972 DOI: 10.1111/jcmm.17142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
Cold‐inducible RNA‐binding protein (CIRP) is a stress‐response protein that is expressed in various types of cells and acts as an RNA chaperone, modifying the stability of its targeted mRNA. Intracellular CIRP could also be released into extracellular space and once released, extracellular CIRP (eCIRP) acts as a damage‐associated molecular pattern (DAMP) to induce and amplify inflammation. Recent studies have found that eCIRP could promote acute lung injury (ALI) via activation of macrophages, neutrophils, pneumocytes and lung vascular endothelial cells in context of sepsis, haemorrhagic shock, intestinal ischemia/reperfusion injury and severe acute pancreatitis. In addition, CIRP is also highly expressed in the bronchial epithelial cells and its expression is upregulated in the bronchial epithelial cells of patients with chronic obstructive pulmonary diseases (COPD) and rat models with chronic bronchitis. CIRP is a key contributing factor in the cold‐induced exacerbation of COPD by promoting the expression of inflammatory genes and hypersecretion of airway mucus in the bronchial epithelial cells. Besides, CIRP is also involved in regulating pulmonary fibrosis, as eCIRP could directly activate and induce an inflammatory phenotype in pulmonary fibroblast. This review summarizes the findings of CIRP investigation in respiratory diseases and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peng Zhong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Miao Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingjing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Jianye Peng
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Hengyang, Hunan, China.,Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China
| | - Gaofeng Zeng
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Hengyang, Hunan, China.,Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
28
|
Hu M, Yang J, Xu Y. Isoorientin suppresses sepsis-induced acute lung injury in mice by activating an EPCR-dependent JAK2/STAT3 pathway. J Mol Histol 2021; 53:97-109. [PMID: 34787735 DOI: 10.1007/s10735-021-10039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Sepsis is a systemic inflammatory syndrome, and acute lung injury (ALI) is one of the most common fatal complications of sepsis. Isoorientin (ISO) exerts a momentous role in the regulation of inflammation. However, whether ISO has a protective effect on sepsis-induced ALI remains unknown. This research aimed to elucidate the function of ISO on sepsis-induced ALI and its mechanism. In this study, the sepsis-induced ALI was established in the male C57BL/6 J mice. Functionally, ISO reduced the total protein concentration in BALF, lung wet/dry ratio and the numbers of neutrophils and macrophages in BALF as well as ameliorated lung injury. Besides, ISO treatment decreased the cytokine expressions and oxidative stress, and repressed the adhesion and migration of inflammatory cells induced by CLP. Mechanistically, ISO reduced the shedding of EPCR in the endothelial cell membrane; ISO treatment activated the JAK2/STAT3 signaling pathway through EPCR and the JAK2/STAT3 pathway inhibitors repressed the anti-inflammatory and antioxidant effects of ISO. In general, ISO suppressed sepsis-induced ALI in mice by activating an EPCR-dependent JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Mu Hu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong, University School of Medicine, No. 999 Xiwang Road, Jiading District, Shanghai, 201801, China.
| | - Jielai Yang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong, University School of Medicine, No. 999 Xiwang Road, Jiading District, Shanghai, 201801, China
| | - Yang Xu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong, University School of Medicine, No. 999 Xiwang Road, Jiading District, Shanghai, 201801, China
| |
Collapse
|
29
|
Yang L, Zhao L, Zhang H, Chen P. Up-regulation of TUG1 can regulate miR-494/PDK4 axis to inhibit LPS-induced acute lung injury caused by sepsis. Am J Transl Res 2021; 13:12375-12385. [PMID: 34956459 PMCID: PMC8661222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Acute lung injury (ALI) caused by sepsis is the most common disease and the leading cause of death in intensive care units. Recent studies have revealed that long non-coding RNAs (LncRNAs) are abnormally expressed in sepsis. This study aimed to clarify the role and mechanism of Taurine up-regulated gene 1 (TUG1) in ALI caused by sepsis. METHODS Lipopolysaccharide (LPS) was used to simulate sepsis-induced ALI model. RT-PCR, Dual luciferase reporter (DLR) assay and RNA immunoprecipitation (RIP) were used to detect TUG1 and miR-494. The rat model with sepsis-induced ALI was established by intraperitoneal injection of LPS to verify the results of in vitro experiments. RESULTS The expressions of TUG1 and PDK4 were down-regulated while the expression of miR-494 was up-regulated in lung tissues and human small airway epithelial cells (HSAECs). TUG1 was indirectly mediated. Overexpression of TUG1 or inhibition of miR-494 could significantly improve the survival rate of HSAECs. Transfection of miR-494 mimics achieved the opposite effect. Enzyme-linked immunosorbent assay (ELISA) showed that the expression of arthritis-related factors in rats was increased after up-regulating TUG1. CONCLUSION TUG1 is lowly expressed in sepsis. Up-regulating TUG1 can alleviate the inflammatory response in ALI caused by LPS-induced sepsis, which may be a clinical treatment target.
