1
|
Du Q, Guo Y, Zhang J, Lu F, Peng C, Zhou C. Predicting Promoters in Multiple Prokaryotes with Prompt. Interdiscip Sci 2024; 16:814-828. [PMID: 39110340 DOI: 10.1007/s12539-024-00637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 10/27/2024]
Abstract
Promoters are important cis-regulatory elements for the regulation of gene expression, and their accurate predictions are crucial for elucidating the biological functions and potential mechanisms of genes. Many previous prokaryotic promoter prediction methods are encouraging in terms of the prediction performance, but most of them focus on the recognition of promoters in only one or a few bacterial species. Moreover, due to ignoring the promoter sequence motifs, the interpretability of predictions with existing methods is limited. In this work, we present a generalized method Prompt (Promoters in multiple prokaryotes) to predict promoters in 16 prokaryotes and improve the interpretability of prediction results. Prompt integrates three methods including RSK (Regression based on Selected k-mer), CL (Contrastive Learning) and MLP (Multilayer Perception), and employs a voting strategy to divide the datasets into high-confidence and low-confidence categories. Results on the promoter prediction tasks in 16 prokaryotes show that the accuracy (Accuracy, Matthews correlation coefficient) of Prompt is greater than 80% in highly credible datasets of 16 prokaryotes, and is greater than 90% in 12 prokaryotes, and Prompt performs the best compared with other existing methods. Moreover, by identifying promoter sequence motifs, Prompt can improve the interpretability of the predictions. Prompt is freely available at https://github.com/duqimeng/PromptPrompt , and will contribute to the research of promoters in prokaryote.
Collapse
Affiliation(s)
- Qimeng Du
- School of Engineering, Air-Space-Ground Integrated Intelligence and Big Data Application Engineering Research Center of Yunnan Provincial Department of Education, Dali University, Dali, 671003, China
| | - Yixue Guo
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Junpeng Zhang
- School of Engineering, Air-Space-Ground Integrated Intelligence and Big Data Application Engineering Research Center of Yunnan Provincial Department of Education, Dali University, Dali, 671003, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Chong Peng
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Chichun Zhou
- School of Engineering, Air-Space-Ground Integrated Intelligence and Big Data Application Engineering Research Center of Yunnan Provincial Department of Education, Dali University, Dali, 671003, China.
| |
Collapse
|
2
|
Luo Y, Imamitsu H, Tsurumaki T, Tanaka K. Structure of the SigF1-dependent pilA1 gene promoter and characterization of the light-activated response in the cyanobacterium Synechococcus elongatus PCC 7942. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38763756 DOI: 10.2323/jgam.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In cyanobacteria that perform oxygenic photosynthesis, alternative sigma factors can play critical roles in environmental acclimation at the transcriptional initiation step. Here, we found in Synechococcus elongatus PCC 7942 that transcription of the pilA1 gene, encoding the type IV pilin, is dependent on one of the group 3 sigma factors, SigF1. We analyzed the promoter sequence determinants and proposed herein that the -10 and -35 boxes upstream of the transcriptional start site are critical for transcription. Interestingly, while the pilA1 promoter is activated by illumination, RNA polymerase containing SigF1 is already located on the promoter region under dark conditions, prior to illumination. This strongly suggests that promoter activation by light follows the recruitment of RNA polymerase during transcriptional initiation.
Collapse
Affiliation(s)
- Ying Luo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Hitomi Imamitsu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Tatsuhiro Tsurumaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
- School of Life Science and Technology, Tokyo Institute of Technology
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
| |
Collapse
|
3
|
Hall AN, Hall BW, Kinney KJ, Olsen GG, Banta AB, Noguera DR, Donohue TJ, Peters JM. Tools for genetic engineering and gene expression control in Novosphingobium aromaticivorans and Rhodobacter sphaeroides. Appl Environ Microbiol 2024; 90:e0034824. [PMID: 39324814 PMCID: PMC11497788 DOI: 10.1128/aem.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts that have the potential to contribute to the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis show promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify isopropyl β-D-1-thiogalactopyranoside-inducible promoters with regulated activity in both organisms (up to ~15-fold induction in N. aromaticivorans and ~5-fold induction in R. sphaeroides). Combining Tn7 integration with promoters from our library, we establish CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference systems for N. aromaticivorans and R. sphaeroides (up to ~10-fold knockdown in N. aromaticivorans and R. sphaeroides) that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these species and other Alphaproteobacteria.IMPORTANCEIt is important to increase our understanding of the microbial world to improve health, agriculture, the environment, and biotechnology. For example, building a sustainable bioeconomy depends on the efficient conversion of plant material to valuable biofuels and bioproducts by microbes. One limitation in this conversion process is that microbes with otherwise promising properties for conversion are challenging to genetically engineer. Here we report genetic tools for Novosphingobium aromaticivorans and Rhodobacter sphaeroides that add to the burgeoning set of tools available for genome engineering and gene expression in Alphaproteobacteria. Our approaches allow straightforward insertion of engineered pathways into the N. aromaticivorans or R. sphaeroides genome and control of gene expression by inducing genes with synthetic promoters or repressing genes using CRISPR interference. These tools can be used in future work to gain additional insight into these and other Alphaproteobacteria and to aid in optimizing yield of biofuels and bioproducts.
Collapse
Affiliation(s)
- Ashley N. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin W. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kyle J. Kinney
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabby G. Olsen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Pals MJ, Lindberg A, Velema WA. Chemical strategies for antisense antibiotics. Chem Soc Rev 2024. [PMID: 39436264 PMCID: PMC11495246 DOI: 10.1039/d4cs00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 10/23/2024]
Abstract
Antibacterial resistance is a severe threat to modern medicine and human health. To stay ahead of constantly-evolving bacteria we need to expand our arsenal of effective antibiotics. As such, antisense therapy is an attractive approach. The programmability allows to in principle target any RNA sequence within bacteria, enabling tremendous selectivity. In this Tutorial Review we provide guidelines for devising effective antibacterial antisense agents and offer a concise perspective for future research. We will review the chemical architectures of antibacterial antisense agents with a special focus on the delivery and target selection for successful antisense design. This Tutorial Review will strive to serve as an essential guide for antibacterial antisense technology development.
Collapse
Affiliation(s)
- Mathijs J Pals
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Alexander Lindberg
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
5
|
de Martín Garrido N, Chen CS, Ramlaul K, Aylett CHS, Yakunina M. Structure of the Bacteriophage PhiKZ Non-virion RNA Polymerase Transcribing from its Promoter p119L. J Mol Biol 2024; 436:168713. [PMID: 39029888 DOI: 10.1016/j.jmb.2024.168713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Bacteriophage ΦKZ (PhiKZ) is the founding member of a family of giant bacterial viruses. It has potential as a therapeutic as its host, Pseudomonas aeruginosa, kills tens of thousands of people worldwide each year. ΦKZ infection is independent of the host transcriptional apparatus; the virus forms a "nucleus", producing a proteinaceous barrier around the ΦKZ genome that excludes the host immune systems. It expresses its own non-canonical multi-subunit non-virion RNA polymerase (nvRNAP), which is imported into its "nucleus" to transcribe viral genes. The ΦKZ nvRNAP is formed by four polypeptides representing homologues of the eubacterial β/β' subunits, and a fifth that is likely to have evolved from an ancestral homologue to σ-factor. We have resolved the structure of the ΦKZ nvRNAP initiating transcription from its cognate promoter, p119L, including previously disordered regions. Our results shed light on the similarities and differences between ΦKZ nvRNAP mechanisms of transcription and those of canonical eubacterial RNAPs and the related non-canonical nvRNAP of bacteriophage AR9.
Collapse
Affiliation(s)
- Natàlia de Martín Garrido
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Chao-Sheng Chen
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Kailash Ramlaul
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Christopher H S Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
| | - Maria Yakunina
- Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen, Guangdong Province 518172, People's Republic of China.
| |
Collapse
|
6
|
Qian J, Wang B, Artsimovitch I, Dunlap D, Finzi L. Force and the α-C-terminal domains bias RNA polymerase recycling. Nat Commun 2024; 15:7520. [PMID: 39214958 PMCID: PMC11364550 DOI: 10.1038/s41467-024-51603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
After an RNA polymerase reaches a terminator, instead of dissociating from the template, it may diffuse along the DNA and recommence RNA synthesis from the previous or a different promoter. Magnetic tweezers were used to monitor such secondary transcription and determine the effects of low forces assisting or opposing translocation, protein roadblocks, and transcription factors. Remarkably, up to 50% of Escherichia coli (E. coli) RNA polymerases diffused along the DNA after termination. Force biased the direction of diffusion (sliding) and the velocity increased rapidly with force up to 0.7 pN and much more slowly thereafter. Sigma factor 70 (σ70) likely remained associated with the DNA promoting sliding and enabling re-initiation from promoters in either orientation. However, deletions of the α-C-terminal domains severely limited the ability of RNAP to turn around between successive rounds of transcription. The addition of elongation factor NusG, which competes with σ70 for binding to RNAP, limited additional rounds of transcription. Surprisingly, sliding RNA polymerases blocked by a DNA-bound lac repressor could slowly re-initiate transcription and were not affected by NusG, suggesting a σ-independent pathway. Low forces effectively biased promoter selection suggesting a prominent role for topological entanglements that affect RNA polymerase translocation.
