1
|
Makkar S, Shankar R, Singh A, Annepu SK, Nehra K. Transcriptional variation and RNA polymorphism among different Lentinula edodes (Berk.) Pegler strains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1830-1840. [PMID: 39422212 DOI: 10.1002/jsfa.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Lentinula edodes is a commercially important mushroom known for its nutritional and therapeutic values. However, the molecular mechanisms underlying the distinct nutritional and physiological attributes of various L. edodes strains are not well understood. This study focused on three Lentinula strains (DMRO-356, DMRO-623, and DMRO-388s) with different nutritional and productivity profiles. Illumina sequencing was used to perform a whole-transcriptome analysis, conducting 100-base pair paired-end sequencing of total messenger RNA (mRNA) in duplicate, resulting in 28-48 million sequencing reads per strain. After rigorous data filtering, over 99% of high-quality reads were retained, and more than 95% were aligned to the Lentinula genome. RESULTS Differential gene expression analyses identified 2210 differentially expressed genes between DMRO-356 and DMRO-623, 862 between DMRO-356 and DMRO-388s, and 2212 between DMRO-623 and DMRO-388s. Significant genetic variations were found among the strains, including 7753 single nucleotide polymorphisms (SNPs) in DMRO-356 versus DMRO-623 and 4080 SNPs in DMRO-356 versus DMRO-388s. Additionally, 349 insertions/deletions (InDels) were found in DMRO-356/DMRO-623 and 218 in DMRO-356/DMRO-388 s. Non-synonymous SNPs, which alter amino acid compositions, were analyzed, showing a preference for polar over charged amino acids. CONCLUSION These differentially expressed genes were associated with various nutritional and developmental processes, highlighting the importance of genetic variations in shaping amino acid composition and potentially affecting protein function. This study is the first comprehensive exploration of transcriptional differences among Lentinula strains available for its cultivation, providing valuable insights to enhance mushroom quality and productivity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sujata Makkar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India
| | - Rama Shankar
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Ajay Singh
- Regional Mushroom Research Center, Maharana Pratap Horticultural University (MHU), Karnal, India
| | - Sudheer Kumar Annepu
- Plant Science Division, ICAR-Indian Institute of Soil and Water Conservation (ICAR-IISWC), Research Center, Ooty, India
| | - Kiran Nehra
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India
| |
Collapse
|
2
|
Yu W, Zhao Z, Zeng B, Tu Y, He B. Alanine supplementation enhancing cordycepin production in Cordyceps militaris via upregulation of Cns2 and Cns3 genes expression levels. J Food Drug Anal 2024; 32:589-602. [PMID: 39752865 PMCID: PMC11698586 DOI: 10.38212/2224-6614.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 01/07/2025] Open
Abstract
Cordycepin, a key bioactive compound produced by Cordyceps militaris, faces the challenge of low productivity for commercial use. In this study, alanine supplementation in Cordyceps militaris boosted cordycepin production, peaking at 3 mg/g with 12 g/L concentration. Transcriptome analysis revealed 1711 differentially expressed genes, Pathway analysis indicates that protein processing in the endoplasmic reticulum was the most affected pathway. In addition, the transcriptome showed that adenylosuccinate lyase is essential for the synthesis of cordycepin. The modulation of four genes (Cns1-4) points to a regulatory mechanism that could increase cordycepin biosynthesis, offering a strategy to overcome low productivity for commercial applications.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi,
China
| | - Zeying Zhao
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi,
China
| | - Bin Zeng
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi,
China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518000, Guangdong,
China
| | - Yayi Tu
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi,
China
| | - Bin He
- Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi,
China
| |
Collapse
|
3
|
Kato T, Inagaki S, Shibata C, Takayanagi K, Uehara H, Nishimura K, Park EY. Topical Infection of Cordyceps militaris in Silkworm Larvae Through the Cuticle has Lower Infectivity Compared to Beauveria bassiana and Metarhizium anisopliae. Curr Microbiol 2024; 82:26. [PMID: 39621154 DOI: 10.1007/s00284-024-03989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025]
Abstract
Topical infection of entomopathogenic fungi in insects occurs when the fungal conidia attach to the insect's surface (cuticle), germinate, and then form appressoria that penetrate the cuticle and enter their bodies. In this study, we inoculated silkworm larvae with three entomopathogenic fungi, Cordyceps militaris, Beauveria bassiana, and Metarhizium anisopliae, and investigated their mechanisms of infection. Attachment of the conidia of the three entomopathogenic fungi to the surface of silkworm larvae was observed under a microscope. We counted the number of conidia attached to the surface of the silkworm larvae and the number of conidia detached from the surface was counted. The number of C. militaris conidia that attached to the surface was less than that of B. bassiana and M. anisopliae; however, it germinated and formed appressoria on hydrophobic surfaces, similar to the other two strains. Mycelial growth of C. militaris was inhibited compared to that of B. bassiana in PDA medium containing 0.1% linoleic and linolenic acids. The germination of C. militaris conidia was also inhibited in PD medium containing 0.1% linoleic or linolenic acids. These results suggest that the attachment of low numbers of C. militaris conidia on the surface of silkworm larvae and presence of inhibitory linoleic or linolenic acids in the silkworm cuticles may cause low topical infectivity by C. militaris. This study improves the efficacy of topically infecting silkworms with C. militaris to produce fungal fruiting bodies for use in traditional Chinese medicine and dietary supplement production.
Collapse
Affiliation(s)
- Tatsuya Kato
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
| | - Sota Inagaki
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Chisato Shibata
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Keito Takayanagi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hiroki Uehara
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Konomi Nishimura
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Enoch Y Park
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
4
|
He RA, Huang C, Zheng CH, Wang J, Yuan SW, Chen BX, Feng K. Discovering a novel glycosyltransferase gene CmUGT1 enhances main metabolites production of Cordyceps militaris. Front Microbiol 2024; 15:1437963. [PMID: 39502416 PMCID: PMC11534717 DOI: 10.3389/fmicb.2024.1437963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Cordyceps militaris is a filamentous fungus used for both medicinal and culinary purposes. It exhibits a wide range of pharmacological activities due to its valuable contents of cordycepin, polysaccharides, carotenoids, terpenoids and other metabolites. However, C. militaris strains are highly susceptible to irreversible degradation in agricultural production, which is often manifested as a prolonged color change period and a significant decrease in the production of secondary metabolites. UDP-glycosyltransferases are an important enzyme family that participates in the synthesis of terpenoids by performing the glycosylation of key residues of enzymes or molecules. However, few studies have focused on its effect on the regulation of metabolite production in C. militaris. Therefore, in this study, we performed transcriptome analysis across four different developmental stages of C. militaris to target the putative glycosyltransferase gene CmUGT1, which plays important roles in metabolite production. We further constructed and screened a CmUGT1-overexpressing strain by Agrobacterium tumefaciens-mediated infestation of C. militaris spores. The major metabolite production of the wild-type and CmUGT1-overexpressing C. militaris strains was determined after short-term shake-flask cultivation of mycelia. The results showed that the yields of carotenoids and polysaccharides in the mycelia of the CmUGT1-overexpressing strains were 3.8 and 3.4 times greater than those in the mycelia of the wild type, respectively (p < 0.01). The levels of intracellular and extracellular cordycepin produced by the overexpression strain were 4.4 and 8.0 times greater than those produced by the wild-type strain (p < 0.01). This suggests that the overexpression of CmUGT1 in C. militaris enhances the synthesis activities of the main enzymes related to metabolite production, which provides a guide for obtaining excellent recombinant strains of C. militaris.