Collapse
Affiliation(s)
- Lin Yang
- Department of Critical Care Medicine, The First People's Hospital of Shangqiu Shangqiu 476100, Henan Province, China
| | - Li Zhao
- Department of Critical Care Medicine, The First People's Hospital of Shangqiu Shangqiu 476100, Henan Province, China
| | - Hui Zhang
- Department of Critical Care Medicine, The First People's Hospital of Shangqiu Shangqiu 476100, Henan Province, China
| | - Peili Chen
- Department of Critical Care Medicine, The First People's Hospital of Shangqiu Shangqiu 476100, Henan Province, China
| |
Collapse
|
30
|
Xia Y, Cao Y, Sun Y, Hong X, Tang Y, Yu J, Hu H, Ma W, Qin K, Bao R. Calycosin Alleviates Sepsis-Induced Acute Lung Injury via the Inhibition of Mitochondrial ROS-Mediated Inflammasome Activation. Front Pharmacol 2021; 12:690549. [PMID: 34737695 PMCID: PMC8560711 DOI: 10.3389/fphar.2021.690549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
Sepsis-induced acute lung injury (ALI) culminates in multiple organ failure via uncontrolled inflammatory responses and requires effective treatment. Herein, we aimed to investigate the effect of calycosin (CA), a natural isoflavonoid, on sepsis-induced ALI. CA attenuated lipopolysaccharide (LPS) and cecal ligation and puncture (CLP)-induced structural damage and inflammatory cell infiltration in lung tissues by histopathological analysis. CA significantly reduced lung wet/dry ratio, inflammatory cell infiltration in bronchoalveolar lavage fluid, and myeloperoxidase activity. Moreover, CA improved the survival of septic mice. CA also substantially inhibited interleukin (IL)-1β and IL-18 levels and cleaved caspase 1 expression and activity in lung tissues. Additionally, CA markedly suppressed oxidative stress by increasing levels of superoxide dismutase and glutathione while decreasing malondialdehyde. In vitro assay showed that CA significantly inhibited LPS-induced IL-1β and IL-18 levels and cleaved caspase 1 expression and activity in BMDMs. Moreover, CA blocked the interaction among NLRP3, ASC, and caspase 1 in LPS-treated cells. CA markedly reduced mitochondrial ROS levels. Significantly, compared with CA treatment, the combination of CA and MitoTEMPO (mitochondria-targeted antioxidant) did not further reduce the IL-1β and IL-18 levels and cleaved caspase 1 expression and activity and decreased mitochondrial ROS levels. Collectively, the inhibition of mitochondrial ROS-mediated NLRP3 inflammasome activation contributes to the protective effects of CA, which may be considered a potential therapeutic agent for septic ALI.
Collapse
Affiliation(s)
- Yu Xia
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Yuanbao Cao
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Yao Sun
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Xiuying Hong
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Yingyan Tang
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Juan Yu
- Department of Clinical Laboratory, LiShui People Hospital, Nanjing, China
| | - Hongjuan Hu
- Department Science and Education, LiShui People Hospital, Nanjing, China
| | - Wenjia Ma
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Kailun Qin
- Department of Pediatrics, LiShui People Hospital, Nanjing, China
| | - Rui Bao
- Department of Pharmaceutics, School of Pharmacy of Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Allylpyrocatechol ameliorates sepsis-induced lung injury via SIRT1-mediated suppression of p65 and nucleocytoplasmic translocation of HMGB1. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Luo S, Ding X, Zhao S, Mou T, Li R, Cao X. Long non-coding RNA CHRF accelerates LPS-induced acute lung injury through microRNA-146a/Notch1 axis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1299. [PMID: 34532436 PMCID: PMC8422153 DOI: 10.21037/atm-21-3064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/12/2021] [Indexed: 11/06/2022]
Abstract
Background The present study sought to investigate the regulatory role of the long non-coding RNA (lncRNA) cardiac hypertrophy-related factor (CHRF) in a mouse model of acute lung injury (ALI) and in primary mouse pulmonary microvascular endothelial cells (MPVECs) treated with lipopolysaccharide (LPS). Methods C57BL/6 mice were given adenovirus (Ad) sh-CHRF or negative control (NC) before undergoing cecal ligation and perforation. MPVECs transfected with Adsh-CHRF or NC were treated with LPS. Double luciferase assay was used to detect the binding of miR-146a to CHRF or Notch1. Subsequently, MPVECs were co-transfected with miR-146a inhibitor and sh-CHRF for 24 hours, and then treated with LPS. Results High expression of CHRF was detected in septic mice. Cecal ligation and perforation induced ALI and apoptosis in mice, whereas, CHRF knockout could inhibit ALI. The protein expression levels of TNF-α, IL-1β and IL-6 in the lung and bronchoalveolar lavage fluid of the CLP group were up-regulated, whereas the expression of IL-4 and IL-10 was down-regulated. CHRF inhibition reduced the production of proinflammatory cytokines in septic mice. The inhibitory effect of CHRF gene knockdown on lung inflammation and apoptosis was confirmed in the septic cell model. Mechanistic investigation showed that CHRF up-regulated the level of Notch1 by sponging miR-146a. Additionally, the low expression of miR-146a reversed the inhibitory effect of CHRF gene knockout on LPS-induced inflammatory response and apoptosis. Together, in vivo and in vitro results demonstrated that CHRF enhanced sepsis-induced ALI by targeting miR-146a and up-regulating Notch1. Conclusions CHRF can induce inflammation and apoptosis caused by sepsis by miR-146a/Notch1 axis. Therefore, it may serve as a potential drug target for treating sepsis-induced ALI.
Collapse
Affiliation(s)
- Shu Luo
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuefeng Ding
- Department of Critical Care, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shiqiao Zhao
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianyi Mou
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ruixiu Li
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoping Cao
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
33
|
Li X, Shen H, Zhou T, Cao X, Chen Y, Liang Y, Lu T, He J, Dou Z, Liu C, Tang Y, Zhu Z. Does an increase in serum FGF21 level predict 28-day mortality of critical patients with sepsis and ARDS? Respir Res 2021; 22:182. [PMID: 34154595 PMCID: PMC8216835 DOI: 10.1186/s12931-021-01778-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sepsis may be accompanied by acute respiratory distress syndrome (ARDS) in patients admitted to intensive care units (ICUs). It is essential to identify prognostic biomarkers in patients with sepsis and ARDS. OBJECTIVE Determine whether changes in the level of serum fibroblast growth factor 21 (FGF21) can predict the 28-day mortality of ICU patients with sepsis and ARDS. METHODS Consecutive sepsis patients were divided into two groups (Sepsis + ARDS and Sepsis-only), and the Sepsis + ARDS group was further classified as survivors or non-survivors. Demographic data and comorbidities were recorded. The Sequential Organ Failure Assessment (SOFA) score and serum levels of cytokines and other biomarkers were recorded 3 times after admission. Multiple Cox proportional hazards regression was used to identify risk factors associated with 28-day mortality in the Sepsis + ARDS group. Multivariate receiver operating characteristic curve analysis was used to assess the different predictive value of FGF21 and SOFA. RESULTS The Sepsis + ARDS group had a greater baseline SOFA score and serum levels of cytokines and other biomarkers than the Sepsis-only group; the serum level of FGF21 was almost twofold greater in the Sepsis + ARDS group (P < 0.05). Non-survivors in the Sepsis + ARDS group had an almost fourfold greater level of FGF21 than survivors in this group (P < 0.05). The serum level of FGF21 persistently increased from the baseline to the peak of shock and death in the non-survivors, but persistently decreased in survivors (P < 0.05). Changes in the serum FGF21 level between different time points were independent risk factors for mortality. No statistical difference was observed between the AUC of FGF21 and SOFA at baseline. CONCLUSION: A large increase of serum FGF21 level from baseline is associated with 28-day mortality in ICU patients with sepsis and ARDS.