Collapse
Affiliation(s)
- Jin Qian
- Physics Department, Emory University, Atlanta, GA, USA
| | - Bing Wang
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Irina Artsimovitch
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - David Dunlap
- Department of Physics & Astronomy, Clemson University, Clemson, SC, USA
| | - Laura Finzi
- Department of Physics & Astronomy, Clemson University, Clemson, SC, USA.
| |
Collapse
|
7
|
da Silva Santos D, Freitas NSA, de Morais MA, Mendonça AA. Liquorilactobacillus: A Context of the Evolutionary History and Metabolic Adaptation of a Bacterial Genus from Fermentation Liquid Environments. J Mol Evol 2024:10.1007/s00239-024-10189-6. [PMID: 39017924 DOI: 10.1007/s00239-024-10189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
In the present work, we carried out a comparative genomic analysis to trace the evolutionary trajectory of the bacterial species that make up the Liquorilactobacillus genus, from the identification of genes and speciation/adaptation mechanisms in their unique characteristics to the identification of the pattern grouping these species. We present phylogenetic relationships between Liquorilactobacillus and related taxa such as Bacillus, basal lactobacilli and Ligilactobacillus, highlighting evolutionary divergences and lifestyle transitions across different taxa. The species of this genus share a core genome of 1023 genes, distributed in all COGs, which made it possible to characterize it as Liquorilactobacillus sensu lato: few amino acid auxotrophy, low genes number for resistance to antibiotics and general and specific cellular reprogramming mechanisms for environmental responses. These species were divided into four clades, with diversity being enhanced mainly by the diversity of genes involved in sugar metabolism. Clade 1 presented lower (< 70%) average amino acid identity with the other clades, with exclusive or absent genes, and greater distance in the genome compared to clades 2, 3 and 4. The data pointed to an ancestor of clades 2, 3 and 4 as being the origin of the genus Ligilactobacillus, while the species of clade 1 being closer to the ancestral Bacillus. All these traits indicated that the species of clade 1 could be soon separated in a distinct genus.
Collapse
Affiliation(s)
- Dayane da Silva Santos
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | | | - Marcos Antonio de Morais
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| | - Allyson Andrade Mendonça
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
8
|
Jara-Servin A, Mejia G, Romero MF, Peimbert M, Alcaraz LD. Unravelling the genomic and environmental diversity of the ubiquitous Solirubrobacter. Environ Microbiol 2024; 26:e16685. [PMID: 39147372 DOI: 10.1111/1462-2920.16685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024]
Abstract
Solirubrobacter, though widespread in soils and rhizospheres, has been relatively unexplored despite its ubiquity. Previously acknowledged as a common soil bacterium, our research explores its phylogenomics, pangenomics, environmental diversity, and interactions within bacterial communities. By analysing seven genomic sequences, we have identified a pangenome consisting of 19,645 protein families, of which 2644 are shared across all studied genomes, forming the core genome. Interestingly, despite the non-motility of reported isolates, we discovered genes for flagellin and a partial flagellum assembly pathway. Examining the 16S ribosomal RNA genes of Solirubrobacter revealed substantial diversity, with 3166 operational taxonomic units identified in Mexican soils. Co-occurrence network analysis further demonstrated its significant integration within bacterial communities. Through phylogenomic scrutiny, we conclusively excluded the NCBI's GCA_009993245.1 genome from being classified as a Solirubrobacter. Our research into the metagenomic diversity of Solirubrobacter across various environments confirmed its presence in rhizospheres and certain soils, underscoring its adaptability. The geographical ubiquity of Solirubrobacter in rhizospheres raises intriguing questions regarding its potential interactions with plant hosts and the biotic and abiotic factors influencing its presence in soil. Given its ecological significance and genetic diversity, Solirubrobacter warrants further investigation as a potentially crucial yet underappreciated keystone species.
Collapse
Affiliation(s)
- Angélica Jara-Servin
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Mejia
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel F Romero
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Luis David Alcaraz
- Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Joron K, Zamel J, Kalisman N, Lerner E. Evidence for a compact σ 70 conformation in vitro and in vivo. iScience 2024; 27:110140. [PMID: 38957792 PMCID: PMC11217687 DOI: 10.1016/j.isci.2024.110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of transcription in Escherichia coli (E. coli) is facilitated by promoter specificity factors, also known as σ factors, which may bind a promoter only as part of a complex with RNA polymerase (RNAP). By performing in vitro cross-linking mass spectrometry (CL-MS) of apo-σ70, we reveal structural features suggesting a compact conformation compared to the known RNAP-bound extended conformation. Then, we validate the existence of the compact conformation using in vivo CL-MS by identifying cross-links similar to those found in vitro, which deviate from the extended conformation only during the stationary phase of bacterial growth. Conclusively, we provide information in support of a compact conformation of apo-σ70 that exists in live cells, which might represent a transcriptionally inactive form that can be activated upon binding to RNAP.
Collapse
Affiliation(s)
- Khalil Joron
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Joanna Zamel
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Kalisman
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
10
|
Sharts DM, Almanza MT, Banks AV, Castellanos AM, Hernandez CGO, Lopez ML, Rodriguez D, Tong AY, Segeberg MR, Passalacqua LFM, Abdelsayed MM. Robo-Therm, a pipeline to RNA thermometer discovery and validation. RNA (NEW YORK, N.Y.) 2024; 30:760-769. [PMID: 38565243 PMCID: PMC11182007 DOI: 10.1261/rna.079980.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
RNA thermometers are highly structured noncoding RNAs located in the 5'-untranslated regions (UTRs) of genes that regulate expression by undergoing conformational changes in response to temperature. The discovery of RNA thermometers through bioinformatics is difficult because there is little sequence conservation among their structural elements. Thus, the abundance of these thermosensitive regulatory structures remains unclear. Herein, to advance the discovery and validation of RNA thermometers, we developed Robo-Therm, a pipeline that combines an adaptive and user-friendly in silico motif search with a well-established reporter system. Through our application of Robo-Therm, we discovered two novel RNA thermometers in bacterial and bacteriophage genomes found in the human gut. One of these thermometers is present in the 5'-UTR of a gene that codes for σ 70 RNA polymerase subunit in the bacteria Mediterraneibacter gnavus and Bacteroides pectinophilus, and in the bacteriophage Caudoviricetes, which infects B. pectinophilus The other thermometer is in the 5'-UTR of a tetracycline resistance gene (tetR) in the intestinal bacteria Escherichia coli and Shigella flexneri Our Robo-Therm pipeline can be applied to discover multiple RNA thermometers across various genomes.
Collapse
Affiliation(s)
- Davis M Sharts
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Maria T Almanza
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Andrea V Banks
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Alyssa M Castellanos
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | | | - Monica L Lopez
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Daniela Rodriguez
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Alina Y Tong
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Maximilian R Segeberg
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Luiz F M Passalacqua
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael M Abdelsayed
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| |
Collapse
|
11
|
Gevin M, Latifi A, Talla E. The modular architecture of sigma factors in cyanobacteria: a framework to assess their diversity and understand their evolution. BMC Genomics 2024; 25:512. [PMID: 38783209 PMCID: PMC11119718 DOI: 10.1186/s12864-024-10415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Bacterial RNA polymerase holoenzyme requires sigma70 factors to start transcription by identifying promoter elements. Cyanobacteria possess multiple sigma70 factors to adapt to a wide variety of ecological niches. These factors are grouped into two categories: primary sigma factor initiates transcription of housekeeping genes during normal growth conditions, while alternative sigma factors initiate transcription of specific genes under particular conditions. However, the present classification does not consider the modular organization of their structural domains, introducing therefore multiple functional and structural biases. A comprehensive analysis of this protein family in cyanobacteria is needed to address these limitations. RESULTS We investigated the structure and evolution of sigma70 factors in cyanobacteria, analyzing their modular architecture and variation among unicellular, filamentous, and heterocyst-forming morphotypes. 4,193 sigma70 homologs were found with 59 distinct modular patterns, including six essential and 29 accessory domains, such as DUF6596. 90% of cyanobacteria typically have 5 to 17 sigma70 homologs and this number likely depends on the strain morphotype, the taxonomic order and the genome size. We classified sigma70 factors into 12 clans and 36 families. According to taxonomic orders and phenotypic traits, the number of homologs within the 14 main families was variable, with the A.1 family including the primary sigma factor since this family was found in all cyanobacterial species. The A.1, A.5, C.1, E.1, J.1, and K.1 families were found to be key sigma families that distinguish heterocyst-forming strains. To explain the diversification and evolution of sigma70, we propose an evolutionary scenario rooted in the diversification of a common ancestor of the A1 family. This scenario is characterized by evolutionary events including domain losses, gains, insertions, and modifications. The high occurrence of the DUF6596 domain in bacterial sigma70 proteins, and its association with the highest prevalence observed in Actinobacteria, suggests that this domain might be important for sigma70 function. It also implies that the domain could have emerged in Actinobacteria and been transferred through horizontal gene transfer. CONCLUSION Our analysis provides detailed insights into the modular domain architecture of sigma70, introducing a novel robust classification. It also proposes an evolutionary scenario explaining their diversity across different taxonomical orders.