Collapse
Affiliation(s)
- Rong-an He
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Chun-hui Zheng
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Jing Wang
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Si-Wen Yuan
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Bai-Xiong Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Kun Feng
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
5
|
Luo L, Dai F, Xu Z, Guan J, Fei G, Qu J, Yao M, Xue Y, Zhou Y, Zou X. Core microbes in Cordyceps militaris sclerotia and their nitrogen metabolism-related ecological functions. Microbiol Spectr 2024; 12:e0105324. [PMID: 39162541 PMCID: PMC11448085 DOI: 10.1128/spectrum.01053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Cordyceps militaris infects insects and forms sclerotia within the insect remains, establishing insect-microbe complexes. Here, C. militaris sclerotia samples from a single location in China over a 5-year period were subjected to high-throughput DNA sequencing, and the core microbes (which were stably enriched in the sclerotia over the 5 years) were identified. Next, seven bacterial strains were isolated from the C. militaris sclerotia, their biochemical characteristics were assessed, and they were co-cultured with C. militaris to study their effects on C. militaris metabolite production and biomass. Furthermore, the effects of NH4, NO3, and peptone media on C. militaris were compared. The results showed that Rhodococcus, Phyllobacterium, Pseudomonas, Achromobacter, Ensifer, Stenotrophomonas, Sphingobacterium, Variovorax, and Acinetobacter were the core microbes. Although co-culture of C. militaris with the seven bacterial strains isolated from the sclerotia did not directly increase the cordycepin level, they all had NO3 reduction ability, and four had urea decomposition ability. Meanwhile, C. militaris in NH4 medium had an increased cordycepin level compared to C. militaris in the other two media. From this, we inferred that bacteria in the sclerotia can convert NO3 to NH4, and then cordycepin is produced using NH4, which was confirmed by RNA-seq and real-time fluorescence quantitative PCR. Thus, bacteria in the sclerotia may indirectly affect the C. militaris metabolite production by regulating nitrogen metabolism. In summary, there are stable core microbes in the C. militaris sclerotia, and they may directly and indirectly affect the growth and metabolite production of C. militaris. IMPORTANCE The model Cordyceps species Cordyceps militaris is rich in therapeutic compounds. It has recently been demonstrated that symbiotic microbes in sclerotia affect Cordyceps' growth, development, and secondary metabolite production. In this study, core microbes were identified based on C. militaris sclerotia samples obtained from the same site over 5 years. Additionally, bacterial strains isolated from C. militaris sclerotia were found to affect metabolite production and nitrogen utilization, based on functional tests. Moreover, based on the bacterial nitrogen metabolism capacity in the sclerotia and its influence on C. militaris metabolite production, we deduced that bacteria in the sclerotia can indirectly affect C. militaris metabolite production by regulating nitrogen metabolism. This is the first report on how bacteria in the sclerotia affect C. militaris metabolite production from the perspective of the nitrogen cycle. The results increase our understanding of microbial functions in C. militaris sclerotia.
Collapse
Affiliation(s)
- Li Luo
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Fei Dai
- Anshun Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Zhongshun Xu
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Jingqiang Guan
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Gangxiang Fei
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Jiaojiao Qu
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Min Yao
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Yuan Xue
- Anshun Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Yeming Zhou
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Xiao Zou
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Buradam P, Thananusak R, Koffas M, Chumnanpuen P, Vongsangnak W. Expanded Gene Regulatory Network Reveals Potential Light-Responsive Transcription Factors and Target Genes in Cordyceps militaris. Int J Mol Sci 2024; 25:10516. [PMID: 39408845 PMCID: PMC11476991 DOI: 10.3390/ijms251910516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris, a fungus widely used in traditional Chinese medicine and pharmacology, is recognized for its abundant bioactive compounds, including cordycepin and carotenoids. The growth, development, and metabolite production in various fungi are influenced by the complex interactions between regulatory cascades and light-signaling pathways. However, the mechanisms of gene regulation in response to light exposure in C. militaris remain largely unexplored. This study aimed to identify light-responsive genes and potential transcription factors (TFs) in C. militaris through an integrative transcriptome analysis. To achieve this, we reconstructed an expanded gene regulatory network (eGRN) comprising 507 TFs and 8662 regulated genes using both interolog-based and homolog-based methods to build the protein-protein interaction network. Aspergillus nidulans and Neurospora crassa were chosen as templates due to their relevance as fungal models and the extensive study of their light-responsive mechanisms. By utilizing the eGRN as a framework for comparing transcriptomic responses between light-exposure and dark conditions, we identified five key TFs-homeobox TF (CCM_07504), FlbC (CCM_04849), FlbB (CCM_01128), C6 zinc finger TF (CCM_05172), and mcrA (CCM_06477)-along with ten regulated genes within the light-responsive subnetwork. These TFs and regulated genes are likely crucial for the growth, development, and secondary metabolite production in C. militaris. Moreover, molecular docking analysis revealed that two novel TFs, CCM_05727 and CCM_06992, exhibit strong binding affinities and favorable docking scores with the primary light-responsive protein CmWC-1, suggesting their potential roles in light signaling pathways. This information provides an important functional interactive network for future studies on global transcriptional regulation in C. militaris and related fungi.
Collapse
Affiliation(s)
- Paradee Buradam
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Mattheos Koffas
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand;
| |
Collapse
|
7
|
Lusakunwiwat P, Thananusak R, Nopgason R, Laoteng K, Vongsangnak W. Holistic transcriptional responses of Cordyceps militaris to different culture temperatures. Gene 2024; 923:148574. [PMID: 38768876 DOI: 10.1016/j.gene.2024.148574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Cordyceps militaris is a medicinal entomopathogenic fungus containing valuable biometabolites for pharmaceutical applications. Its genetic inheritance and environmental factors play a crucial role in the production of biomass enriched with cordycepin. While temperature is a crucial controlled parameter for fungal cultivation, its impacts on growth and metabolite biosynthesis remains poorly characterized. This study aimed to investigate the metabolic responses and cordycepin production of C. militaris strain TBRC6039 under various temperature conditions through transcriptome analysis. Among 9599 expressed genes, 576 genes were significantly differentially expressed at culture temperatures of 15 and 25 °C. The changes in the transcriptional responses induced by these temperatures were found in several metabolisms involved in nutrient assimilation and energy source, including amino acids metabolism (e.g., glycine, serine and threonine metabolism) and lipid metabolism (e.g., biosynthesis of unsaturated fatty acids and steroid biosynthesis). At the lower temperature (15 °C), the biosynthetic pathways of lipids, specifically ergosterol and squalene, were the target for maintaining membrane function by transcriptional upregulation. Our study revealed the responsive mechanisms of C. militaris in acclimatization to temperature conditions that provide an insight on physiological manipulation for the production of metabolites by C. militaris.
Collapse
Affiliation(s)
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Rujirek Nopgason
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| |
Collapse
|
8
|
He R, Zhou W. Application and research progress of cordycepin in the treatment of tumours (Review). Mol Med Rep 2024; 30:161. [PMID: 38994776 PMCID: PMC11258602 DOI: 10.3892/mmr.2024.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cordycepin is a nucleoside molecule found in Cordyceps sinensis and can be obtained through chemical synthesis and biotransformation. Cordycepin has been extensively studied and has been shown to have antitumour activity. This activity includes effects on the autophagy process and inhibition of the MAPK/ERK and Hedgehog pathways. Ultimately, the inhibitory effect of cordycepin on tumour cells is due to the interplay of these effects. Cordycepin was shown to enhance the therapeutic effects of radiotherapy. There is increasing evidence indicating that cordycepin plays an anticancer role in the treatment of various cancers. The present review aims to provide a clear understanding of the antitumour mechanisms of cordycepin and discuss its present application in the treatment of tumours. This information can be an important theoretical basis and provide clinical guidance for the further development of cordycepin as an antitumour drug.
Collapse
Affiliation(s)
- Ru He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
9
|
Lee J, Lee J, Choi Y, Kim T, Chang PS. An sn-2 regioselective lipase with cis-fatty acid preference from Cordyceps militaris: Biochemical characterization and insights into its regioselective mechanism. Int J Biol Macromol 2024; 276:134013. [PMID: 39032883 DOI: 10.1016/j.ijbiomac.2024.134013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Lipase with unique regioselectivity is an attractive biocatalyst for elaborate lipid modification. However, the excavation of novel sn-2 regioselective lipases is difficult due to their scarcity in nature, with Candida antarctica lipase A (CALA) being the pronouncedly reported one. Here, we identified a novel CALA-like lipase from Cordyceps militaris (CACML7) via in silico mining. Through chiral-phase high-performance liquid chromatography, we determined that CACML7 displays sn-2 regioselectivity (>68 %) as does CALA, but exhibits distinctive chain length selectivity and bias against unsaturated fats. Notably, the curvature of the acyl-binding tunnel was expected to contribute to the 2.2-fold higher preference for cis-fatty acid (C18:1, cis-Δ9) over trans-fatty acid (C18:1, trans-Δ9) unlike trans-active CALA. Random pose docking of trioleoylglycerol (TOG) into the active site of a lid-truncated mutant of CACML7 revealed that TOG accepts a tuning fork conformation, of which the precise positioning of the reactive ester group towards the catalytic center was only favorable via sn-2 binding mode. The unique active site morphology, which we refer to as an "acyl-binding tunnel with a narrow entrance," may contribute to the sn-2 regioselectivity of CACML7. Our data provide an attractive model to better understand the mechanism underlying sn-2 regioselectivity.