Collapse
Affiliation(s)
- Xing Li
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China
| | - Hua Shen
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China
| | - Tinghong Zhou
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China
| | - Xiaoyu Cao
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China
| | - Ying Chen
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China
| | - Yan Liang
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China
| | - Ting Lu
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China
| | - Jiafen He
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China
| | - Zhoulin Dou
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China
| | - Chuankai Liu
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China
| | - Yong Tang
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China.
| | - Zexiang Zhu
- Department of Critical Care, Changsha of Traditional Chinese Medicine Hospital, No. 22, Xingsha Road, Changsha, 410010, Hunan Province, People's Republic of China.
| |
Collapse
|
34
|
Sun J, Xin K, Leng C, Ge J. Down-regulation of SNHG16 alleviates the acute lung injury in sepsis rats through miR-128-3p/HMGB3 axis. BMC Pulm Med 2021; 21:191. [PMID: 34092219 PMCID: PMC8180123 DOI: 10.1186/s12890-021-01552-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
Background Long noncoding RNAs contribute to various inflammatory diseases, including sepsis. We explore the role of small nucleolar RNA host gene 16 (SNHG16) in sepsis-mediated acute lung injury (ALI) and inflammation. Methods A sepsis-induced ALI rat model was constructed by the cecal ligation and perforation method. The profiles of SNHG16, miR-128-3p, and high-mobility group box 3 (HMGB3) were monitored by quantitative reverse transcription PCR and Western blot. The pathologic changes of lung tissues were evaluated by Hematoxylin–Eosin staining, immunohistochemistry, and dry and wet method. Meanwhile, the pro-inflammatory factors and proteins were determined by ELISA and Western blot. In contrast, a sepsis model in BEAS-2B was induced with lipopolysaccharide (LPS) to verify the effects of SNHG16/miR-128-3p/HMGB3 on lung epithelial cell viability and apoptosis. Results As a result, SNHG16 and HMGB3 were up-regulated, while miR-128-3p was down-regulated in sepsis-induced ALI both in vivo and in vitro. Inhibiting SNHG16 reduced the apoptosis and inflammation in the sepsis-induced ALI model. Overexpressing SNHG16 promoted LPS-mediated lung epithelial apoptosis and inhibited cell viability and inflammation, while miR-128-3p had the opposite effects. Mechanistically, SNHG16 targeted miR-128-3p and attenuated its expression, while miR-128-3p targeted the 3′ untranslated region of HMGB3. Conclusions Overall, down-regulating SNHG16 alleviated the sepsis-mediated ALI by regulating miR-128-3p/HMGB3. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01552-0.
Collapse
Affiliation(s)
- Junli Sun
- General ICU, Luoyang Central Hospital Affiliated To Zhengzhou University, 288 Zhongzhou Middle Road, Luoyang, 471009, Henan, China.
| | - Keke Xin
- General ICU, Luoyang Central Hospital Affiliated To Zhengzhou University, 288 Zhongzhou Middle Road, Luoyang, 471009, Henan, China
| | - Chenghui Leng
- General ICU, Luoyang Central Hospital Affiliated To Zhengzhou University, 288 Zhongzhou Middle Road, Luoyang, 471009, Henan, China
| | - Jianlin Ge
- General ICU, Luoyang Central Hospital Affiliated To Zhengzhou University, 288 Zhongzhou Middle Road, Luoyang, 471009, Henan, China
| |
Collapse
|
35
|
Liu F, Peng W, Chen J, Xu Z, Jiang R, Shao Q, Zhao N, Qian K. Exosomes Derived From Alveolar Epithelial Cells Promote Alveolar Macrophage Activation Mediated by miR-92a-3p in Sepsis-Induced Acute Lung Injury. Front Cell Infect Microbiol 2021; 11:646546. [PMID: 34041043 PMCID: PMC8141563 DOI: 10.3389/fcimb.2021.646546] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/20/2021] [Indexed: 01/08/2023] Open
Abstract
Acute lung injury (ALI) induced by sepsis is characterized by disruption of the epithelial barrier and activation of alveolar macrophages (AMs), which leads to uncontrolled pulmonary inflammation. However, effective treatments for ALI are unavailable. The exact mechanism by which the initial mediator of alveolar epithelial cells (AECs) induces inflammation remains elusive. Here we investigated the roles of AEC-derived exosomes in AM activation and sepsis-induced ALI in vivo and in vitro. Cecal ligation and puncture (CLP) was utilized to establish septic lung injury model in rats. The effect of exosomal inhibition by intratracheal GW4869 administration on lung injury was investigated. To assess the effects of AEC-derived exosomes on ALI, we treated the rat alveolar epithelial cell line RLE-6TN with LPS to induce cell damage. Exosomes from conditioned medium of LPS-treated AECs (LPS-Exos) were isolated by ultracentrifugation. The miRNAs in LPS-Exos were screened by miRNA expression profile analysis. The effects of miR-92a-3p on the function of AMs were studied. We found that intratracheal GW4869 administration ameliorated lung injury following CLP-induced ALI. LPS-Exos were taken up by AMs and activated these cells. Consistently, administration of LPS-Exos in rats significantly aggravated pulmonary inflammation and alveolar permeability. Moreover, miR-92a-3p was enriched in LPS-Exos and could be delivered to AMs. Inhibition of miR-92a-3p in AECs diminished the proinflammatory effects of LPS-Exos in vivo and in vitro. Mechanistically, miR-92a-3p activates AMs along with pulmonary inflammation. This process results in activation of the NF-κB pathway and downregulation of PTEN expression, which was confirmed by a luciferase reporter assay. In conclusion, AEC-derived exosomes activate AMs and induce pulmonary inflammation mediated by miR-92a-3p in ALI. The present findings revealed a previously unidentified role of exosomal miR-92a-3p in mediating the crosstalk between injured AEC and AMs. miR-92a-3p in AEC exosomes might represent a novel diagnostic biomarker for ALI, which may lead to a new therapeutic approach.