Collapse
Affiliation(s)
- Marine Gevin
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, LCB, IMM, Marseille, France
| | - Amel Latifi
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, LCB, IMM, Marseille, France.
| | - Emmanuel Talla
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, LCB, IMM, Marseille, France.
| |
Collapse
|
12
|
Ye J, Kan CH, Yang X, Ma C. Inhibition of bacterial RNA polymerase function and protein-protein interactions: a promising approach for next-generation antibacterial therapeutics. RSC Med Chem 2024; 15:1471-1487. [PMID: 38784472 PMCID: PMC11110800 DOI: 10.1039/d3md00690e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
The increasing prevalence of multidrug-resistant pathogens necessitates the urgent development of new antimicrobial agents with innovative modes of action for the next generation of antimicrobial therapy. Bacterial transcription has been identified and widely studied as a viable target for antimicrobial development. The main focus of these studies has been the discovery of inhibitors that bind directly to the core enzyme of RNA polymerase (RNAP). Over the past two decades, substantial advancements have been made in understanding the properties of protein-protein interactions (PPIs) and gaining structural insights into bacterial RNAP and its associated factors. This has led to the crucial role of computational methods in aiding the identification of new PPI inhibitors to affect the RNAP function. In this context, bacterial transcriptional PPIs present promising, albeit challenging, targets for the creation of new antimicrobials. This review will succinctly outline the structural foundation of bacterial transcription networks and provide a summary of the known small molecules that target transcription PPIs.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei 230032 China
| | - Cheuk Hei Kan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| |
Collapse
|
13
|
Zan X, Yan Y, Chen G, Sun L, Wang L, Wen Y, Xu Y, Zhang Z, Li X, Yang Y, Sun W, Cui F. Recent Advances of Oxalate Decarboxylase: Biochemical Characteristics, Catalysis Mechanisms, and Gene Expression and Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10163-10178. [PMID: 38653191 DOI: 10.1021/acs.jafc.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.
Collapse
Affiliation(s)
- Xinyi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ying Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Gege Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Linhan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yixin Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuting Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ziying Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xinlin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yumeng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
14
|
Zhang Z, Huo J, Velo J, Zhou H, Flaherty A, Saier MH. Comprehensive Characterization of fucAO Operon Activation in Escherichia coli. Int J Mol Sci 2024; 25:3946. [PMID: 38612757 PMCID: PMC11011485 DOI: 10.3390/ijms25073946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Wildtype Escherichia coli cells cannot grow on L-1,2-propanediol, as the fucAO operon within the fucose (fuc) regulon is thought to be silent in the absence of L-fucose. Little information is available concerning the transcriptional regulation of this operon. Here, we first confirm that fucAO operon expression is highly inducible by fucose and is primarily attributable to the upstream operon promoter, while the fucO promoter within the 3'-end of fucA is weak and uninducible. Using 5'RACE, we identify the actual transcriptional start site (TSS) of the main fucAO operon promoter, refuting the originally proposed TSS. Several lines of evidence are provided showing that the fucAO locus is within a transcriptionally repressed region on the chromosome. Operon activation is dependent on FucR and Crp but not SrsR. Two Crp-cAMP binding sites previously found in the regulatory region are validated, where the upstream site plays a more critical role than the downstream site in operon activation. Furthermore, two FucR binding sites are identified, where the downstream site near the first Crp site is more important than the upstream site. Operon transcription relies on Crp-cAMP to a greater degree than on FucR. Our data strongly suggest that FucR mainly functions to facilitate the binding of Crp to its upstream site, which in turn activates the fucAO promoter by efficiently recruiting RNA polymerase.
Collapse
Affiliation(s)
- Zhongge Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.H.); (J.V.); (A.F.)
| | | | | | | | | | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0116, USA; (J.H.); (J.V.); (A.F.)
| |
Collapse
|
15
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
16
|
Sechkar K, Steel H, Perrino G, Stan GB. A coarse-grained bacterial cell model for resource-aware analysis and design of synthetic gene circuits. Nat Commun 2024; 15:1981. [PMID: 38438391 PMCID: PMC10912777 DOI: 10.1038/s41467-024-46410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
Within a cell, synthetic and native genes compete for expression machinery, influencing cellular process dynamics through resource couplings. Models that simplify competitive resource binding kinetics can guide the design of strategies for countering these couplings. However, in bacteria resource availability and cell growth rate are interlinked, which complicates resource-aware biocircuit design. Capturing this interdependence requires coarse-grained bacterial cell models that balance accurate representation of metabolic regulation against simplicity and interpretability. We propose a coarse-grained E. coli cell model that combines the ease of simplified resource coupling analysis with appreciation of bacterial growth regulation mechanisms and the processes relevant for biocircuit design. Reliably capturing known growth phenomena, it provides a unifying explanation to disparate empirical relations between growth and synthetic gene expression. Considering a biomolecular controller that makes cell-wide ribosome availability robust to perturbations, we showcase our model's usefulness in numerically prototyping biocircuits and deriving analytical relations for design guidance.
Collapse
Affiliation(s)
- Kirill Sechkar
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Giansimone Perrino
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
17
|
Oh Y, Oh JI. The RsfSR two-component system regulates SigF function by monitoring the state of the respiratory electron transport chain in Mycobacterium smegmatis. J Biol Chem 2024; 300:105764. [PMID: 38367670 PMCID: PMC10950880 DOI: 10.1016/j.jbc.2024.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
In Mycobacterium smegmatis, the transcriptional activity of the alternative sigma factor SigF is posttranslationally regulated by the partner switching system consisting of SigF, the anti-SigF RsbW1, and three anti-SigF antagonists (RsfA, RsfB, and RsbW3). We previously demonstrated that expression of the SigF regulon is strongly induced in the Δaa3 mutant of M. smegmatis lacking the aa3 cytochrome c oxidase, the major terminal oxidase in the respiratory electron transport chain. Here, we identified and characterized the RsfSR two-component system involved in regulating the phosphorylation state of the major anti-SigF antagonist RsfB. RsfS (MSMEG_6130) is a histidine kinase with the cyclase/histidine kinase-associated sensing extracellular 3 domain at its N terminus, and RsfR (MSMEG_6131) is a receiver domain-containing protein phosphatase 2C-type phosphatase that can dephosphorylate phosphorylated RsfB. We demonstrated that phosphorylation of RsfR on Asp74 by RsfS reduces the phosphatase activity of RsfR toward phosphorylated RsfB and that the cellular abundance of the active unphosphorylated RsfB is increased in the Δaa3 mutant relative to the WT strain. We also demonstrated that the RsfSR two-component system is required for induction of the SigF regulon under respiration-inhibitory conditions such as inactivation of the cytochrome bcc1 complex and aa3 cytochrome c oxidase, as well as hypoxia, electron donor-limiting, high ionic strength, and low pH conditions. Collectively, our results reveal a key regulatory element involved in regulating the SigF signaling system by monitoring the state of the respiratory electron transport chain.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Korea; Microbiological Resource Research Institute, Pusan National University, Busan, Korea.
| |
Collapse
|
18
|
Meier D, Rauch C, Wagner M, Klemm P, Blumenkamp P, Müller R, Ellenberger E, Karia KM, Vecchione S, Serrania J, Lechner M, Fritz G, Goesmann A, Becker A. A MoClo-Compatible Toolbox of ECF Sigma Factor-Based Regulatory Switches for Proteobacterial Chassis. BIODESIGN RESEARCH 2024; 6:0025. [PMID: 38384496 PMCID: PMC10880074 DOI: 10.34133/bdr.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024] Open
Abstract
The construction of complex synthetic gene circuits with predetermined and reliable output depends on orthogonal regulatory parts that do not inadvertently interfere with the host machinery or with other circuit components. Previously, extracytoplasmic function sigma factors (ECFs), a diverse group of alternative sigma factors with distinct promoter specificities, were shown to have great potential as context-independent regulators, but so far, they have only been used in a few model species. Here, we show that the alphaproteobacterium Sinorhizobium meliloti, which has been proposed as a plant-associated bacterial chassis for synthetic biology, has a similar phylogenetic ECF acceptance range as the gammaproteobacterium Escherichia coli. A common set of orthogonal ECF-based regulators that can be used in both bacterial hosts was identified and used to create 2-step delay circuits. The genetic circuits were implemented in single copy in E. coli by chromosomal integration using an established method that utilizes bacteriophage integrases. In S. meliloti, we demonstrated the usability of single-copy pABC plasmids as equivalent carriers of the synthetic circuits. The circuits were either implemented on a single pABC or modularly distributed on 3 such plasmids. In addition, we provide a toolbox containing pABC plasmids compatible with the Golden Gate (MoClo) cloning standard and a library of basic parts that enable the construction of ECF-based circuits in S. meliloti and in E. coli. This work contributes to building a context-independent and species-overarching ECF-based toolbox for synthetic biology applications.