Collapse
Affiliation(s)
- Juno Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Juchan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoonseok Choi
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Taehyeong Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea; Integrated Major in Global Smart Farm, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Hu Y, Wu Y, Song J, Ma M, Xiao Y, Zeng B. Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies. Bioengineering (Basel) 2024; 11:783. [PMID: 39199741 PMCID: PMC11351413 DOI: 10.3390/bioengineering11080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.H.); (Y.W.); (J.S.); (M.M.); (Y.X.)
| |
Collapse
|
11
|
Zhang H, Yang J, Luo S, Liu L, Yang G, Gao B, Fan H, Deng L, Yang M. A novel complementary pathway of cordycepin biosynthesis in Cordyceps militaris. Int Microbiol 2024; 27:1009-1021. [PMID: 37987892 PMCID: PMC11300563 DOI: 10.1007/s10123-023-00448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
We determined whether there exists a complementary pathway of cordycepin biosynthesis in wild-type Cordyceps militaris, high-cordycepin-producing strain C. militaris GYS60, and low-cordycepin-producing strain C. militaris GYS80. Differentially expressed genes were identified from the transcriptomes of the three strains. Compared with C. militaris, in GYS60 and GYS80, we identified 145 and 470 upregulated and 96 and 594 downregulated genes. Compared with GYS80, in GYS60, we identified 306 upregulated and 207 downregulated genes. Gene Ontology analysis revealed that upregulated genes were mostly involved in detoxification, antioxidant, and molecular transducer in GYS60. By Clusters of Orthologous Groups of Proteins and Kyoto Encyclopedia of Genes and Genomes analyses, eight genes were significantly upregulated: five genes related to purine metabolism, one to ATP production, one to secondary metabolite transport, and one to RNA degradation. In GYS60, cordycepin was significantly increased by upregulation of ATP production, which promoted 3',5'-cyclic AMP production. Cyclic AMP accelerated 3'-AMP accumulation, and cordycepin continued to be synthesized and exported. We verified the novel complementary pathway by adding the precursor adenosine and analyzing the expression of four key genes involved in the main pathway of cordycepin biosynthesis. Adenosine addition increased cordycepin production by 51.2% and 10.1%, respectively, in C. militaris and GYS60. Four genes in the main pathway in GYS60 were not upregulated.
Collapse
Affiliation(s)
- Hucheng Zhang
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Jun Yang
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Shuai Luo
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Linying Liu
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Guowei Yang
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Bo Gao
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Haitao Fan
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Lina Deng
- Department of English, Beijing Health Vocational College, Beijing, 102402, China.
| | - Ming Yang
- Department of Cardiovascular Surgery Institute of Cardiac Surgery, PLA General Hospital, Beijing, 100141, China.
| |
Collapse
|
12
|
Liu M, Wang A, Meng G, Liu Q, Yang Y, Wang M, Wang Z, Wang F, Dong C. Innovative application of CRISPR for eliminating Ustiloxin in Cordyceps militaris: Enhancing food safety and quality. Lebensm Wiss Technol 2024; 204:116420. [PMID: 39119199 PMCID: PMC11308680 DOI: 10.1016/j.lwt.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cordyceps militaris (L.) Fr. Has long been recognized as a valuable functional food consumed in numerous countries. However, biosynthetic gene clusters of this species and safety regarding mycotoxin production remain largely unexplored. In this study, a ribosomally synthesized and post-translationally modified peptide (RiPP) cluster responsible for the production of cyclopeptide mycotoxins in Cordyceps was unveiled via genome mining. Ustiloxin B and a novel, predominant and Cordyceps specific ustiloxin I were confirmed by extraction and structural analysis. The difference between Ustiloxins I and B lied in the side chain at C19, where an additional methyl substituent in Ustiloxin I resulted in an alanine moiety substitution for glycine of Ustiloxin B. The simultaneous deletion of the two adjacent core genes, CmustYb and CmustYa, using a single guide RNA designed in the intergenic region, and subsequent in-situ complementation via AMA-mediated CRISPR/Cas9 system confirmed the RiPP cluster's responsibility for ustiloxin production. The cultivation of the edited strain yielded ustiloxin-free fruiting bodies without affecting agronomic characters. PCR and genome resequencing confirmed the absence of any off-target events or foreign sequence remnants. This study marks a significant advancement in utilizing CRISPR technology to control ustiloxins in food, underscoring its broader implications for food safety and quality improvement.
Collapse
Affiliation(s)
- Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anning Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, United States
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
13
|
Wang X, Li X, Qiu W, Sa F, Feng Y, Ge Y, Yang S, Liu Y, Xie J, Zhang W, Li W, Cheng X. Effects of mating-type ratio imbalance on the degeneration of Cordyceps militaris subculture and preventative measures. PeerJ 2024; 12:e17648. [PMID: 39006009 PMCID: PMC11243967 DOI: 10.7717/peerj.17648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
The rapid degeneration of Cordyceps militaris strains during subculture represents a bottleneck problem that affects production stability. This study explored the mechanism underlying this degeneration in three production and three wild-type strains of Cordyceps militaris, isolating single-conidium strains from each. The effects of subculturing on fructification in both original and single mating-type strains were compared. Changes in the ratio of the two mating types were analyzed in both original and degenerated strains. Based on these findings, the two mating strains were paired in different ratios to determine their effects on fruiting. The resulting five strains were heterokaryotic strains with both MAT1-1 and MAT1-2 mating-type genes. Strain jb-2 was a single mating type (MAT1-1) mutant strain that produced stable fruiting bodies but failed to produce ascospores. It was found that the loss of or imbalance in mating types was the main reason for the rapid degeneration of fruiting traits during subculture and that this occurred randomly in the MAT1-1 and MAT1-2 types. The strains differed significantly in their stability during subculture. Fruiting was stable in the single mating-type Jb-2 strain, and the eleventh-generation fruited normally. There were differences in yield between the production and wild strains after inoculation with spawn containing different proportions of mating types. The production strain was more stable when inoculated with strains with mating-type ratios of 1:9 to 9:1 without affecting the yield. However, the yield of the wild-type strain xf-1 was positively correlated with the proportion of the MAT1-2 type, while the other two strains showed no correlations. Subculturing single mating-type mycelia separately and mixing them before production effectively mitigated degeneration during subculture. For Cordyceps militaris breeding, selecting strains containing both mating types, which are insensitive to the proportion of mating-type genes, enhanced stability in subculture and reduced the risk of mating-type loss. Direct breeding of specific single-mating type strains to induce fruiting is thus an effective breeding strategy.
Collapse
Affiliation(s)
- Xin Wang
- School of Agriculture, Ludong University, Yantai, Shandong, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xiu'E Li
- School of Agriculture, Ludong University, Yantai, Shandong, China
| | - Wenxu Qiu
- School of Agriculture, Ludong University, Yantai, Shandong, China
| | - Fangping Sa
- School of Agriculture, Ludong University, Yantai, Shandong, China
| | - Yetong Feng
- School of Agriculture, Ludong University, Yantai, Shandong, China
| | - Yupeng Ge
- School of Agriculture, Ludong University, Yantai, Shandong, China
| | - Shude Yang
- School of Agriculture, Ludong University, Yantai, Shandong, China
| | - Yu Liu
- School of Agriculture, Ludong University, Yantai, Shandong, China
| | - Jinzhong Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Weihuan Li
- School of Agriculture, Ludong University, Yantai, Shandong, China
| | - Xianhao Cheng
- School of Agriculture, Ludong University, Yantai, Shandong, China
| |
Collapse
|
14
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
15
|
Noushahi HA, Khan AH, Khan HA, Kiedrzyński M, Akbar A, Shahzad R, Koerniati S, Alrefaei AF, Shu S. Optimizing liquid fermentation for Wolfiporia cocos: gene expression and biosynthesis of pachymic acid and mycelial biomass. Lett Appl Microbiol 2024; 77:ovae054. [PMID: 38866707 DOI: 10.1093/lambio/ovae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Wolfiporia cocos, a versatile fungus acclaimed for its nutritional and therapeutic benefits in Traditional Chinese Medicine, holds immense potential for pharmaceutical and industrial applications. In this study, we aimed to optimize liquid fermentation techniques and culture medium composition to maximize mycelial biomass (MB) yield, pachymic acid (PA) concentration, and overall PA production. Additionally, we investigated the molecular basis of our findings by quantifying the expression levels of genes associated with PA and MB biosynthesis using quantitative real-time polymerase chain reaction. Under the optimized fermentation conditions, significant results were achieved, with maximum MB reaching 6.68 g l-1, PA content peaking at 1.25 mg g-1, and a total PA yield of 4.76 g l-1. Notably, among the four examined genes, squalene monooxygenase, exhibited enhanced expression at 0.06 ratio under the optimized conditions. Furthermore, within the realm of carbohydrate-active enzymes, the glycoside hydrolases 16 family displayed elevated expression levels at 21 ratios, particularly during MB production. This study enhances understanding of genetic mechanism governing MB and PA production in W. cocos, highlighting the roles of squalene monooxygenase and glycoside hydrolases 16 carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Plant Breeding and Phenomic Centre, Faculty of Agricultural Sciences, University of Talca, Talca 3460000, Chile
| | - Aamir Hamid Khan
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237 Lodz, Poland
| | - Hamza Ali Khan
- Plant Breeding and Phenomic Centre, Faculty of Agricultural Sciences, University of Talca, Talca 3460000, Chile
| | - Marcin Kiedrzyński
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237 Lodz, Poland
| | - Adnan Akbar
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237 Lodz, Poland
| | - Raheel Shahzad
- Research Center for Genetics Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Sri Koerniati
- Research Center for Genetics Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Yan HH, Shang YT, Wang LH, Tian XQ, Tran VT, Yao LH, Zeng B, Hu ZH. Construction of a New Agrobacterium tumefaciens-Mediated Transformation System based on a Dual Auxotrophic Approach in Cordyceps militaris. J Microbiol Biotechnol 2024; 34:1178-1187. [PMID: 38563100 PMCID: PMC11180907 DOI: 10.4014/jmb.2312.12003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.