Collapse
Affiliation(s)
- Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaquan Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zeyao Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiang Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ning Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kejian Qian
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Ghrelin Protects Lipopolysaccharide-Induced Acute Lung Injury Rats against Pulmonary Vascular Dysfunction by Inhibiting Inflammation. Can Respir J 2021. [DOI: 10.1155/2021/6643398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective. To determine the effect and mechanism of the anti-inflammatory agent ghrelin on pulmonary vascular dysfunction (PVD) in lipopolysaccharide- (LPS-) induced acute lung injury (ALI) rat models. Methods. Thirty-two adult male Sprague Dawley rats (n = 16/group) were randomly divided into ghrelin and saline groups, wherein ghrelin (10 nmol/kg) or saline was subcutaneously administered. After 30 min, eight rats from each group were randomly selected, and LPS (5 mg/kg) or saline was administered by intratracheal instillation to induce ALI. Four hours after establishing the ALI rat model, the mean pulmonary arterial pressure (mPAP), mean right ventricular systolic pressure (RVSP), levels of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF), BALF cell count, wet-to-dry (W/D) lung weight ratios, and myeloperoxidase (MPO) activity in lung tissue for all four groups (ghrelin, ghrelin + ALI, saline, and saline + ALI) were measured. Immunohistochemical staining to detect alpha-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) expression was performed to assess the intrapulmonary arterial wall thickness and the proliferation of smooth muscle cells, respectively. Results. The ghrelin-pretreated ALI rats showed lower mPAP, RVSP, PCNA expression, MPO activity, W/D lung weight ratio, TNF-α and IL-6 levels, and BALF cell count than the saline-pretreated ALI rats, but ghrelin had no effect on the intrapulmonary arterial wall thickness of ALI rats. Conclusion. Our results confirmed the association between inflammation and PVD in ALI and suggested that the suppression of inflammation by ghrelin pretreatment could protect LPS-induced ALI rats against PVD.
Collapse
|
37
|
The protective effect of PPARγ in sepsis-induced acute lung injury via inhibiting PTEN/β-catenin pathway. Biosci Rep 2021; 40:224379. [PMID: 32420586 PMCID: PMC7256673 DOI: 10.1042/bsr20192639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 01/10/2023] Open
Abstract
The present study aims to reveal the molecular mechanism of peroxisome proliferator-activated receptor γ (PPARγ) on sepsis-induced acute lung injury (ALI). To do that, the rat injury model was established using cecal ligation and perforation (CLP) method, followed by different treatments, and the rats were divided into Sham group, CLP group, CLP + rosiglitazone (PPARγ agonist) group, CLP + GW9662 (PPARγ inhibitor) group, CLP + bpV (phosphatase and tensin homolog (PTEN) inhibitor) group, CLP + GW9662 + bpV group. Compared with Sham group, the mRNA and protein expression levels of PPARγ were down-regulated, the inflammation levels were elevated, and the apoptosis was increased in CLP group. After treatment with rosiglitazone, the protein expression level of PPARγ was significantly up-regulated, the phosphorylation level of PTEN/β-catenin pathway was decreased, the PTEN/β-catenin pathway was inhibited, the lung injury, inflammation and apoptosis were reduced. The opposite effect was observed after treatment with GW9662. Besides, bpV inhibited PTEN/β-catenin pathway, and relieved the lung tissue injury. The overexpression of PPARγ reduced inflammatory response and inhibited apoptosis in sepsis-induced ALI. Furthermore, PPARγ relieved the sepsis-induced ALI by inhibiting the PTEN/β-catenin pathway.
Collapse
|
38
|
Salmi L, Gavelli F, Patrucco F, Bellan M, Sainaghi PP, Avanzi GC, Castello LM. Growth Arrest-Specific Gene 6 Administration Ameliorates Sepsis-Induced Organ Damage in Mice and Reduces ROS Formation In Vitro. Cells 2021; 10:cells10030602. [PMID: 33803290 PMCID: PMC7998241 DOI: 10.3390/cells10030602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a widespread life-threatening disease, with a high mortality rate due to inflammation-induced multiorgan failure (MOF). Thus, new effective modulators of the immune response are urgently needed to ameliorate the outcome of septic patients. As growth arrest-specific gene 6 (Gas6)/Tyro3, Axl, MerTK (TAM) receptors signaling has shown immunomodulatory activity in sepsis, here we sought to determine whether Gas6 protein injection could mitigate MOF in a cecal slurry mouse model of sepsis. Mice, divided into different groups according to treatment-i.e., placebo (B), ampicillin (BA), Gas6 alone (BG), and ampicillin plus Gas6 (BAG)-were assessed for vitality, histopathology and cytokine expression profile as well as inducible nitric oxide synthase (iNOS), ALT and LDH levels. BAG-treated mice displayed milder kidney and lung damage and reduced levels of cytokine expression and iNOS in the lungs compared to BA-treated mice. Notably, BAG-treated mice showed lower LDH levels compared to controls. Lastly, BAG-treated cells of dendritic, endothelial or monocytic origin displayed reduced ROS formation and increased cell viability, with a marked upregulation of mitochondrial activity. Altogether, our findings indicate that combined treatment with Gas6 and antibiotics ameliorates sepsis-induced organ damage and reduces systemic LDH levels in mice, suggesting that Gas6 intravenous injection may be a viable therapeutic option in sepsis.