Collapse
Affiliation(s)
- Doreen Meier
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Christian Rauch
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Marcel Wagner
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Paul Klemm
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Patrick Blumenkamp
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Raphael Müller
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Eric Ellenberger
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Kinnari M. Karia
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Stefano Vecchione
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| | - Georg Fritz
- The University of Western Australia, School of Molecular Sciences, Perth, Australia
| | - Alexander Goesmann
- Bioinformatics and Systems Biology,
Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Biology,
Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
19
|
Lee SM, Le HT, Taizhanova A, Nong LK, Park JY, Lee EJ, Palsson BO, Kim D. Experimental promoter identification of a foodborne pathogen Salmonella enterica subsp. enterica serovar Typhimurium with near single base-pair resolution. Front Microbiol 2024; 14:1271121. [PMID: 38239730 PMCID: PMC10794520 DOI: 10.3389/fmicb.2023.1271121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common foodborne pathogen which is frequently used as the reference strain for Salmonella. Investigating the sigma factor network and protomers is crucial to understand the genomic and transcriptomic properties of the bacterium. Its promoters were identified using various methods such as dRNA-seq, ChIP-chip, or ChIP-Seq. However, validation using ChIP-exo, which exhibits higher-resolution performance compared to conventional ChIP, has not been conducted to date. In this study, using the representative strain S. Typhimurium LT2 (LT2), the ChIP-exo experiment was conducted to accurately determine the binding sites of catalytic RNA polymerase subunit RpoB and major sigma factors (RpoD, RpoN, RpoS, and RpoE) during exponential phase. Integrated with the results of RNA-Seq, promoters and sigmulons for the sigma factors and their association with RpoB have been discovered. Notably, the overlapping regions among binding sites of each alternative sigma factor were found. Furthermore, comparative analysis with Escherichia coli str. K-12 substr. MG1655 (MG1655) revealed conserved binding sites of RpoD and RpoN across different species. In the case of small RNAs (sRNAs), 50 sRNAs observed their expression during the exponential growth of LT2. Collectively, the integration of ChIP-exo and RNA-Seq enables genome-scale promoter mapping with high resolution and facilitates the characterization of binding events of alternative sigma factors, enabling a comprehensive understanding of the bacterial sigma factor network and condition-specific active promoters.
Collapse
Affiliation(s)
- Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hoa Thi Le
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Assiya Taizhanova
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
20
|
Tezuka T, Mitsuyama K, Date R, Ohnishi Y. A unique sigma/anti-sigma system in the actinomycete Actinoplanes missouriensis. Nat Commun 2023; 14:8483. [PMID: 38123564 PMCID: PMC10733313 DOI: 10.1038/s41467-023-44291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Bacteria of the genus Actinoplanes form sporangia that contain dormant sporangiospores which, upon contact with water, release motile spores (zoospores) through a process called sporangium dehiscence. Here, we set out to study the molecular mechanisms behind sporangium dehiscence in Actinoplanes missouriensis and discover a sigma/anti-sigma system with unique features. Protein σSsdA contains a functional sigma factor domain and an anti-sigma factor antagonist domain, while protein SipA contains an anti-sigma factor domain and an anti-sigma factor antagonist domain. Remarkably, the two proteins interact with each other via the anti-sigma factor antagonist domain of σSsdA and the anti-sigma factor domain of SipA. Although it remains unclear whether the SipA/σSsdA system plays direct roles in sporangium dehiscence, the system seems to modulate oxidative stress responses in zoospores. In addition, we identify a two-component regulatory system (RsdK-RsdR) that represses initiation of sporangium dehiscence.
Collapse
Affiliation(s)
- Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan.
| | - Kyota Mitsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Risa Date
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
21
|
Xie C, Gu W, Chen Z, Liang Z, Huang S, Zhang LH, Chen S. Polyamine signaling communications play a key role in regulating the pathogenicity of Dickeya fangzhongdai. Microbiol Spectr 2023; 11:e0196523. [PMID: 37874149 PMCID: PMC10715095 DOI: 10.1128/spectrum.01965-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Dickeya fangzhongdai is a newly identified plant bacterial pathogen with a wide host range. A clear understanding of the cell-to-cell communication systems that modulate the bacterial virulence is of key importance for elucidating its pathogenic mechanisms and for disease control. In this study, we present evidence that putrescine molecules from the pathogen and host plants play an essential role in regulating the bacterial virulence. The significance of this study is in (i) demonstrating that putrescine signaling system regulates D. fangzhongdai virulence mainly through modulating the bacterial motility and production of PCWD enzymes, (ii) outlining the signaling and regulatory mechanisms with which putrescine signaling system modulates the above virulence traits, and (iii) validating that D. fangzhongdai could use both arginine and ornithine pathways to synthesize putrescine signals. To our knowledge, this is the first report to show that putrescine signaling system plays a key role in modulating the pathogenicity of D. fangzhongdai.
Collapse
Affiliation(s)
- Congcong Xie
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Weihan Gu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Zhongqiao Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Zhibin Liang
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Shufen Huang
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Lian-Hui Zhang
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| |
Collapse
|
22
|
Kurashiki R, Koyama K, Sakaguchi Y, Okumura Y, Ohshiro T, Suzuki H. Development of a thermophilic host-vector system for the production of recombinant proteins at elevated temperatures. Appl Microbiol Biotechnol 2023; 107:7475-7488. [PMID: 37755510 DOI: 10.1007/s00253-023-12805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Geobacillus spp. are moderate thermophiles that can efficiently produce recombinant proteins. Considering the protein production exhibited by these species, we searched for robust promoters in Geobacillus kaustophilus HTA426. Transcriptome data revealed that several genes were highly expressed during the proliferative phase; their promoters were characterized using reporter assays with Venus fluorescent protein (VFP). The results suggested that the cspD promoter (PcspD) directed robust vfp expression at 60°C in G. kaustophilus. Although cspD potentially encodes a cold-shock protein, PcspD functioned at elevated temperatures. The promoter strongly functioned even in Escherichia coli; this prevented the cloning of some genes (e.g., vfp) downstream of it on a plasmid vector via E. coli-based genetic manipulation. Consequently, we generated a mutated PcspD that functioned inefficiently in E. coli and constructed the pGKE124 plasmid using the mutant promoter. The plasmid could carry vfp in E. coli and afford the production of VFP in G. kaustophilus at a yield of 390 mg/L. pGKE124 directed a similar production in other thermophilic species; the highest yield was observed in Geobacillus thermodenitrificans K1041. Several proteins could be produced using a system involving G. thermodenitrificans K1041 and pGKE124. Notably, the extracellular production of xylanase at a yield of 1 g/L was achieved using this system. Although the leaky production of nonsecretory proteins was observed, we developed a simple process to collectively purify recombinant proteins from the intracellular and extracellular fractions. The findings presented there propose an effective host-vector system for the production of recombinant proteins at elevated temperatures. KEY POINTS: • A thermophilic system to produce recombinant proteins was constructed. • The system produced diverse proteins using inexpensive media at elevated temperatures. • The system produced an extracellular protein at a yield of 1 g/L of culture.
Collapse
Affiliation(s)
- Ryota Kurashiki
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Kosuke Koyama
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Yukina Sakaguchi
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Yuta Okumura
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Takashi Ohshiro
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Hirokazu Suzuki
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
| |
Collapse
|
23
|
Hatch ND, Ouellette SP. Identification of the alternative sigma factor regulons of Chlamydia trachomatis using multiplexed CRISPR interference. mSphere 2023; 8:e0039123. [PMID: 37747235 PMCID: PMC10597470 DOI: 10.1128/msphere.00391-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Chlamydia trachomatis is a developmentally regulated, obligate intracellular bacterium that encodes three sigma factors: σ66, σ54, and σ28. σ66 is the major sigma factor controlling most transcription initiation during early- and mid-cycle development as the infectious elementary body (EB) transitions to the non-infectious reticulate body (RB) that replicates within an inclusion inside the cell. The roles of the minor sigma factors, σ54 and σ28, have not been well characterized to date; however, there are data to suggest each functions in late-stage development and secondary differentiation as RBs transition to EBs. As the process of secondary differentiation itself is poorly characterized, clarifying the function of these alternative sigma factors by identifying the genes regulated by them will further our understanding of chlamydial differentiation. We hypothesize that σ54 and σ28 have non-redundant and essential functions for initiating late gene transcription thus mediating secondary differentiation in Chlamydia. Here, we demonstrate the necessity of each minor sigma factor in successfully completing the developmental cycle. We have implemented and validated multiplexed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference techniques, novel to the chlamydial field to examine the effects of knocking down each alternative sigma factor individually and simultaneously. In parallel, we also overexpressed each sigma factor. Altering transcript levels for either or both alternative sigma factors resulted in a severe defect in EB production as compared to controls. Furthermore, RNA sequencing identified differentially expressed genes during alternative sigma factor dysregulation, indicating the putative regulons of each. These data demonstrate that the levels of alternative sigma factors must be carefully regulated to facilitate chlamydial growth and differentiation. IMPORTANCE Chlamydia trachomatis is a significant human pathogen in both developed and developing nations. Due to the organism's unique developmental cycle and intracellular niche, basic research has been slow and arduous. However, recent advances in chlamydial genetics have allowed the field to make significant progress in experimentally interrogating the basic physiology of Chlamydia. Broadly speaking, the driving factors of chlamydial development are poorly understood, particularly regarding how the later stages of development are regulated. Here, we employ a novel genetic tool for use in Chlamydia while investigating the effects of dysregulating the two alternative sigma factors in the organism that help control transcription initiation. We provide further evidence for both sigma factors' essential roles in late-stage development and their potential regulons, laying the foundation for deeper experimentation to uncover the molecular pathways involved in chlamydial differentiation.