Collapse
Affiliation(s)
- Huan huan Yan
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Yi tong Shang
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Li hong Wang
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Xue qin Tian
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Van-Tuan Tran
- VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Li hua Yao
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Bin Zeng
- Shenzhen Technology University, Shenzhen 518118, P.R. China
| | - Zhi hong Hu
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| |
Collapse
|
17
|
Chai L, Li J, Guo L, Zhang S, Chen F, Zhu W, Li Y. Genomic and Transcriptome Analysis Reveals the Biosynthesis Network of Cordycepin in Cordyceps militaris. Genes (Basel) 2024; 15:626. [PMID: 38790255 PMCID: PMC11120935 DOI: 10.3390/genes15050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cordycepin is the primary active compound of Cordyceps militaris. However, the definitive genetic mechanism governing cordycepin synthesis in fruiting body growth and development remains elusive, necessitating further investigation. This study consists of 64 C. militaris strains collected from northeast China. The high-yielding cordycepin strain CMS19 was selected for the analysis of cordycepin production and the genetic basis of cordycepin anabolism. First, the whole-genome sequencing of CMS19 yielded a final size of 30.96 Mb with 8 contigs and 9781 protein-coding genes. The genome component revealed the presence of four additional secondary metabolite gene clusters compared with other published genomes, suggesting the potential for the production of new natural products. The analyses of evolutionary and genetic differentiation revealed a close relationship between C. militaris and Beauveria bassiana. The population of strains distributed in northeast China exhibited the significant genetic variation. Finally, functional genes associated with cordycepin synthesis were identified using a combination of genomic and transcriptomic analyses. A large number of functional genes associated with energy and purine metabolism were significantly enriched, facilitating the reconstruction of a hypothetical cordycepin metabolic pathway. Therefore, our speculation of the cordycepin metabolism pathway involved 24 genes initiating from the glycolysis and pentose phosphate pathways, progressing through purine metabolism, and culminating in the core region of cordycepin synthesis. These findings could offer fundamental support for scientific utilizations of C. militaris germplasm resources and standardized cultivation for cordycepin production.
Collapse
Affiliation(s)
- Linshan Chai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Jianmei Li
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Lingling Guo
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Shuyu Zhang
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Fei Chen
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Wanqin Zhu
- Liaoning Academy of Microbial Sciences, Chaoyang 122000, China; (J.L.); (L.G.); (S.Z.); (F.C.); (W.Z.)
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
18
|
Li X, Wang X, Liang F, Wang Z, Liu W, Ge Y, Yang S, Liu Y, Li Y, Cheng X, Li W. Biological characteristics of Cordyceps militaris single mating-type strains. Arch Microbiol 2024; 206:225. [PMID: 38642078 DOI: 10.1007/s00203-024-03952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.
Collapse
Affiliation(s)
- Xiu'E Li
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Xin Wang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Fengji Liang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Zhaoxin Wang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Wenshuo Liu
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Yupeng Ge
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Shude Yang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Yu Liu
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Yin Li
- Yantai Hospital of Traditional Chinese Medicine, Yantai, 264013, China
| | - Xianhao Cheng
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China.
- Yantai Edible and Medicinal Mushroom Technology Innovation Center, Yantai, 264013, China.
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai, Shandong Province, 264025, China.
| | - Weihuan Li
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China.
- Yantai Edible and Medicinal Mushroom Technology Innovation Center, Yantai, 264013, China.
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai, Shandong Province, 264025, China.
| |
Collapse
|
19
|
Wu N, Ge X, Yin X, Yang L, Chen L, Shao R, Xu W. A review on polysaccharide biosynthesis in Cordyceps militaris. Int J Biol Macromol 2024; 260:129336. [PMID: 38224811 DOI: 10.1016/j.ijbiomac.2024.129336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Cordyceps militaris (C. militaris) is an edible parasitic fungus with medicinal properties. Its bioactive polysaccharides are structurally diverse and exhibit various metabolic and biological activities, including antitumor, hypoglycemic, antioxidant, hypolipidemic, anti-inflammatory, immunostimulatory, and anti-atherosclerotic effects. These properties make C. militaris-derived polysaccharides a promising candidate for future development. Recent advancements in microbial fermentation technology have enabled successful laboratory cultivation and extraction of these polysaccharides. These polysaccharides are structurally diverse and exhibit various biological activities, such as immunostimulatory, antioxidant, antitumor, hypolipidemic, and anti-atherosclerotic effects. This review aims to summarize the structure and production mechanisms of polysaccharides from C. militaris, covering extraction methods, key genes and pathways involved in biosynthesis, and fermentation factors that influence yield and activity. Furthermore, the future potential and challenges of utilizing polysaccharides in the development of health foods and pharmaceuticals are addressed. This review serves as a valuable reference in the fields of food and medicine, and provides a theoretical foundation for the study of polysaccharides.
Collapse
Affiliation(s)
- Na Wu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaodong Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xuemei Yin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lei Yang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ligen Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong Shao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wei Xu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
20
|
Kim JC, Hwang IM, Kim HM, Kim S, Shin TS, Woo SD, Park HW. Rapid analysis of insecticidal metabolites from the entomopathogenic fungus Beauveria bassiana 331R using UPLC-Q-Orbitrap MS. Mycotoxin Res 2024; 40:123-132. [PMID: 37968430 DOI: 10.1007/s12550-023-00509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Beauveria bassiana, a representative entomopathogenic fungus, is increasingly being utilized as an eco-friendly pest management alternative to chemical insecticides. This fungus produces a range of insecticidal secondary metabolites that act as antimicrobial and immunosuppressive agents. However, detailed qualitative and quantitative analysis related to these compounds remains scarce, we developed a method for the rapid analysis of these metabolites. Eight secondary metabolites (bassianin, bassianolide, beauvericin, beauveriolide I, enniatin A, A1, and B, and tenellin) were efficiently extracted when B. bassiana-infected Tenebrio molitor larvae were ground in 70% EtOH extraction solvent and subsequently subjected to ultrasonic treatment for 30 min. The eight metabolites were rapidly and simultaneously analyzed using ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). Bassianolide (20.6-51.1 µg/g) and beauvericin (63.6-109.8 µg/g) were identified as the main metabolites in B. basssiana-infected larvae, indicating that they are likely major toxins of B. bassiana. Validation of the method exhibited recovery rates in the range of 80-115% and precision in the range of 0.1-8.0%, indicating no significant interference from compounds in the matrix. We developed a method to rapidly analyze eight insecticidal metabolites using UPLC-Q-Orbitrap MS. This can be extensively utilized for detecting and producing insecticidal fungal secondary metabolites.