Collapse
|
39
|
Jiang L, Ni J, Shen G, Xia Z, Zhang L, Xia S, Pan S, Qu H, Li X. Upregulation of endothelial cell-derived exosomal microRNA-125b-5p protects from sepsis-induced acute lung injury by inhibiting topoisomerase II alpha. Inflamm Res 2021; 70:205-216. [PMID: 33386874 PMCID: PMC7776283 DOI: 10.1007/s00011-020-01415-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Emerging evidence has revealed that exosomal microRNAs (miRNAs) are implicated in human diseases. However, role of exosomal miR-125b-5p in sepsis-induced acute lung injury (ALI) remains further explored. We focused on the effect of exosomal miR-125b-5p on ALI progression via targeting topoisomerase II alpha (TOP2A). METHODS The ALI mouse models were established by cecal ligation and perforation, which were then treated with miR-125b-5p agomir or overexpressed TOP2A. Next, the pathological structure of ALI mouse lung tissues were observed, miR-125b-5p, TOP2A and vascular endothelial growth factor (VEGF) expression was determined, and the lung water content, inflammatory response, protein content in bronchoalveolar lavage fluid (BALF) and cell apoptosis in ALI mouse lung tissues were assessed. Exosomes were extracted from endothelial cells (ECs) and identified, which were then injected into the modeled mice to observe their roles in ALI. The targeting relationship between miR-125b-5p and TOP2A was confirmed. RESULTS MiR-125b-5p was downregulated while TOP2A was upregulated in ALI mice. MiR-125b-5p elevation or ECs-derived exosomes promoted VEGF expression, improved pathological changes and restrained lung water content, inflammatory response, protein content in BALF and cell apoptosis in lung tissues ALI mice. TOP2A overexpression reversed the repressive role of miR-125b-5p upregulation in ALI, while downregulated miR-125b-5p abrogated the effect of ECs-derived exosomes on ALI. TOP2A was confirmed as a direct target gene of miR-125b-5p. CONCLUSION Our study indicates that ECs-derived exosomes overexpressed miR-125b-5p to protect from sepsis-induced ALI by inhibiting TOP2A, which may contribute to ALI therapeutic strategies.
Collapse
Affiliation(s)
- Lijing Jiang
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39, Xinling Road, Minhang District, Shanghai, 201199, China
| | - Jindi Ni
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39, Xinling Road, Minhang District, Shanghai, 201199, China
| | - Guofeng Shen
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39, Xinling Road, Minhang District, Shanghai, 201199, China
| | - Zhuye Xia
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39, Xinling Road, Minhang District, Shanghai, 201199, China
| | - Lu Zhang
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39, Xinling Road, Minhang District, Shanghai, 201199, China
| | - Shihong Xia
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39, Xinling Road, Minhang District, Shanghai, 201199, China
| | - Shengfu Pan
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39, Xinling Road, Minhang District, Shanghai, 201199, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiang Li
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, No. 39, Xinling Road, Minhang District, Shanghai, 201199, China.
| |
Collapse
|
40
|
Sepsis plasma-derived exosomal miR-1-3p induces endothelial cell dysfunction by targeting SERP1. Clin Sci (Lond) 2021; 135:347-365. [PMID: 33416075 PMCID: PMC7843403 DOI: 10.1042/cs20200573] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is the leading cause of death in sepsis patients. Exosomes participate in the occurrence and development of ALI by regulating endothelial cell inflammatory response, oxidative stress and apoptosis, causing serious pulmonary vascular leakage and interstitial edema. The current study investigated the effect of exosomal miRNAs on endothelial cells during sepsis. We found a significant increase in miR-1-3p expression in cecal ligation and puncture (CLP) rats exosomes sequencing and sepsis patients' exosomes, and lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs) in vitro. However, the specific biological function of miR-1-3p in ALI remains unknown. Therefore, mimics or inhibitors of miR-1-3p were transfected to modulate its expression in HUVECs. Cell proliferation, apoptosis, contraction, permeability, and membrane injury were examined via cell counting kit-8 (CCK-8), flow cytometry, phalloidin staining, Transwell assay, lactate dehydrogenase (LDH) activity, and Western blotting. The miR-1-3p target gene was predicted with miRNA-related databases and validated by luciferase reporter. Target gene expression was blocked by siRNA to explore the underlying mechanisms. The results illustrated increased miR-1-3p and decreased stress-associated endoplasmic reticulum protein 1 (SERP1) expression both in vivo and in vitro. SERP1 was a direct target gene of miR-1-3p. Up-regulated miR-1-3p inhibits cell proliferation, promotes apoptosis and cytoskeleton contraction, increases monolayer endothelial cell permeability and membrane injury by targeting SERP1, which leads to dysfunction of endothelial cells and weakens vascular barrier function involved in the development of ALI. MiR-1-3p and SERP1 may be promising therapeutic candidates for sepsis-induced lung injury.
Collapse
|
41
|
Zou Z, Wang Q, Zhou M, Li W, Zheng Y, Li F, Zheng S, He Z. Protective effects of P2X7R antagonist in sepsis-induced acute lung injury in mice via regulation of circ_0001679 and circ_0001212 and downstream Pln, Cdh2, and Nprl3 expression. J Gene Med 2020; 22:e3261. [PMID: 32783373 DOI: 10.1002/jgm.3261] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Sepsis induces pulmonary P2X7 receptor (P2X7 R) expression and P2X7 R-knockout reduced lung inflammation in mice. The present study investigated the expression of circular RNA (circRNA) and mRNA in sepsis-induced acute lung injury (ALI) treated with a P2X7 R antagonist. METHODS Sepsis was induced by tracheal administration of lipopolysaccharide (LPS), and the mice were then divided into two groups: without [sepsis + dimethyl sulfoxide (DMSO)] or with P2X7 R antagonist treatment (sepsis + P2X7 A). Sham mice were administrated sterile normal saline. Serum levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α, pathological changes, cell apoptosis and P2X7 R expression in lung were assessed, followed by RNA sequencing (RNA-seq) and bioinformatics analyses. A quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to validate circRNAs and mRNAs. RESULTS Compared to the sham group, LPS-induced sepsis produced obvious pathological changes in lung tissue, as well as increased apoptotic lung cells, serum TNF-α and IL-1β levels, and P2X7 R expression; P2X7 R antagonism significantly ameliorated these changes. RNA-seq identified many dysregulated circRNAs and mRNAs during sepsis, whereas this changed with P2X7 R antagonism. RT-qPCR confirmed that Mus musculus (mmu)_circ_0001679, mmu_circ_0001212, phospholamban (Pln), cadherin-2 (Cdh2) and nitrogen permease regulator 3-like (Nprl3) expression were significantly increased in the sepsis + DMSO group compared to that in the sham group but were decreased in the sepsis + P2X7 A group compared to that in the sepsis + DMSO group. The circRNA-microRNA-mRNA coexpression network indicated that mmu_circ_0001679 may regulate Nprl3 and that mmu_circ_0001212 may similarly regulate Pln, Cdh2 and Nprl3 as a competing endogenous RNA. CONCLUSIONS P2X7 R antagonism attenuates sepsis-induced ALI by inhibiting dysregulated expression of circRNA (circ_0001679, circ_0001212) and mRNA (Pln, Cdh2 and Nprl3).