Collapse
Affiliation(s)
- Nathan D. Hatch
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scot P. Ouellette
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
24
|
Li J, Zhang H, Li D, Liu YJ, Bayer EA, Cui Q, Feng Y, Zhu P. Structure of the transcription open complex of distinct σ I factors. Nat Commun 2023; 14:6455. [PMID: 37833284 PMCID: PMC10575876 DOI: 10.1038/s41467-023-41796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Bacterial σI factors of the σ70-family are widespread in Bacilli and Clostridia and are involved in the heat shock response, iron metabolism, virulence, and carbohydrate sensing. A multiplicity of σI paralogues in some cellulolytic bacteria have been shown to be responsible for the regulation of the cellulosome, a multienzyme complex that mediates efficient cellulose degradation. Here, we report two structures at 3.0 Å and 3.3 Å of two transcription open complexes formed by two σI factors, SigI1 and SigI6, respectively, from the thermophilic, cellulolytic bacterium, Clostridium thermocellum. These structures reveal a unique, hitherto-unknown recognition mode of bacterial transcriptional promoters, both with respect to domain organization and binding to promoter DNA. The key characteristics that determine the specificities of the σI paralogues were further revealed by comparison of the two structures. Consequently, the σI factors represent a distinct set of the σ70-family σ factors, thus highlighting the diversity of bacterial transcription.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haonan Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Dongyu Li
- University of Chinese Academy of Sciences, 100049, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shandong Energy Institute, 266101, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- Shandong Energy Institute, 266101, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, 266101, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Ping Zhu
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
25
|
Perez-Rueda E, Schellhorn HE, Kumar S. Editorial: Role of transcription factors and sigma factors in bacterial stress physiology. Front Microbiol 2023; 14:1291172. [PMID: 37869661 PMCID: PMC10588465 DOI: 10.3389/fmicb.2023.1291172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Affiliation(s)
- Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Mexico
| | | | - Santosh Kumar
- Metabolic Engineering and Fermentation Science Group, Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
26
|
Kędzierska-Mieszkowska S. Sigma factors of RNA polymerase in the pathogenic spirochaete Leptospira interrogans, the causative agent of leptospirosis. FASEB J 2023; 37:e23163. [PMID: 37688587 DOI: 10.1096/fj.202300252rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
The aim of this review is to summarize the current knowledge on the role of σ factors in a highly invasive spirochaete Leptospira interrogans responsible for leptospirosis that affects many mammals, including humans. This disease has a significant impact on public health and the economy worldwide. In bacteria, σ factors are the key regulators of gene expression at the transcriptional level and therefore play an important role in bacterial adaptative response to different environmental stimuli. These factors form a holoenzyme with the RNA polymerase core enzyme and then direct it to specific promoters, which results in turning on selected genes. Most bacteria possess several different σ factors that enable them to maintain basal gene expression, as well as to regulate gene expression in response to specific environmental signals. Recent comparative genomics and in silico genome-wide analyses have revealed that the L. interrogans genome, consisting of two circular chromosomes, encodes a total of 14 σ factors. Among them, there is one putative housekeeping σ70 -like factor, and three types of alternative σ factors, i.e., one σ54 , one σ28 and 11 putative ECF (extracytoplasmic function) σE -type factors. Here, characteristics of these putative σ factors and their possible role in the L. interrogans gene regulation (especially in this pathogen's adaptive response to various environmental conditions, an important determinant of leptospiral virulence), are presented.
Collapse
|
27
|
Abstract
Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.
Collapse
Affiliation(s)
- Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, Omaha, Nebraska, USA
| |
Collapse
|
28
|
Mascher T. Past, Present, and Future of Extracytoplasmic Function σ Factors: Distribution and Regulatory Diversity of the Third Pillar of Bacterial Signal Transduction. Annu Rev Microbiol 2023; 77:625-644. [PMID: 37437215 DOI: 10.1146/annurev-micro-032221-024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Responding to environmental cues is a prerequisite for survival in the microbial world. Extracytoplasmic function σ factors (ECFs) represent the third most abundant and by far the most diverse type of bacterial signal transduction. While archetypal ECFs are controlled by cognate anti-σ factors, comprehensive comparative genomics efforts have revealed a much higher abundance and regulatory diversity of ECF regulation than previously appreciated. They have also uncovered a diverse range of anti-σ factor-independent modes of controlling ECF activity, including fused regulatory domains and phosphorylation-dependent mechanisms. While our understanding of ECF diversity is comprehensive for well-represented and heavily studied bacterial phyla-such as Proteobacteria, Firmicutes, and Actinobacteria (phylum Actinomycetota)-our current knowledge about ECF-dependent signaling in the vast majority of underrepresented phyla is still far from complete. In particular, the dramatic extension of bacterial diversity in the course of metagenomic studies represents both a new challenge and an opportunity in expanding the world of ECF-dependent signal transduction.
Collapse
Affiliation(s)
- Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany;
| |
Collapse
|
29
|
Hall AN, Hall BW, Kinney KJ, Olsen GG, Banta AB, Noguera DR, Donohue TJ, Peters JM. Tools for Genetic Engineering and Gene Expression Control in Novosphingobium aromaticivorans and Rhodobacter sphaeroides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554875. [PMID: 37662258 PMCID: PMC10473679 DOI: 10.1101/2023.08.25.554875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts have the potential to form the backbone of the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis, show particular promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify inducible promoters with strong, regulated activity in both organisms. Combining Tn7 integration with promoters from our library, we establish CRISPR interference systems for N. aromaticivorans and R. sphaeroides that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these industrially important species and other Alphaproteobacteria.
Collapse
Affiliation(s)
- Ashley N. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin W. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kyle J. Kinney
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabby G. Olsen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Jun JS, Jeong HE, Moon SY, Shin SH, Hong KW. Time-Course Transcriptome Analysis of Bacillus subtilis DB104 during Growth. Microorganisms 2023; 11:1928. [PMID: 37630488 PMCID: PMC10458515 DOI: 10.3390/microorganisms11081928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Bacillus subtilis DB104, an extracellular protease-deficient derivative of B. subtilis 168, is widely used for recombinant protein expression. An understanding of the changes in gene expression during growth is essential for the commercial use of bacterial strains. Transcriptome and proteome analyses are ideal methods to study the genomic response of microorganisms. In this study, transcriptome analysis was performed to monitor changes in the gene expression level of B. subtilis DB104 while growing on a complete medium. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, K-mean cluster analysis, gene ontology (GO) enrichment analysis, and the function of sigma factors were used to divide 2122 differentially expressed genes (DEGs) into 10 clusters and identified gene functions according to expression patterns. The results of KEGG pathway analysis indicated that ABC transporter is down-regulated during exponential growth and metabolic changes occur at the transition point where sporulation starts. At this point, several stress response genes were also turned on. The genes involved in the lipid catabolic process were up-regulated briefly at 15 h as an outcome of the programmed cell death that postpones sporulation. The results suggest that changes in the gene expression of B. subtilis DB104 were dependent on the initiation of sporulation. However, the expression timing of the spore coat gene was only affected by the relevant sigma factor. This study can help to understand gene expression and regulatory mechanisms in B. subtilis species by providing an overall view of transcriptional changes during the growth of B. subtilis DB104.
Collapse
Affiliation(s)
| | | | | | | | - Kwang-Won Hong
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang-si 10326, Republic of Korea; (J.-S.J.); (H.-E.J.); (S.-Y.M.); (S.-H.S.)