Collapse
Affiliation(s)
- Jong-Cheol Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - In Min Hwang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Seulbi Kim
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
- Division of Applied Bioscience & Biotechnology, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Teak Su Shin
- R&D Center, Solvm Co., Ltd., Daejeon, 34014, Republic of Korea
| | - Soo-Dong Woo
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.
| |
Collapse
|
21
|
Oakley CE, Barton TS, Oakley BR. Identification of the chaA and fwA Spore Color Genes of Aspergillus nidulans. J Fungi (Basel) 2024; 10:104. [PMID: 38392776 PMCID: PMC10890192 DOI: 10.3390/jof10020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Wild-type Aspergillus nidulans asexual spores (conidia) are green due to a pigment that protects the spores against ultraviolet light. The pigment is produced by a biosynthetic pathway, the genes of which are dispersed in the genome. The backbone molecule of the pigment is a polyketide synthesized by a polyketide synthase encoded by the wA gene. If wA is not functional, the conidia are white. The polyketide is modified by a laccase encoded by the yA gene and inactivation of yA in an otherwise wild-type background results in yellow spores. Additional spore color mutations have been isolated and mapped to a locus genetically, but the genes that correspond to these loci have not been determined. Spore color markers have been useful historically, and they remain valuable in the molecular genetics era. One can determine if a transforming fragment has been successfully integrated at the wA or yA locus by simply looking at the color of transformant conidia. The genes of the potentially useful color loci chaA (chartreuse conidia) and fwA (fawn conidia) have not been identified previously. We chose a set of candidate genes for each locus by comparing the assembled genome with the genetic map. By systematically deleting these candidate genes, we identified a cytochrome P450 gene (AN10028) corresponding to chaA. Deletions of this gene result in chartreuse conidia and chartreuse mutations can be complemented in trans by a functional copy of this gene. With fwA, we found that the existing fawn mutation, fwA1, is a deletion of 2241 base pairs that inactivates three genes. By deleting each of these genes, we determined that fwA is AN1088, an EthD domain protein. Deletion of AN1088 results in fawn conidia as expected. Neither deletion of chaA nor fwA restricts growth and both should be valuable target loci for transformations. Combinations of deletions have allowed us to investigate the epistasis relationships of wA, yA, chaA and fwA.
Collapse
Affiliation(s)
- C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Thomas S Barton
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| |
Collapse
|
22
|
Hoang CQ, Duong GHT, Tran MH, Vu TX, Tran TB, Pham HTN. Molecular mechanisms underlying phenotypic degeneration in Cordyceps militaris: insights from transcriptome reanalysis and osmotic stress studies. Sci Rep 2024; 14:2231. [PMID: 38278834 PMCID: PMC10817986 DOI: 10.1038/s41598-024-51946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Phenotypic degeneration in Cordyceps militaris poses a significant concern for producers, yet the mechanisms underlying this phenomenon remain elusive. To address this concern, we isolated two strains that differ in their abilities to form fruiting bodies. Our observations revealed that the degenerated strain lost the capacity to develop fruiting bodies, exhibited limited radial expansion, increased spore density, and elevated intracellular glycerol levels. Transcriptome reanalysis uncovered dysregulation of genes involved in the MAPK signaling pathway in the degenerate strain. Our RT-qPCR results demonstrated reduced expression of sexual development genes, along with upregulation of genes involved in asexual sporulation, glycerol synthesis, and MAPK regulation, when compared to the wild-type strain. Additionally, we discovered that osmotic stress reduced radial growth but increased conidia sporulation and glycerol accumulation in all strains. Furthermore, hyperosmotic stress inhibited fruiting body formation in all neutralized strains. These findings indicate dysregulation of the MAPK signaling pathway, the possibility of the activation of the high-osmolarity glycerol and spore formation modules, as well as the downregulation of the pheromone response and filamentous growth cascades in the degenerate strain. Overall, our study sheds light on the mechanisms underlying Cordyceps militaris degeneration and identifies potential targets for improving cultivation practices.
Collapse
Affiliation(s)
- Chinh Q Hoang
- Center of Experimental Biology, National Center for Technical Progress, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Vietnam.
| | - Giang H T Duong
- Center of Experimental Biology, National Center for Technical Progress, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Vietnam
- Department of Molecular Biotechnology, Institute of New Technology, Academy of Military Science and Technology, 17 Hoang Sam, Cau Giay, Hanoi, Vietnam
| | - Mai H Tran
- Center for Biomedical Informatics, Vingroup Big Data Institute, and GeneStory JSC, 458 Minh Khai, Hai Ba Trung, Hanoi, Vietnam
- GeneStory JSC, 458 Minh Khai, Hai Ba Trung, Hanoi, Vietnam
| | - Tao X Vu
- Center of Experimental Biology, National Center for Technical Progress, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Vietnam
| | - Tram B Tran
- Center of Experimental Biology, National Center for Technical Progress, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Vietnam
| | - Hang T N Pham
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, 3B Quang Trung, Hoan Kiem District, Hanoi, 100000, Vietnam
- University of Medicine and Pharmacy, Vietnam National University, 144 Xuan Thuy, Cau Giay District, Hanoi, 100000, Vietnam
| |
Collapse
|
23
|
Zhang H, Deng L, Luo S, Liu L, Yang G, Zhang Y, Gao B, Yang D, Wang X, Li S, Li X, Jiang Y, Lao W, Vriesekoop F. Evidence for Regulation of Cordycepin Biosynthesis by Transcription Factors Krüppel-Like Factor 4 and Retinoid X Receptor Alpha in Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 2024; 26:19-40. [PMID: 39171629 DOI: 10.1615/intjmedmushrooms.2024054952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cordyceps militaris, Chinese traditional medicinal fungus, has many bioactive properties. Cordycepin (3'-deoxyadenosine) is a major bioactive component of C. militaris. Various methods can significantly elevate cordycepin production, which suggests a diverse set of metabolic regulatory mechanisms. Thus, we aimed to identify transcription factors that regulate cordycepin biosynthesis pathways. Transcriptome analysis of wild-type C. militaris, C. militaris GYS60, a cordycepin high-producing strain, and C. militaris GYS80, a low-producing strain, were used to measure expression and function of genes related to cordycepin biosynthesis. The transcriptome expression data were confirmed by quantitative real-time polymerase chain reaction. We identified 155 relevant transcription factors in 19 families that included Fork head/winged helix factors, other C4 zinc finger-type factors, C2H2 zinc finger factors, tryptophan cluster factors, nuclear receptors with C4 zinc fingers, homeodomain factors, and Rel homology region factors. Energy generation and amino acid conversion pathways were activated in GYS60 so that abundance of cordycepin precursors was increased. Genes and transcription factors for rate-limiting enzymes in these pathways were identified. Overexpression of two key transcription factors, Kruppel-like factor 4 (Klf4) and Retinoid X receptor alpha (Rxra), promoted high cordycepin production in GYS60. In GYS60, Klf4 and Rxra were responsible for upregulation of genes in cordycepin biosynthesis, namely an oxidoreductase, 3',5'-cyclic AMP phosphodiesterase, a transferase, and adenylate cyclase. Upregulation of these genes increased 3'-AMP content, thereby elevating cordycepin synthesis.
Collapse
Affiliation(s)
- Hucheng Zhang
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Lina Deng
- Beijing Health Vocational College, Fangshan District, 102402 Beijing, People's Republic of China
| | - Shuai Luo
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Linying Liu
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Guowei Yang
- College of Bioengineering, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100171 Beijing, People's Republic of China
| | - Yuning Zhang
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Bo Gao
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Dongqing Yang
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Xiaojie Wang
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Shuangshi Li
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Xingjuan Li
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Yaguang Jiang
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Wenyan Lao
- School of Biochemical Engineering of Beijing Union University
| | - Frank Vriesekoop
- Department of Food Science, Harper Adams University, Newport TF10 8NB, United Kingdom
| |
Collapse
|
24
|
He L, Xiao F, Dou CX, Zhou B, Chen ZH, Wang JY, Wang CG, Xie F. Integrated Comparative Transcriptome and Weighted Gene Co-Expression Network Analysis Provide Valuable Insights into the Mechanisms of Pinhead Initiation in Chinese Caterpillar Mushroom Ophiocordyceps sinensis (Ascomycota). Int J Med Mushrooms 2024; 26:41-54. [PMID: 39171630 DOI: 10.1615/intjmedmushrooms.2024054674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The initiation and formation of the "pinhead" is the key node in growth process of Ophiocordyceps sinensis (Chinese Cordyceps). The research on the mechanism of changes in this growth stage is the basis for realizing the industrialization of its artificial cultivation. Clarifying the mechanisms of pinhead initiation is essential for its further application. Here, we performed a comprehensive transcriptome analysis of pinhead initiation process in O. sinensis. Comparative transcriptome analysis revealed remarkable variation in gene expression and enriched pathways at different pinhead initiation stages. Gene co-expression network analysis by WGCNA identified 4 modules highly relevant to different pinhead initiation stages, and 23 hub genes. The biological function analysis and hub gene annotation of these identified modules demonstrated that transmembrane transport and nucleotide excision repair were the topmost enriched in pre-pinhead initiation stage, carbohydrate metabolism and protein glycosylation were specially enriched in pinhead initiation stage, nucleotide binding and DNA metabolic process were over-represented after pinhead stage. These key regulators are mainly involved in carbohydrate metabolism, synthesis of proteins and nucleic acids. This work excavated the candidate pathways and hub genes related to the pinhead initiation stage, which will serve as a reference for realizing the industrialization of artificial cultivation in O. sinensis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fan Xiao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Chen Xi Dou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| |
Collapse
|
25
|
Zhang KT, Huang ZP, Xu XR, Li SH, Xu YX, Zhao Q, Zhang XM. Two new diketopiperazines from the Cordyceps fungus Samsoniella sp. XY4. J Antibiot (Tokyo) 2023; 76:735-740. [PMID: 37789127 DOI: 10.1038/s41429-023-00662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Two new diketopiperazines, namely samsoniellain A (1) and samsoniellain B (2), together with two known compounds (3, 4) were isolated from Cordyceps fungus Samsoniella sp. XY4. The planar structures of 1 and 2 were determined by HRESIMS, 1D and 2D NMR spectroscopy. The absolute configurations of 1 and 2 were determined by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Results of antimicrobial activity indicated that compound 2 showed weak bacteriostatic activities against S. typhimurium χ 8956, H. influenza ATCC 10211, MRSA 2024 with the MIC values of 128, 256, and 256 μg ml-1, respectively. This is the first report about secondary metabolites of Samsoniella sp.