Collapse
Affiliation(s)
- Zijun Zou
- Department of ICU, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qin Wang
- Department of pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Minggen Zhou
- Department of ICU, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Weichao Li
- Department of ICU, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yikai Zheng
- Department of ICU, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Fanyi Li
- Department of ICU, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shengcai Zheng
- Department of ICU, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhijie He
- Department of ICU, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
42
|
da Silva JGF, Dos Santos SS, de Almeida P, Marcos RL, Lino-Dos-Santos-Franco A. Effect of systemic photobiomodulation in the course of acute lung injury in rats. Lasers Med Sci 2020; 36:965-973. [PMID: 32812131 DOI: 10.1007/s10103-020-03119-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Acute lung injury (ALI) is a severe, multifactorial lung pathology characterized by diffuse alveolar injury, inflammatory cell infiltration, alveolar epithelial barrier rupture, alveolar edema, and impaired pulmonary gas exchange, with a high rate of mortality; and sepsis is its most common cause. The mechanisms underlying ALI due to systemic inflammation were investigated experimentally by systemic lipopolysaccharide (LPS) administration. Photobiomodulation (PBM) has been showing good results for several inflammatory diseases, but there are not enough studies to support the real benefits of its use, especially systemically. Considering that ALI is a pathology with high morbidity and mortality, we studied the effect of systemic PBM with red light-emitting diode (LED) (wavelength 660 nm; potency 100 mW; energy density 5 J/cm; total energy 15 J; time 150 s) in the management of inflammatory parameters of this disease. For this, 54 male Wistar rats were submitted to ALI by LPS injection (IP) and treated or not with PBM systemically in the tail 2 and 6 h after LPS injection. Data were analyzed by one-way ANOVA followed by Student's Newman-Keuls. Our results point to the beneficial effects of systemic PBM on the LPS-induced ALI, as it reduced the number of neutrophils recruited into the bronchoalveolar lavage, myeloperoxidase activity, and also reduced interleukins (IL) 1β, IL-6, and IL-17 in the lung. Even considering the promising results, we highlight the importance of further studies to understand the mechanisms involved, and especially the dosimetry, so that in near future, we can apply this knowledge in clinical practice.
Collapse
Affiliation(s)
- João Gabriel Fernandes da Silva
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil
| | - Sabrina Soares Dos Santos
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil
| | - Patricia de Almeida
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil
| | - Rodrigo Labat Marcos
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil
| | - Adriana Lino-Dos-Santos-Franco
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil.
| |
Collapse
|
43
|
Chen H, Hu X, Li R, Liu B, Zheng X, Fang Z, Chen L, Chen W, Min L, Hu S. LncRNA THRIL aggravates sepsis-induced acute lung injury by regulating miR-424/ROCK2 axis. Mol Immunol 2020; 126:111-119. [PMID: 32818819 DOI: 10.1016/j.molimm.2020.07.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023]
Abstract
Here, we aimed to investigate the role of long noncoding RNA (lncRNA) THRIL in septic-induced acute lung injury. C57BL/6 mice were injected with Adenoviruses (Ad)-shTHRIL or negative control (NC) before caecal ligation and puncture (CLP) operation. MPVECs were transfected with Ad-shTHRIL or NC, followed by lipopolysaccharide (LPS) treatment. MiR-424 and Rho-associated kinase 2 (ROCK2) were predicted and verified as direct targets of THRIL and miR-424, respectively, by using dual-luciferase reporter assay. ROCK2 overexpression vector and shTHRIL were co-transfected into mouse pulmonary microvascular endothelial cells for 24 h before LPS treatment. Our results showed that THRIL was highly expressed in the lung of sepsis mice. CLP triggered severe lung injury and apoptosis in mice, which was abolished by THRIL knockdown. Moreover, CLP treatment visibly increased protein concentration, the number of total cell of neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF). Besides, elevated protein levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6 were observed in both lung and BALF. However, inhibition of THRIL reduced the number of inflammatory cells and the production of pro-inflammatory cytokines in sepsis mouse model. The effect of THRIL on inflammatory response and apoptosis in the lung was confirmed in sepsis cell model. Moreover, mechanistic studies have shown that THRIL up-regulated ROCK2 level through sponging miR-424. Furthermore, ROCK2 overexpression reversed the inhibitory effects of THRIL knockdown on LPS-induced inflammatory response and apoptosis. Overall, in vivo and in vitro results suggested that THRIL accelerates sepsis-induced lung injury by sponging miR-424 and further restoring ROCK2.