| |
Collapse
|
31
|
Alba Burbano D, Cardiff RAL, Tickman BI, Kiattisewee C, Maranas CJ, Zalatan JG, Carothers JM. Engineering activatable promoters for scalable and multi-input CRISPRa/i circuits. Proc Natl Acad Sci U S A 2023; 120:e2220358120. [PMID: 37463216 PMCID: PMC10374173 DOI: 10.1073/pnas.2220358120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Dynamic, multi-input gene regulatory networks (GRNs) are ubiquitous in nature. Multilayer CRISPR-based genetic circuits hold great promise for building GRNs akin to those found in naturally occurring biological systems. We develop an approach for creating high-performing activatable promoters that can be assembled into deep, wide, and multi-input CRISPR-activation and -interference (CRISPRa/i) GRNs. By integrating sequence-based design and in vivo screening, we engineer activatable promoters that achieve up to 1,000-fold dynamic range in an Escherichia coli-based cell-free system. These components enable CRISPRa GRNs that are six layers deep and four branches wide. We show the generalizability of the promoter engineering workflow by improving the dynamic range of the light-dependent EL222 optogenetic system from 6-fold to 34-fold. Additionally, high dynamic range promoters enable CRISPRa systems mediated by small molecules and protein-protein interactions. We apply these tools to build input-responsive CRISPRa/i GRNs, including feedback loops, logic gates, multilayer cascades, and dynamic pulse modulators. Our work provides a generalizable approach for the design of high dynamic range activatable promoters and enables classes of gene regulatory functions in cell-free systems.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
| | - Ryan A. L. Cardiff
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Benjamin I. Tickman
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Cholpisit Kiattisewee
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Cassandra J. Maranas
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| | - Jesse G. Zalatan
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
- Department of Chemistry, University of Washington, Seattle, WA98195
| | - James M. Carothers
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Center for Synthetic Biology, University of Washington, Seattle, WA98195
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA98195
| |
Collapse
|
32
|
Hirth N, Gerlach MS, Wiesemann N, Herzberg M, Große C, Nies DH. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl Environ Microbiol 2023:e0056723. [PMID: 37191542 DOI: 10.1128/aem.00567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Nicole Wiesemann
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
33
|
Hatch ND, Ouellette SP. Identification of the alternative sigma factor regulons of Chlamydia trachomatis using multiplexed CRISPR interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538638. [PMID: 37162869 PMCID: PMC10168357 DOI: 10.1101/2023.04.27.538638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
C. trachomatis is a developmentally regulated, obligate intracellular bacterium that encodes three sigma factors: σ66, σ54, and σ28. σ66 is the major sigma factor controlling most transcription initiation during early and mid-cycle development as the infectious EB transitions to the non-infectious RB that replicates within an inclusion inside the cell. The roles of the minor sigma factors, σ54 and σ28, have not been well characterized to date - however, there are data to suggest each functions in late-stage development and secondary differentiation as RBs transition to EBs. As the process of secondary differentiation itself is poorly characterized, clarifying the function of these alternative sigma factors by identifying the genes regulated by them will further our understanding of chlamydial differentiation. We hypothesize that σ54 and σ28 have non-redundant and essential functions for initiating late gene transcription thus mediating secondary differentiation in Chlamydia . Here, we demonstrate the necessity of each minor sigma factor in successfully completing the developmental cycle. We have implemented and validated multiplexed CRISPRi techniques novel to the chlamydial field to examine effects of knocking down each alternative sigma factor individually and simultaneously. In parallel, we also overexpressed each sigma factor. Altering transcript levels for either or both alternative sigma factors resulted in a severe defect in EB production as compared to controls. Furthermore, RNA sequencing identified differentially expressed genes during alternative sigma factor dysregulation, indicating the putative regulons of each. These data demonstrate the levels of alternative sigma factors must be carefully regulated to facilitate chlamydial growth and differentiation. Importance Chlamydia trachomatis is a significant human pathogen in both developed and developing nations. Due to the organism's unique developmental cycle and intracellular niche, basic research has been slow and arduous. However, recent advances in chlamydial genetics have allowed the field to make significant progress in experimentally interrogating the basic physiology of Chlamydia . Broadly speaking, the driving factors of chlamydial development are poorly understood, particularly regarding how the later stages of development are regulated. Here, we employ a novel genetic tool for use in Chlamydia while investigating the effects of dysregulating the two alternative sigma factors in the organism that help control transcription initiation. We provide further evidence for both sigma factors' essential roles in late-stage development and their potential regulons, laying the foundation for deeper experimentation to uncover the molecular pathways involved in chlamydial differentiation.
Collapse
|
34
|
Gao B, Shi X, Li S, Xu W, Gao N, Shan J, Shen W. Size-dependent effects of polystyrene microplastics on gut metagenome and antibiotic resistance in C57BL/6 mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114737. [PMID: 36950986 DOI: 10.1016/j.ecoenv.2023.114737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Microplastic pollution is an emerging threat for marine and terrestrial ecosystems, which has raised global concerns about its implications for human health. Mounting evidence has shown that the gut microbiota plays a key role in human health and diseases. The gut bacteria could be disturbed by many environmental factors, including the microplastic particles. However, the size effect of polystyrene microplastics on mycobiome, as well as gut functional metagenome has not been well studied. In this study, we performed ITS sequencing to explore the size effect of polystyrene microplastics on the fungal composition, in combination with the shotgun metagenomics sequencing to reveal the size effects of polystyrene on the functional metagenome. We found that polystyrene microplastic particles with 0.05-0.1 µm diameter showed greater impact on the bacterial and fungal composition of gut microbiota as well as the metabolic pathways than the polystyrene microplastic particles with 9-10 µm diameter. Our results suggested that size-depended effects should not be ignored in the health risk assessment of microplastics.
Collapse
Affiliation(s)
- Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Xiaochun Shi
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Shanshan Li
- School of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nan Gao
- School of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Weishou Shen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative In-novation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China; Institute of Soil Health and Climate-Smart Agriculture, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
35
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
36
|
Xu Z, Wu G, Wang B, Zhao Y, Liu F. TrpR-Like Protein PXO_00831, Regulated by the Sigma Factor RpoD, Is Involved in Motility, Oxidative Stress Tolerance, and Virulence in Xanthomonas oryzae pv. oryzae. PHYTOPATHOLOGY 2023; 113:170-182. [PMID: 36095334 DOI: 10.1094/phyto-05-22-0165-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a Gram-negative bacterium that causes bacterial leaf blight in rice. In this study, we identified a putative TrpR-like protein, PXO_TrpR (PXO_00831), in Xoo. This protein contains a tryptophan (Trp) repressor domain and is highly conserved in Xanthomonas. Auxotrophic assays and RT-qPCR confirmed that PXO_TrpR acts as a Trp repressor, negatively regulating the expression of Trp biosynthesis genes. Pathogenicity tests showed that PXO_trpR knockout in Xoo significantly reduced lesion development and disease symptoms in the leaves of susceptible rice. RNA-seq analysis and phenotypic tests revealed that the PXO_trpR mutant exhibited impaired cell motility and was more sensitive to H2O2 oxidative stress than the wild-type strain. Furthermore, we found that the sigma 70 factor RpoD controlled the transcription of PXO_trpR by directly binding to its promoter region. This study demonstrates the biological function and transcriptional mechanism of PXO_TrpR as a Trp repressor in Xoo and evaluates its novel pathogenic roles by regulating flagellar motility and the oxidative stress response.
Collapse
Affiliation(s)
- Zhizhou Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guichun Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bo Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| |
Collapse
|
37
|
Singha B, Behera D, Khan MZ, Singh NK, Sowpati DT, Gopal B, Nandicoori VK. The unique N-terminal region of Mycobacterium tuberculosis sigma factor A plays a dominant role in the essential function of this protein. J Biol Chem 2023; 299:102933. [PMID: 36690275 PMCID: PMC10011835 DOI: 10.1016/j.jbc.2023.102933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
SigA (σA) is an essential protein and the primary sigma factor in Mycobacterium tuberculosis (Mtb). However, due to the absence of genetic tools, our understanding of the role and regulation of σA activity and its molecular attributes that help modulate Mtb survival is scant. Here, we generated a conditional gene replacement of σA in Mtb and showed that its depletion results in a severe survival defect in vitro, ex vivo, and in vivo in a murine infection model. Our RNA-seq analysis suggests that σA either directly or indirectly regulates ∼57% of the Mtb transcriptome, including ∼28% of essential genes. Surprisingly, we note that despite having ∼64% similarity with σA, overexpression of the primary-like σ factor SigB (σB) fails to compensate for the absence of σA, suggesting minimal functional redundancy. RNA-seq analysis of the Mtb σB deletion mutant revealed that 433 genes are regulated by σB, of which 283 overlap with the σA transcriptome. Additionally, surface plasmon resonance, in vitro transcription, and functional complementation experiments reveal that σA residues between 132-179 that are disordered and missing from all experimentally determined σA-RNAP structural models are imperative for σA function. Moreover, phosphorylation of σA in the intrinsically disordered N-terminal region plays a regulatory role in modulating its activity. Collectively, these observations and analysis provide a rationale for the centrality of σA for the survival and pathogenicity of this bacillus.
Collapse
Affiliation(s)
- Biplab Singha
- National Institute of Immunology, New Delhi, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Debashree Behera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | | - Vinay Kumar Nandicoori
- National Institute of Immunology, New Delhi, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
38
|
Costa MDOCE, do Nascimento APB, Martins YC, dos Santos MT, Figueiredo AMDS, Perez-Rueda E, Nicolás MF. The gene regulatory network of Staphylococcus aureus ST239-SCC mecIII strain Bmb9393 and assessment of genes associated with the biofilm in diverse backgrounds. Front Microbiol 2023; 13:1049819. [PMID: 36704545 PMCID: PMC9871828 DOI: 10.3389/fmicb.2022.1049819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Staphylococcus aureus is one of the most prevalent and relevant pathogens responsible for a wide spectrum of hospital-associated or community-acquired infections. In addition, methicillin-resistant Staphylococcus aureus may display multidrug resistance profiles that complicate treatment and increase the mortality rate. The ability to produce biofilm, particularly in device-associated infections, promotes chronic and potentially more severe infections originating from the primary site. Understanding the complex mechanisms involved in planktonic and biofilm growth is critical to identifying regulatory connections and ways to overcome the global health problem of multidrug-resistant bacteria. Methods In this work, we apply literature-based and comparative genomics approaches to reconstruct the gene regulatory network of the high biofilm-producing strain Bmb9393, belonging to one of the highly disseminating successful clones, the Brazilian epidemic clone. To the best of our knowledge, we describe for the first time the topological properties and network motifs for the Staphylococcus aureus pathogen. We performed this analysis using the ST239-SCCmecIII Bmb9393 strain. In addition, we analyzed transcriptomes available in the literature to construct a set of genes differentially expressed in the biofilm, covering different stages of the biofilms and genetic backgrounds of the strains. Results and discussion The Bmb9393 gene regulatory network comprises 1,803 regulatory interactions between 64 transcription factors and the non-redundant set of 1,151 target genes with the inclusion of 19 new regulons compared to the N315 transcriptional regulatory network published in 2011. In the Bmb9393 network, we found 54 feed-forward loop motifs, where the most prevalent were coherent type 2 and incoherent type 2. The non-redundant set of differentially expressed genes in the biofilm consisted of 1,794 genes with functional categories relevant for adaptation to the variable microenvironments established throughout the biofilm formation process. Finally, we mapped the set of genes with altered expression in the biofilm in the Bmb9393 gene regulatory network to depict how different growth modes can alter the regulatory systems. The data revealed 45 transcription factors and 876 shared target genes. Thus, the gene regulatory network model provided represents the most up-to-date model for Staphylococcus aureus, and the set of genes altered in the biofilm provides a global view of their influence on biofilm formation from distinct experimental perspectives and different strain backgrounds.