Collapse
Affiliation(s)
- Ke-Tao Zhang
- School of Basic Medical Science, School of Chinese Medicine, Yunnan University of Chinese Medicine, Kun Ming, 650500, Yunnan, China
| | - Zhi-Pu Huang
- School of Basic Medical Science, School of Chinese Medicine, Yunnan University of Chinese Medicine, Kun Ming, 650500, Yunnan, China
| | - Xiao-Rong Xu
- School of Basic Medical Science, School of Chinese Medicine, Yunnan University of Chinese Medicine, Kun Ming, 650500, Yunnan, China
| | - Si-Heng Li
- School of Basic Medical Science, School of Chinese Medicine, Yunnan University of Chinese Medicine, Kun Ming, 650500, Yunnan, China
| | - Yu-Xiao Xu
- School of Basic Medical Science, School of Chinese Medicine, Yunnan University of Chinese Medicine, Kun Ming, 650500, Yunnan, China
| | - Qing Zhao
- School of Basic Medical Science, School of Chinese Medicine, Yunnan University of Chinese Medicine, Kun Ming, 650500, Yunnan, China.
| | - Xiao-Mei Zhang
- School of Basic Medical Science, School of Chinese Medicine, Yunnan University of Chinese Medicine, Kun Ming, 650500, Yunnan, China.
| |
Collapse
|
26
|
Long L, Liu Z, Wang Y, Lin Q, Ding S, Li C, Deng C. High-level production of cordycepin by the xylose-utilising Cordyceps militaris strain 147 in an optimised medium. BIORESOURCE TECHNOLOGY 2023; 388:129742. [PMID: 37734485 DOI: 10.1016/j.biortech.2023.129742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Cordycepin is an important active metabolite of Cordyceps militaris. Xylose, an attractive feedstock for producing chemicals through microbial fermentation, cannot be effectively utilised by many reported C. militaris strains. Herein, a xylose-utilising C. militaris strain 147 produced the highest level of cordycepin (3.03 g/L) in xylose culture. Xylose, alanine, and ammonium citrate were determined as the main affecting factors on the cordycepin production using a Plackett-Burman design. The combination of these factors was optimised using response surface methodology, and the maximal 6.54 g/L of cordycepin was produced by the fungus in the optimal medium. Transcriptome analysis revealed that xylose utilisation upregulated the transcriptional levels of genes participating in purine and energy metabolisms in the fungus, which may facilitate the formation of precursors for cordycepin biosynthesis. This investigation provides new insights into the efficient production of cordycepin and is conducive to the valorisation of biomass rich in xylose.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Centre for Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry & Utilisation of Agricultural and Forest Biomass, Nanjing 210037, China
| | - Zhen Liu
- Jiangsu Co-Innovation Centre for Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yizhou Wang
- Jiangsu Co-Innovation Centre for Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilisation of Wild Plants, Nanjing, 211111, China.
| | - Shaojun Ding
- Jiangsu Co-Innovation Centre for Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry & Utilisation of Agricultural and Forest Biomass, Nanjing 210037, China
| | - Chuanhua Li
- Key Laboratory of Applied Mycological Resources and Utilisation, Ministry of Agriculture, National Engineering Research Centre of Edible Fungi; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chunying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China.
| |
Collapse
|
27
|
Liu Q, Meng G, Wang M, Li X, Liu M, Wang F, Yang Y, Dong C. Safe-Harbor-Targeted CRISPR/Cas9 System and Cmhyd1 Overexpression Enhances Disease Resistance in Cordyceps militaris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15249-15260. [PMID: 37807760 DOI: 10.1021/acs.jafc.3c05131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Fungal disease of mushroomCordyceps militaris (CM) caused byCalcarisporium cordycipiticola (CC) is destructive to fruiting body cultivation, resulting in significant economic loss and potential food safety risks. CRISPR/Cas9 genome editing has proven to be a powerful tool for crop improvement but seldom succeeded in mushrooms. Here, the first genomic safe-harbor site, CmSH1 locus, was identified in the CM genome. A safe-harbor-targeted CRISPR/Cas9 system based on an autonomously replicating plasmid was designed to facilitate alien gene integration at the CmSH1 locus. Cmhyd1, one of the hydrophobin genes, was confirmed as a defensive factor against CC infection, and Cmhyd1 overexpression by this system showed enhancement of disease resistance with negligible effect on the agronomic traits of CM. No off-target events and residues of plasmid sequence were tested by PCR and genome resequencing. This study provided the first safe harbor site for genetic manipulations, a safe harbor-targeted CRISPR/Cas9 system, and the first disease-resistant gene-editing breeding system in mushrooms.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei Province, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Vu TX, Thai HD, Dinh BHT, Nguyen HT, Tran HTP, Bui KLT, Tran TB, Pham HT, Mai LTD, Le DH, Nguyen HQ, Tran VT. Effects of MAT1-2 Spore Ratios on Fruiting Body Formation and Degeneration in the Heterothallic Fungus Cordyceps militaris. J Fungi (Basel) 2023; 9:971. [PMID: 37888227 PMCID: PMC10607669 DOI: 10.3390/jof9100971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
The medicinal mushroom Cordyceps militaris is widely exploited in traditional medicine and nutraceuticals in Asian countries. However, fruiting body production in C. militaris is facing degeneration through cultivation batches, and the molecular mechanism of this phenomenon remains unclear. This study showed that fruiting body formation in three different C. militaris strains, namely G12, B12, and HQ1, severely declined after three successive culturing generations using the spore isolation method. PCR analyses revealed that these strains exist as heterokaryons and possess both the mating-type loci, MAT1-1 and MAT1-2. Further, monokaryotic isolates carrying MAT1-1 or MAT1-2 were successfully separated from the fruiting bodies of all three heterokaryotic strains. A spore combination of the MAT1-1 monokaryotic isolate and the MAT1-2 monokaryotic isolate promoted fruiting body formation, while the single monokaryotic isolates could not do that themselves. Notably, we found that changes in ratios of the MAT1-2 spores strongly influenced fruiting body formation in these strains. When the ratios of the MAT1-2 spores increased to more than 15 times compared to the MAT1-1 spores, the fruiting body formation decreased sharply. In contrast, when MAT1-1 spores were increased proportionally, fruiting body formation was only slightly reduced. Our study also proposes a new solution to mitigate the degeneration in the heterokaryotic C. militaris strains caused by successive culturing generations.
Collapse
Affiliation(s)
- Tao Xuan Vu
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam; (T.X.V.); (H.-D.T.)
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi 100000, Vietnam
| | - Hanh-Dung Thai
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam; (T.X.V.); (H.-D.T.)
| | - Bich-Hang Thi Dinh
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam; (T.X.V.); (H.-D.T.)
| | - Huong Thi Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam; (T.X.V.); (H.-D.T.)
| | - Huyen Thi Phuong Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam; (T.X.V.); (H.-D.T.)
| | - Khanh-Linh Thi Bui
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam; (T.X.V.); (H.-D.T.)
| | - Tram Bao Tran
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi 100000, Vietnam
| | - Hien Thanh Pham
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam
| | - Linh Thi Dam Mai
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam
| | - Diep Hong Le
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam
| | - Huy Quang Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam; (T.X.V.); (H.-D.T.)
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam
| | - Van-Tuan Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam; (T.X.V.); (H.-D.T.)