Collapse
Affiliation(s)
- Huibin Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Xuemei Hu
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Ruiting Li
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430022, China
| | - Boyi Liu
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Xiang Zheng
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Zhicheng Fang
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Li Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Wei Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Li Min
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China
| | - Shengli Hu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, 442000, China.
| |
Collapse
|
44
|
Abstract
Extracellular cold-inducible RNA-binding protein (CIRP) exaggerates inflammation in sepsis. Neutrophil reverse transendothelial migration (rTEM) allows neutrophils to migrate from tissues into the circulation. The phenotype of neutrophils after reverse migration is CD54CXCR1. We hypothesize that CIRP induces neutrophil rTEM in sepsis. Sepsis was induced in male C57BL/6 mice by cecal ligation and puncture (CLP), and at 5, 10, or 20 h after CLP the frequencies of reversely migrated (RM) neutrophils were assessed in the blood by flow cytometry. As 20 h of CLP showed highest increase in the frequency of RM neutrophils, we further assessed RM neutrophils in the blood of WT and CIRP mice at this time point. The effect of CIRP on neutrophil rTEM was determined by injecting mice with recombinant mouse CIRP (rmCIRP) intratracheally (i.t.) and assessed the frequencies of RM neutrophils. The expression of neutrophil elastase (NE) and junctional adhesion molecule-C (JAM-C) in the lungs was measured by Western blot. The mean frequency of RM neutrophils in sham mice was 0.4%, whereas the frequencies were significantly increased to 1%, 3%, and 7% at 5, 10, and 20 h of CLP, respectively. The mean frequency of RM neutrophils in the blood of CIRP mice was significantly lower than that of WT mice at 20 h of CLP. The RM neutrophils in the blood was significantly increased after administration of rmCIRP i.t. into mice in a time- and dose-dependent manners. NE expression was upregulated, whereas JAM-C expression was downregulated in the lungs after CLP or rmCIRP administration. For the first time, we have showed that CIRP induces neutrophil rTEM in sepsis by increasing NE and decreasing JAM-C.
Collapse
|
45
|
Karimi A, Mahmoodpoor A, Kooshki F, Niazkar HR, Shoorei H, Tarighat-Esfanjani A. Effects of nanocurcumin on inflammatory factors and clinical outcomes in critically ill patients with sepsis: A pilot randomized clinical trial. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Qiu N, Xu X, He Y. LncRNA TUG1 alleviates sepsis-induced acute lung injury by targeting miR-34b-5p/GAB1. BMC Pulm Med 2020; 20:49. [PMID: 32087725 PMCID: PMC7036216 DOI: 10.1186/s12890-020-1084-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Sepsis-induced acute lung injury (ALI) is a clinical syndrome characterized by the injury of alveolar epithelium and pulmonary endothelial cells. This study aimed to investigate the regulation of long noncoding RNA (lncRNA) taurine up-regulated gene 1 (TUG1) in a murine ALI model and in primary murine pulmonary microvascular endothelial cells (PMVECs) stimulated with lipopolysaccharide (LPS). Methods Adult C57BL/6 mice were intravenously injected with or without TUG1-expressiong adenoviral vector or control vector 1 week before the establishment of ALI model. PMVECs were transfected with TUG1-expressiong or control vectors followed by LPS stimulation. MiR-34b-5p was confirmed as a target of TUG1 using dual-luciferase reporter assay. GRB2 associated binding protein 1 (GAB1) was confirmed as a downstream target of miR-34b-5p using the same method. In the rescue experiment, PMVECs were co-transfected with TUG1-expressing vector and miR-34b-5p mimics (or control mimics) 24 h before LPS treatment. Results ALI mice showed reduced levels of TUG1, pulmonary injury, and induced apoptosis and inflammation compared to the control group. The overexpression of TUG1 in ALI mice ameliorated sepsis-induced pulmonary injury, apoptosis and inflammation. TUG1 also showed protective effect in LPS-treated PMVECs. The expression of MiR-34b-5p was negatively correlated with the level of TUG1. TUG1-supressed apoptosis and inflammation in LPS-stimulated PMVECs were restored by miR-34b-5p overexpression. GAB1 was inversely regulated by miR-34b-5p but was positively correlated with TUG1 expression. Conclusion TUG1 alleviated sepsis-induced inflammation and apoptosis via targeting miR-34b-5p and GAB1. These findings suggested that TUG1 might be served as a therapeutic potential for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Nan Qiu
- Department of Emergency Internal Medicine, Guizhou Provincial People's Hospital, Guiyang City, No. 1 Baoshan South Road, Guiyang City, Guizhou Province, China.
| | - Xinmei Xu
- Department of Emergency Internal Medicine, Guizhou Provincial People's Hospital, Guiyang City, No. 1 Baoshan South Road, Guiyang City, Guizhou Province, China
| | - Yingying He
- Department of Emergency Internal Medicine, Guizhou Provincial People's Hospital, Guiyang City, No. 1 Baoshan South Road, Guiyang City, Guizhou Province, China
| |
Collapse
|
47
|
Narciclasine improves outcome in sepsis among neonatal rats via inhibition of calprotectin and alleviating inflammatory responses. Sci Rep 2020; 10:2947. [PMID: 32076015 PMCID: PMC7031385 DOI: 10.1038/s41598-020-59716-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
Sepsis is associated with exacerbated inflammatory response which subsequently results in multiple organ dysfunction. Sepsis accounts for high mortality and morbidity among newborns worldwide. Narciclasine is a plant alkaloid which has shown to possess anti-inflammatory properties. In this study we investigated the effect and mechanism of action of narciclasine in neonatal sepsis rat models. The excessive release of S100A8/A9 or calprotectin in neonatal sepsis could be detrimental as it could exacerbate the inflammatory responses. We found that narciclasine significantly reduced the plasma levels of S100A8/A9 and also suppressed its expression in the liver and lung. The systemic and local bacterial load was also reduced in the narciclasine treated rats. The systemic and local production of pro-inflammatory cytokines in plasma and organs (liver and lungs) was significantly reduced in the narciclasine treated rats. The histopathological studies showed that narciclasine prevents the organ damage associated with sepsis and improved the survival of neonatal rats. Sepsis increased the phosphorylated NF-κβ p65 protein expression in the liver. Narciclasine suppressed the phosphorylation of NF-κβ p65 and the degradation of NF-κβ inhibitory protein alpha. It could also suppress the expression of adaptor proteins of the toll like receptor signaling pathway viz., myeloid differentiation factor 88 (MyD88), Interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor associated factor 6 (TRAF6). These results suggest that narciclasine protects against sepsis in neonatal rats through the inhibition of calprotectin, pro-inflammatory cytokines and suppression of NF-κβ signaling pathway.