Collapse
Affiliation(s)
| | - Ana Paula Barbosa do Nascimento
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Agnes Marie de Sá Figueiredo
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Merida, Mexico
| | - Ernesto Perez-Rueda
- Laboratório de Biologia Molecular de Bactérias, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,*Correspondence: Ernesto Perez-Rueda ✉
| | - Marisa Fabiana Nicolás
- Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil,Marisa Fabiana Nicolás ✉
| |
Collapse
|
39
|
Patiyal S, Singh N, Ali MZ, Pundir DS, Raghava GPS. Sigma70Pred: A highly accurate method for predicting sigma70 promoter in Escherichia coli K-12 strains. Front Microbiol 2022; 13:1042127. [PMID: 36452927 PMCID: PMC9701712 DOI: 10.3389/fmicb.2022.1042127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 12/01/2023] Open
Abstract
Sigma70 factor plays a crucial role in prokaryotes and regulates the transcription of most of the housekeeping genes. One of the major challenges is to predict the sigma70 promoter or sigma70 factor binding site with high precision. In this study, we trained and evaluate our models on a dataset consists of 741 sigma70 promoters and 1,400 non-promoters. We have generated a wide range of features around 8,000, which includes Dinucleotide Auto-Correlation, Dinucleotide Cross-Correlation, Dinucleotide Auto Cross-Correlation, Moran Auto-Correlation, Normalized Moreau-Broto Auto-Correlation, Parallel Correlation Pseudo Tri-Nucleotide Composition, etc. Our SVM based model achieved maximum accuracy 97.38% with AUROC 0.99 on training dataset, using 200 most relevant features. In order to check the robustness of the model, we have tested our model on the independent dataset made by using RegulonDB10.8, which included 1,134 sigma70 and 638 non-promoters, and able to achieve accuracy of 90.41% with AUROC of 0.95. Our model successfully predicted constitutive promoters with accuracy of 81.46% on an independent dataset. We have developed a method, Sigma70Pred, which is available as webserver and standalone packages at https://webs.iiitd.edu.in/raghava/sigma70pred/. The services are freely accessible.
Collapse
Affiliation(s)
- Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Nitindeep Singh
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Mohd Zartab Ali
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Dhawal Singh Pundir
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Gajendra P. S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, India
| |
Collapse
|
40
|
Bernardino M, Beiko R. Genome-scale prediction of bacterial promoters. Biosystems 2022; 221:104771. [PMID: 36099980 DOI: 10.1016/j.biosystems.2022.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/02/2022]
Abstract
A key step in the transcription of RNA is the binding of the RNA polymerase protein complex to a short promoter sequence that is typically upstream of the gene to be expressed. Automated identification of promoters would serve as a valuable complement to experimental validation in determining which genes are likely to be expressed and when; however, promoter sequences are short and highly variable, which makes them very difficult to accurately classify. The many tools developed to identify promoters in DNA have generally been tested on small and balanced subsets of genomic sequence, and the results may not reflect their expected performance on genomes with millions of DNA base pairs where promoters are likely to comprise less than ∼1% of the sequence. Here we introduce Expositor, a neural-network-based method that uses different types of DNA encodings and tunable sensitivity and specificity parameters. Expositor showed higher sensitivity and precision on the E. coli K-12 MG1655 chromosome than other tested approaches. Expositor predictions were more consistent in the homologous subset of sequence from a strain of Salmonella than they were with another strain of E. coli. We also examined the accuracy of Expositor in distinguishing different classes of promoters and found that misclassification between classes was consistent with the biological similarity between promoters.
Collapse
Affiliation(s)
- Miria Bernardino
- Faculty of Computer Science, Dalhousie University, Halifax, Canada.
| | - Robert Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Canada.
| |
Collapse
|
41
|
Neri U, Wolf YI, Roux S, Camargo AP, Lee B, Kazlauskas D, Chen IM, Ivanova N, Zeigler Allen L, Paez-Espino D, Bryant DA, Bhaya D, Krupovic M, Dolja VV, Kyrpides NC, Koonin EV, Gophna U. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 2022; 185:4023-4037.e18. [PMID: 36174579 DOI: 10.1016/j.cell.2022.08.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.
Collapse
Affiliation(s)
- Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Benjamin Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - I Min Chen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lisa Zeigler Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA; Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
| | - Valerian V Dolja
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
42
|
Manoil D, Parga A, Hellesen C, Khawaji A, Brundin M, Durual S, Özenci V, Fang H, Belibasakis GN. Photo-oxidative stress response and virulence traits are co-regulated in E. faecalis after antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112547. [PMID: 36030693 DOI: 10.1016/j.jphotobiol.2022.112547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Knowledge of photo-oxidative stress responses in bacteria that survive antimicrobial photodynamic therapy (aPDT) is scarce. Whereas aPDT is attracting growing clinical interest, subsequent stress responses are crucial to evaluate as they may lead to the up-regulation of pathogenic traits. Here, we aimed to assess transcriptional responses to sublethal aPDT-stress and identify potential connections with virulence-related genes. Six Enterococcus faecalis strains were investigated; ATCC 29212, three dental root-canal isolates labelled UmID1, UmID2 and UmID3 and two vancomycin-resistant isolates labelled A1 and A2. TMPyP was employed as a photosensitiser. A viability dose-response curve to increasing concentrations of TMPyP was determined by culture plating. Differential expression of genes involved in oxidative stress responses (dps and hypR), general stress responses (dnaK, sigma-factorV and relA), virulence-related genes (ace, fsrC and gelE) and vancomycin-resistance (vanA) was assessed by reverse-transcription qPCR. TMPyP-mediated aPDT inactivated all strains with comparable efficiencies. TMPyP at 0.015 μM was selected to induce sublethal photo-oxidative stress. Despite heterogeneities in gene expression between strains, transcriptional profiles revealed up-regulations of transcripts dps, hypR as well as dnaK and sigma factorV after exposure to TMPyP alone and to light-irradiated TMPyP. Specifically, the alternative sigma factorV reached up to 39 ± 113-fold (median ± IQR) (p = 0.0369) in strain A2. Up-regulation of the quorum sensing operon, fsr, and its downstream virulence-related gelatinase gelE were also observed in strains ATCC-29212, A1, A2 and UmID3. Finally, photo-oxidative stress induced vanA-type vancomycin-resistance gene in both carrier isolates, reaching up to 3.3 ± 17-fold in strain A2 (p = 0.015). These findings indicate that, while aPDT successfully inactivates vancomycin-resistant and naïve strains of E. faecalis, subpopulations of surviving cells respond by co-ordinately up-regulating a network of genes involved in stress survival and virulence. This includes the induction of vancomycin-resistance genes in carrier isolates. These data may provide the mechanistic basis to circumvent bacterial responses and improve future clinical protocols.
Collapse
Affiliation(s)
- Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden; Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Ana Parga
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cecilia Hellesen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Arwa Khawaji
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Malin Brundin
- Division of Endodontics, Department of Odontology, Umeå University, Umeå, Sweden
| | - Stéphane Durual
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Volkan Özenci
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, Huddinge, Stockholm, Sweden
| | - Hong Fang
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, Huddinge, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
43
|
Sivakumar R, Gunasekaran P, Rajendhran J. Extracytoplasmic sigma factor AlgU contributes to fitness of Pseudomonas aeruginosa PGPR2 during corn root colonization. Mol Genet Genomics 2022; 297:1537-1552. [PMID: 35980488 DOI: 10.1007/s00438-022-01938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
In bacteria, sigma factors are crucial in determining the plasticity of core RNA polymerase (RNAP) while promoter recognition during transcription initiation. This process is modulated through an intricate regulatory network in response to environmental cues. Previously, an extracytoplasmic function (ECF) sigma factor, AlgU, was identified to positively influence the fitness of Pseudomonas aeruginosa PGPR2 during corn root colonization. In this study, we report that the inactivation of the algU gene encoded by PGPR2_23995 hampers the root colonization ability of PGPR2. An insertion mutant in the algU gene was constructed by allele exchange mutagenesis. The mutant strains displayed threefold decreased root colonization efficiency compared with the wild-type strain when inoculated individually and in the competition assay. The mutant strain was more sensitive to osmotic and antibiotic stresses and showed higher resistance to oxidative stress. On the other hand, the mutant strain showed increased biofilm formation on the abiotic surface, and the expression of the pelB and pslA genes involved in the biofilm matrix formation were up-regulated. In contrast, the expression of algD, responsible for alginate production, was significantly down-regulated in the mutant strain, which is directly regulated by the AlgU sigma factor. The mutant strain also displayed altered motility. The expression of RNA binding protein RsmA was also impeded in the mutant strain. Further, the transcript levels of genes associated with the type III secretion system (T3SS) were analyzed, which revealed a significant down-regulation in the mutant strain. These results collectively provide evidence for the regulatory role of the AlgU sigma factor in modulating gene expression during root colonization.