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 100000, Vietnam
| |
Collapse
|
29
|
Li XL, Sun Y, Yin Y, Zhan S, Wang C. A bacterial-like Pictet-Spenglerase drives the evolution of fungi to produce β-carboline glycosides together with separate genes. Proc Natl Acad Sci U S A 2023; 120:e2303327120. [PMID: 37467272 PMCID: PMC10372676 DOI: 10.1073/pnas.2303327120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Diverse β-carboline (βC) alkaloids are produced by microbes, plants, and animals with myriad bioactivities and drug potentials. However, the biosynthetic mechanism of βCs remains largely elusive, especially regarding the hydroxyl and glucosyl modifications of βCs. Here, we report the presence of the bacterial-like Pictet-Spenglerase gene Fcs1 in the entomopathogenic Beauveria fungi that can catalyze the biosynthesis of the βC skeleton. The overexpression of Fcs1 in Beauveria bassiana led to the identification of six βC methyl glycosides, termed bassicarbosides (BCSs) A-F. We verified that the cytochrome P450 (CYP) genes adjacent to Fcs1 cannot oxidize βCs. Alternatively, the separated CYP684B2 family gene Fcs2 was identified to catalyze βC hydroxylation together with its cofactor gene Fcs3. The functional homologue of Fcs2 is only present in the Fcs1-containing fungi and highly similar to the Fcs1-connected yet nonfunctional CYP. Both evolved quicker than those from fungi without Fcs1 homologues. Finally, the paired methyl/glucosyl transferase genes were verified to mediate the production of BCSs from hydroxy-βCs. All these functionally verified genes are located on different chromosomes of Beauveria, which is in contrast to the typical content-clustered feature of fungal biosynthetic gene clusters (BGCs). We also found that the production of BCSs selectively contributed to fungal infection of different insect species. Our findings shed light on the biosynthetic mechanism of βC glycosides, including the identification of a βC hydroxylase. The results of this study also propose an evolving process of fungal BGC formation following the horizontal transfer of a bacterial gene to fungi.
Collapse
Affiliation(s)
- Xin-Lin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanlei Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ying Yin
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
- School of Life Science and Technology,Shanghai Tech University, Shanghai201210, China
| |
Collapse
|
30
|
Sharma A, Kaur E, Joshi R, Kumari P, Khatri A, Swarnkar MK, Kumar D, Acharya V, Nadda G. Systematic analyses with genomic and metabolomic insights reveal a new species, Ophiocordyceps indica sp. nov. from treeline area of Indian Western Himalayan region. Front Microbiol 2023; 14:1188649. [PMID: 37547690 PMCID: PMC10399244 DOI: 10.3389/fmicb.2023.1188649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Ophiocordyceps is a species-rich genus in the order Hypocreales (Sordariomycetes, Ascomycota) depicting a fascinating relationship between microbes and insects. In the present study, a new species, Ophiocordyceps indica sp. nov., is discovered infecting lepidopteran larvae from tree line locations (2,202-2,653 m AMSL) of the Kullu District, Himachal Pradesh, Indian Western Himalayan region, using combinations of morphological and molecular phylogenetic analyses. A phylogeny for Ophiocordyceps based on a combined multigene (nrSSU, nrLSU, tef-1α, and RPB1) dataset is provided, and its taxonomic status within Ophiocordycipitaceae is briefly discussed. Its genome size (~59 Mb) revealed 94% genetic similarity with O. sinensis; however, it differs from other extant Ophiocordyceps species based on morphological characteristics, molecular phylogenetic relationships, and genetic distance. O. indica is identified as the second homothallic species in the family Ophiocordycipitaceae, after O. sinensis. The presence of targeted marker components, viz. nucleosides (2,303.25 μg/g), amino acids (6.15%), mannitol (10.13%), and biological activity data, suggests it to be a new potential source of nutraceutical importance. Data generated around this economically important species will expand our understanding regarding the diversity of Ophiocordyceps-like taxa from new locations, thus providing new research avenues.
Collapse
Affiliation(s)
- Aakriti Sharma
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ekjot Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Pooja Kumari
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Abhishek Khatri
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Vishal Acharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Gireesh Nadda
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
31
|
Li JX, Fernandez KX, Ritland C, Jancsik S, Engelhardt DB, Coombe L, Warren RL, van Belkum MJ, Carroll AL, Vederas JC, Bohlmann J, Birol I. Genomic virulence features of Beauveria bassiana as a biocontrol agent for the mountain pine beetle population. BMC Genomics 2023; 24:390. [PMID: 37430186 DOI: 10.1186/s12864-023-09473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The mountain pine beetle, Dendroctonus ponderosae, is an irruptive bark beetle that causes extensive mortality to many pine species within the forests of western North America. Driven by climate change and wildfire suppression, a recent mountain pine beetle (MPB) outbreak has spread across more than 18 million hectares, including areas to the east of the Rocky Mountains that comprise populations and species of pines not previously affected. Despite its impacts, there are few tactics available to control MPB populations. Beauveria bassiana is an entomopathogenic fungus used as a biological agent in agriculture and forestry and has potential as a management tactic for the mountain pine beetle population. This work investigates the phenotypic and genomic variation between B. bassiana strains to identify optimal strains against a specific insect. RESULTS Using comparative genome and transcriptome analyses of eight B. bassiana isolates, we have identified the genetic basis of virulence, which includes oosporein production. Genes unique to the more virulent strains included functions in biosynthesis of mycotoxins, membrane transporters, and transcription factors. Significant differential expression of genes related to virulence, transmembrane transport, and stress response was identified between the different strains, as well as up to nine-fold upregulation of genes involved in the biosynthesis of oosporein. Differential correlation analysis revealed transcription factors that may be involved in regulating oosporein production. CONCLUSION This study provides a foundation for the selection and/or engineering of the most effective strain of B. bassiana for the biological control of mountain pine beetle and other insect pests populations.
Collapse
Affiliation(s)
- Janet X Li
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 570 W 7th Ave #100, Vancouver, BC, V5Z 4S6, Canada.
| | - Kleinberg X Fernandez
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB, T6G 2G2, Canada
| | - Carol Ritland
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Sharon Jancsik
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Daniel B Engelhardt
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB, T6G 2G2, Canada
| | - Lauren Coombe
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 570 W 7th Ave #100, Vancouver, BC, V5Z 4S6, Canada
| | - René L Warren
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 570 W 7th Ave #100, Vancouver, BC, V5Z 4S6, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB, T6G 2G2, Canada
| | - Allan L Carroll
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB, T6G 2G2, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 570 W 7th Ave #100, Vancouver, BC, V5Z 4S6, Canada
| |
Collapse
|
32
|
Wang Z, Kim W, Wang YW, Yakubovich E, Dong C, Trail F, Townsend JP, Yarden O. The Sordariomycetes: an expanding resource with Big Data for mining in evolutionary genomics and transcriptomics. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1214537. [PMID: 37746130 PMCID: PMC10512317 DOI: 10.3389/ffunb.2023.1214537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 09/26/2023]
Abstract
Advances in genomics and transcriptomics accompanying the rapid accumulation of omics data have provided new tools that have transformed and expanded the traditional concepts of model fungi. Evolutionary genomics and transcriptomics have flourished with the use of classical and newer fungal models that facilitate the study of diverse topics encompassing fungal biology and development. Technological advances have also created the opportunity to obtain and mine large datasets. One such continuously growing dataset is that of the Sordariomycetes, which exhibit a richness of species, ecological diversity, economic importance, and a profound research history on amenable models. Currently, 3,574 species of this class have been sequenced, comprising nearly one-third of the available ascomycete genomes. Among these genomes, multiple representatives of the model genera Fusarium, Neurospora, and Trichoderma are present. In this review, we examine recently published studies and data on the Sordariomycetes that have contributed novel insights to the field of fungal evolution via integrative analyses of the genetic, pathogenic, and other biological characteristics of the fungi. Some of these studies applied ancestral state analysis of gene expression among divergent lineages to infer regulatory network models, identify key genetic elements in fungal sexual development, and investigate the regulation of conidial germination and secondary metabolism. Such multispecies investigations address challenges in the study of fungal evolutionary genomics derived from studies that are often based on limited model genomes and that primarily focus on the aspects of biology driven by knowledge drawn from a few model species. Rapidly accumulating information and expanding capabilities for systems biological analysis of Big Data are setting the stage for the expansion of the concept of model systems from unitary taxonomic species/genera to inclusive clusters of well-studied models that can facilitate both the in-depth study of specific lineages and also investigation of trait diversity across lineages. The Sordariomycetes class, in particular, offers abundant omics data and a large and active global research community. As such, the Sordariomycetes can form a core omics clade, providing a blueprint for the expansion of our knowledge of evolution at the genomic scale in the exciting era of Big Data and artificial intelligence, and serving as a reference for the future analysis of different taxonomic levels within the fungal kingdom.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Republic of Korea
| | - Yen-Wen Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Elizabeta Yakubovich
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caihong Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
33
|
Solano-González S, Castro-Vásquez R, Molina-Bravo R. Genomic Characterization and Functional Description of Beauveria bassiana Isolates from Latin America. J Fungi (Basel) 2023; 9:711. [PMID: 37504700 PMCID: PMC10381237 DOI: 10.3390/jof9070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus used in agriculture as a biological controller worldwide. Despite being a well-studied organism, there are no genomic studies of B. bassiana isolates from Central American and Caribbean countries. This work characterized the functional potential of eight Neotropical isolates and provided an overview of their genomic characteristics, targeting genes associated with pathogenicity, the production of secondary metabolites, and the identification of CAZYmes as tools for future biotechnological applications. In addition, a comparison between these isolates and reference genomes was performed. Differences were observed according to geographical location and the lineages of the B. bassiana complex to which each isolate belonged.