Collapse
|
48
|
Reilly JP, Calfee CS, Christie JD. Acute Respiratory Distress Syndrome Phenotypes. Semin Respir Crit Care Med 2019; 40:19-30. [PMID: 31060085 DOI: 10.1055/s-0039-1684049] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The acute respiratory distress syndrome (ARDS) phenotype was first described over 50 years ago and since that time significant progress has been made in understanding the biologic processes underlying the syndrome. Despite this improved understanding, no pharmacologic therapies aimed at the underlying biology have been proven effective in ARDS. Increasingly, ARDS has been recognized as a heterogeneous syndrome characterized by subphenotypes with distinct clinical, radiographic, and biologic differences, distinct outcomes, and potentially distinct responses to therapy. The Berlin Definition of ARDS specifies three severity classifications: mild, moderate, and severe based on the PaO2 to FiO2 ratio. Two randomized controlled trials have demonstrated a potential benefit to prone positioning and neuromuscular blockade in moderate to severe phenotypes of ARDS only. Precipitating risk factor, direct versus indirect lung injury, and timing of ARDS onset can determine other clinical phenotypes of ARDS after admission. Radiographic phenotypes of ARDS have been described based on a diffuse versus focal pattern of infiltrates on chest imaging. Finally and most promisingly, biologic subphenotypes or endotypes have increasingly been identified using plasma biomarkers, genetics, and unbiased approaches such as latent class analysis. The potential of precision medicine lies in identifying novel therapeutics aimed at ARDS biology and the subpopulation within ARDS most likely to respond. In this review, we discuss the challenges and approaches to subphenotype ARDS into clinical, radiologic, severity, and biologic phenotypes with an eye toward the future of precision medicine in critical care.
Collapse
Affiliation(s)
- John P Reilly
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carolyn S Calfee
- Department of Medicine and Anesthesia, University of California, San Francisco, San Francisco, California
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Xia W, Zhang H, Pan Z, Li G, Zhou Q, Hu D, Liu Y. Inhibition of MRP4 alleviates sepsis-induced acute lung injury in rats. Int Immunopharmacol 2019; 72:211-217. [PMID: 30995593 DOI: 10.1016/j.intimp.2019.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022]
Abstract
This study was undertaken to examine the regulatory role of multidrug resistance-associated protein 4 (MRP4) in an experimental model of sepsis-induced acute lung injury in rats. Sepsis was induced by cecal ligation and puncture in anesthetized rats. Animals were then randomly assigned to receive intravenous injection of vehicle or MRP4 inhibitor (MK571, 20 mg/kg). The pathological changes were observed by hematoxylin and eosin staining. Lung water content, lung vascular permeability and inflammatory cell count in bronchoalveolar lavage fluid (BALF) were quantified. Serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were measured. In addition, lung tissue cyclic adenosine monophosphate (cAMP) levels were examined by enzyme-linked immunosorbent assay. Furthermore, the effects of MRP4 knockdown on lipopolysaccharide (LPS)-induced endothelial permeability and the cytoskeleton of rat pulmonary microvascular endothelial cells (PMVECs) were detected. The protein expression levels of MRP4, Rac1, VE-cadherin, β-catenin and ZO-1 were measured by Western blot analysis. MK571 significantly reduced lung tissue damage, lung water content and lung vascular permeability. Lung tissue cAMP levels were attenuated in MK571-treated animals compared with vehicle controls. MK571 also decreased sepsis-induced inflammatory cell accumulation in BALF. In addition, the MK571 group had significantly lower serum TNF-α and IL-6 levels compared with vehicle controls. Consistently, knockdown of MRP4 protected against LPS-induced increase in the endothelial permeability and the destruction of cytoskeleton in vitro. Furthermore, silencing MRP4 gene significantly reduced MRP4 protein expression and restored the protein expression of Rac1, VE-cadherin, β-catenin and ZO-1 in rat PMVECs in response to LPS stimulation. These data suggest that inhibition of MRP4 significantly alleviates sepsis-induced acute lung injury in rats.
Collapse
Affiliation(s)
- Wenfang Xia
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huanming Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhou Pan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingshan Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
50
|
Aziz M, Ode Y, Zhou M, Ochani M, Holodick NE, Rothstein TL, Wang P. B-1a cells protect mice from sepsis-induced acute lung injury. Mol Med 2018; 24:26. [PMID: 30134811 PMCID: PMC6016888 DOI: 10.1186/s10020-018-0029-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sepsis morbidity and mortality are aggravated by acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Mouse B-1a cells are a phenotypically and functionally unique sub-population of B cells, providing immediate protection against infection by releasing natural antibodies and immunomodulatory molecules. We hypothesize that B-1a cells ameliorate sepsis-induced ALI. METHODS Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). PBS or B-1a cells were adoptively transferred into the septic mice intraperitoneally. After 20 h of CLP, lungs were harvested and assessed by PCR and ELISA for pro-inflammatory cytokines (IL-6, IL-1β) and chemokine (MIP-2) expression, by histology for injury, by TUNEL and cleaved caspase-3 for apoptosis, and by myeloperoxidase (MPO) assay for neutrophil infiltration. RESULTS We found that septic mice adoptively transferred with B-1a cells significantly decreased the mRNA and protein levels of IL-6, IL-1β and MIP-2 in the lungs compared to PBS-treated mice. Mice treated with B-1a cells showed dramatic improvement in lung injury compared to PBS-treated mice after sepsis. We found apoptosis in the lungs was significantly inhibited in B-1a cell injected mice compared to PBS-treated mice after sepsis. B-1a cell treatment significantly down-regulated MPO levels in the lungs compared to PBS-treated mice in sepsis. The protective outcomes of B-1a cells in ALI was further confirmed by using B-1a cell deficient CD19-/- mice, which showed significant increase in the lung injury scores following sepsis as compared to WT mice. CONCLUSIONS Our results demonstrate a novel therapeutic potential of B-1a cells to treat sepsis-induced ALI.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Yasumasa Ode
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Mian Zhou
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Mahendar Ochani
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Nichol E. Holodick
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA
- Present Address: Western Michigan University Homer Stryker M.D. School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008 USA
| | - Thomas L. Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, New York, 11030 USA
- Present Address: Western Michigan University Homer Stryker M.D. School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008 USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030 USA
- Department of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, 11030 USA
| |
Collapse
|