Collapse
Affiliation(s)
- Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
44
|
Tong M, Zhao Y, Sun Q, Li P, Liu H, Yuan S. Fe(II) oxygenation inhibits bacterial Mn(II) oxidation by P. putida MnB1 in groundwater under O 2-perturbed conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128972. [PMID: 35504131 DOI: 10.1016/j.jhazmat.2022.128972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/02/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Bacterial Mn(II) oxidation plays a crucial role in Mn cycling and the associated biogeochemistry in natural waters and is of practical concern in the clean-up of excess Mn from drinking water. Fe(II) usually occurring together with Mn(II) in groundwater is oxidized prior to Mn(II) when perturbed by O2, but the impact of Fe(II) oxygenation on the subsequent bacterial Mn(II) oxidation remains unknown. Here we demonstrated that Fe(II) oxygenation largely inhibited the Mn(II)-oxidizing ability of MnB1 belong to Pseudomonas putida which is ubiquitous in groundwater. The mechanisms of the inhibition varied under different Fe(II) concentrations. At high Fe(II) concentrations (≥ 1 mM), the inhibition of bacterial Mn(II) oxidation was mainly because of cell death caused by intracelluar reactive oxygen species. At low Fe(II) concentrations (≤ 0.05 mM), the inhibition of bacterial Mn(II) oxidation was attributed to Fe(III) oxyhydroxides generated from Fe(II) oxygenation. Fe(III) oxyhydroxides attached to cell surface and damaged the cell membrane, resulting in the influx of dissolved Fe into the cell. Transcriptomic analysis revealed that the intracellular Fe suppressed the transcription initiation process and the subsequent generation of multicopper oxidases which were responsible for Mn(II) oxidation. These findings implicate that the inhibition effect of Fe(II) oxygenation on bacterial Mn(II) oxidation should be considered in groundwater-surface water interaction zone and the biological treatment of Fe-Mn containing drinking water.
Collapse
Affiliation(s)
- Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China; Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Yuxi Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Qunqun Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China; Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China; Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China; Hubei Key Laboratory of Yangze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, PR China.
| |
Collapse
|
45
|
The Sixth Element: a 102-kb RepABC Plasmid of Xenologous Origin Modulates Chromosomal Gene Expression in Dinoroseobacter shibae. mSystems 2022; 7:e0026422. [PMID: 35920548 PMCID: PMC9426580 DOI: 10.1128/msystems.00264-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The model organism Dinoroseobacter shibae and many other marine Rhodobacterales (Roseobacteraceae, Alphaproteobacteria) are characterized by a multipartite genome organization. Here, we show that the original isolate (Dshi-6) contained six extrachromosomal replicons (ECRs), whereas the strain deposited at the DSMZ (Dshi-5) lacked a 102-kb plasmid. To determine the role of the sixth plasmid, we investigated the genomic and physiological differences between the two strains. Therefore, both genomes were (re)sequenced, and gene expression, growth, and substrate utilization were examined. For comparison, we included additional plasmid-cured strains in the analysis. In the Dshi-6 population, the conjugative 102-kb RepABC-9 plasmid was present in only about 50% of the cells, irrespective of its experimentally validated stability. In the presence of the sixth plasmid, copy number changes of other ECRs, in particular, a decrease of the 86-kb plasmid, were observed. The most conspicuous finding was the strong influence of plasmids on chromosomal gene expression, especially the repression of the CtrA regulon and the activation of the denitrification gene cluster. Expression is inversely controlled by either the presence of the 102-kb plasmid or the absence of the 86-kb plasmid. We identified regulatory genes on both plasmids, i.e., a sigma 70 factor and a quorum sensing synthase, that might be responsible for these major changes. The tremendous effects that were probably even underestimated challenge the current understanding of the relevance of volatile plasmids not only for the original host but also for new recipients after conjugation. IMPORTANCE Plasmids are small DNA molecules that replicate independently of the bacterial chromosome. The common view of the role of plasmids is dominated by the accumulation of resistance genes, which is responsible for the antibiotic crisis in health care and livestock breeding. Beyond rapid adaptations to a changing environment, no general relevance for the host cell’s regulome was attributed to these volatile ECRs. The current study shows for the model organism D. shibae that its chromosomal gene expression is strongly influenced by two plasmids. We provide evidence that the gain or loss of plasmids not only results in minor alterations of the genetic repertoire but also can have tremendous effects on bacterial physiology. The central role of some plasmids in the regulatory network of the host could also explain their persistence despite fitness costs, which has been described as the “plasmid paradox.”
Collapse
|
46
|
Activation of the SigE-SigB signaling pathway by inhibition of the respiratory electron transport chain and its effect on rifampicin resistance in Mycobacterium smegmatis. J Microbiol 2022; 60:935-947. [DOI: 10.1007/s12275-022-2202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
|
47
|
Expression, Purification, and In Silico Characterization of Mycobacterium smegmatis Alternative Sigma Factor SigB. DISEASE MARKERS 2022; 2022:7475704. [PMID: 35634445 PMCID: PMC9142298 DOI: 10.1155/2022/7475704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Sigma factor B (SigB), an alternative sigma factor (ASF), is very similar to primary sigma factor SigA (σ 70) but dispensable for growth in both Mycobacterium smegmatis (Msmeg) and Mycobacterium tuberculosis (Mtb). It is involved in general stress responses including heat, oxidative, surface, starvation stress, and macrophage infections. Despite having an extremely short half-life, SigB tends to operate downstream of at least three stress-responsive extra cytoplasmic function (ECF) sigma factors (SigH, SigE, SigL) and SigF involved in multiple signaling pathways. There is very little information available regarding the regulation of SigB sigma factor and its interacting protein partners. Hence, we cloned the SigB gene into pET28a vector and optimized its expression in three different strains of E. coli, viz., (BL21 (DE3), C41 (DE3), and CodonPlus (DE3)). We also optimized several other parameters for the expression of recombinant SigB including IPTG concentration, temperature, and time duration. We achieved the maximum expression of SigB at 25°C in the soluble fraction of the cell which was purified by affinity chromatography using Ni-NTA and further confirmed by Western blotting. Further, structural characterization demonstrates the instability of SigB in comparison to SigA that is carried out using homology modeling and structure function relationship. We have done protein-protein docking of RNA polymerase (RNAP) of Msmeg and SigB. This effort provides a platform for pulldown assay, structural, and other studies with the recombinant protein to deduce the SigB interacting proteins, which might pave the way to study its signaling networks along with its regulation.
Collapse
|
48
|
Pathak E, Dubey AP, Singh VS, Mishra R, Tripathi AK. Deciphering the role of the two conserved motifs of the
ECF41
family σ factor in the autoregulation of its own promoter in
Azospirillum brasilense
Sp245. Proteins 2022; 90:1926-1943. [DOI: 10.1002/prot.26387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Ekta Pathak
- Department of Bioinformatics MMV, Institute of Science, Banaras Hindu University Varanasi India
| | | | - Vijay Shankar Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi India
| | - Rajeev Mishra
- Department of Bioinformatics MMV, Institute of Science, Banaras Hindu University Varanasi India
| | - Anil Kumar Tripathi
- School of Biotechnology, Institute of Science, Banaras Hindu University Varanasi India
| |
Collapse
|
49
|
Blankenchip CL, Nguyen JV, Lau RK, Ye Q, Gu Y, Corbett KD. Control of bacterial immune signaling by a WYL domain transcription factor. Nucleic Acids Res 2022; 50:5239-5250. [PMID: 35536256 PMCID: PMC9122588 DOI: 10.1093/nar/gkac343] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteria use diverse immune systems to defend themselves from ubiquitous viruses termed bacteriophages (phages). Many anti-phage systems function by abortive infection to kill a phage-infected cell, raising the question of how they are regulated to avoid cell killing outside the context of infection. Here, we identify a transcription factor associated with the widespread CBASS bacterial immune system, that we term CapW. CapW forms a homodimer and binds a palindromic DNA sequence in the CBASS promoter region. Two crystal structures of CapW suggest that the protein switches from an unliganded, DNA binding-competent state to a ligand-bound state unable to bind DNA. We show that CapW strongly represses CBASS gene expression in uninfected cells, and that phage infection causes increased CBASS expression in a CapW-dependent manner. Unexpectedly, this CapW-dependent increase in CBASS expression is not required for robust anti-phage activity, suggesting that CapW may mediate CBASS activation and cell death in response to a signal other than phage infection. Our results parallel concurrent reports on the structure and activity of BrxR, a transcription factor associated with the BREX anti-phage system, suggesting that CapW and BrxR are members of a family of universal defense signaling proteins.
Collapse
Affiliation(s)
- Chelsea L Blankenchip
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Justin V Nguyen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca K Lau
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
50
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|