Collapse
Affiliation(s)
- Stefany Solano-González
- Laboratorio de Bioinformática Aplicada (LABAP), Escuela de Ciencias Biológicas, Universidad Nacional, Heredia 40104, Costa Rica
| | - Ruth Castro-Vásquez
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Ramón Molina-Bravo
- Biotecnología Vegetal y Recursos Genéticos para el Fitomejoramiento (BIOVERFI), Escuela de Ciencias Agrarias, Universidad Nacional, Heredia 40104, Costa Rica
| |
Collapse
|
34
|
Glover JP, Nufer MI, Perera OP, Portilla M, George J. Entomopathogenicity of Ascomycete Fungus Cordyceps militaris on the Cotton Bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae). J Fungi (Basel) 2023; 9:614. [PMID: 37367551 DOI: 10.3390/jof9060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
This study investigated the exposure of the cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) to a novel pathogenic fungal agent historically associated with human medicinal value, a commercial strain of Cordyceps militaris ((L.) Fr.) Vuill. (Hypocreales). A series of comparative studies were conducted to evaluate the efficacy of two different exposure methods using four concentrations (n × 109, n × 108, n × 107, n × 106) of C. militaris, where n × 109 provided a concentration of approximately 420 ± 37 spores per mm2 with 398 ± 28 viable spores. Survival of cotton bollworms of all stages was not affected by C. militaris at any concentration 1 d post-exposure. The greatest reduction in survival and highest sporulation rates were observed primarily on or after 7 d post-exposure for early instars (first and second). Significant declines in the survival of early instars were observed for all concentrations at 7 d, and 95% mortality by 10 d, with the exception of the fifth instars that experienced a less severe reduction in survival (35%) when exposed to any concentrations used in the study. Survival of late instars (third to fifth) ranged from 44% to 68% on day 10, while adult survival was near 99% across the duration of the experiment. The relatively narrow range observed for both the lethal concentration and sporulation of second, third, and fifth instar cotton bollworms exposed to the C. militaris strain may demonstrate potential field application for control of larval populations of cotton bollworms.
Collapse
Affiliation(s)
- James P Glover
- USDA-ARS Southern Insect Management Research Unit, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| | - Marissa I Nufer
- USDA-ARS Southern Insect Management Research Unit, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| | - Omaththage P Perera
- USDA-ARS Southern Insect Management Research Unit, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| | - Maribel Portilla
- USDA-ARS Southern Insect Management Research Unit, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| | - Justin George
- USDA-ARS Southern Insect Management Research Unit, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| |
Collapse
|
35
|
Liu X, Zhang H, Zhou Z, Prabhakaran P, Vongsangnak W, Hu G, Xiao F. Functional insight into Cordyceps militaris sugar transporters by structure modeling, network analysis and allosteric regulation. Phys Chem Chem Phys 2023; 25:14311-14323. [PMID: 37183444 DOI: 10.1039/d2cp05611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Insights into the structures, functions and dynamics of Cordyceps militaris (C. militaris) sugar transporters are necessary for understanding their versatile metabolic capability for fungal growth. The sequence-function relationship study of 85 C. militaris sugar transporters showed that there is a gap between phylogenetic-based subfamily classification and their functions. Beyond protein sequences, structural modeling and principal component analysis of the structural ensemble revealed the different folds of the Car and Org subfamilies. Performing channel detection and network analysis found that the Alp and Hex subfamilies can be specifically distinguished from others by the betweenness of channel residues. Signature dynamics analysis further suggested that the Hex subfamily demonstrates different dynamics, with high flexibility at the H1 region in TM11. Furthermore, the H1 region as an allosteric site was examined by network parameter calculations that guided allosteric pathways between this region and the channel cavity. Together with gene expression data of C. militaris, e.g., Hex06741 in the Hex subfamily, it was promisingly expressed when sugar utilization was altered. This work demonstrates an in silico framework for investigating C. militaris sugar transporters as an example case study of the allosteric activity of the Hex subfamily and can facilitate sugar transporter engineering design that can further optimize the preferable sugar utilization and fermentation process of C. militaris.
Collapse
Affiliation(s)
- Xin Liu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China.
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Jiangsu Institute of Hematology, The first Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou 215123, China
| | - Hanyang Zhang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Ziyun Zhou
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215123, China
| | - Pranesha Prabhakaran
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Wanwipa Vongsangnak
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215123, China
| | - Fei Xiao
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
36
|
Shi WJ, Zhao R, Zhu JQ, Wan XH, Wang LB, Li H, Qin S. Complete genome analysis of pathogenic Metschnikowia bicuspidata strain MQ2101 isolated from diseased ridgetail white prawn, Exopalaemon carinicauda. BMC Microbiol 2023; 23:120. [PMID: 37120526 PMCID: PMC10148492 DOI: 10.1186/s12866-023-02865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Metschnikowia bicuspidata is a pathogenic yesst that can cause disease in many different economic aquatic animal species. In recent years, there was a new disease outbreak in ridgetail white prawn (Exopalaemon carinicauda) in coastal areas of Jiangsu Province China that was referred to as zombie disease by local farmers. The pathogen was first isolated and identified as M. bicuspidata. Although the pathogenicity and pathogenesis of this pathogen in other animals have been reported in some previous studies, research on its molecular mechanisms is still very limited. Therefore, a genome-wide study is necessary to better understand the physiological and pathogenic mechanisms of M. bicuspidata. RESULT In this study, we obtained a pathogenic strain, MQ2101, of M. bicuspidata from diseased E. carinicauda and sequenced its whole genome. The size of the whole genome was 15.98 Mb, and it was assembled into 5 scaffolds. The genome contained 3934 coding genes, among which 3899 genes with biological functions were annotated in multiple underlying databases. In KOG database, 2627 genes were annotated, which were categorized into 25 classes including general function prediction only, posttranslational modification, protein turnover, chaperones, and signal transduction mechanisms. In KEGG database, 2493 genes were annotated, which were categorized into five classes, including cellular processes, environmental information processing, genetic information processing, metabolism and organismal systems. In GO database, 2893 genes were annotated, which were mainly classified in cell, cell part, cellular processes and metabolic processes. There were 1055 genes annotated in the PHI database, accounting for 26.81% of the total genome, among which 5 genes were directly related to pathogenicity (identity ≥ 50%), including hsp90, PacC, and PHO84. There were also some genes related to the activity of the yeast itself that could be targeted by antiyeast drugs. Analysis based on the DFVF database showed that strain MQ2101 contained 235 potential virulence genes. BLAST searches in the CAZy database showed that strain MQ2101 may have a more complex carbohydrate metabolism system than other yeasts of the same family. In addition, two gene clusters and 168 putative secretory proteins were predicted in strain MQ2101, and functional analysis showed that some of the secretory proteins may be directly involved in the pathogenesis of the strain. Gene family analysis with five other yeasts revealed that strain MQ2101 has 245 unique gene families, including 274 genes involved in pathogenicity that could serve as potential targets. CONCLUSION Genome-wide analysis elucidated the pathogenicity-associated genes of M. bicuspidate while also revealing a complex metabolic mechanism and providing putative targets of action for the development of antiyeast drugs for this pathogen. The obtained whole-genome sequencing data provide an important theoretical basis for transcriptomic, proteomic and metabolic studies of M. bicuspidata and lay a foundation for defining its specific mechanism of host infestation.
Collapse
Affiliation(s)
- Wen-Jun Shi
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 17, Chunhui Road, Yantai, Shandong Province, 264003, People's Republic of China
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ran Zhao
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jian-Qiang Zhu
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Xi-He Wan
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China.
| | - Li-Bao Wang
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China
| | - Hui Li
- Institute of Oceanology & Marine Fisheries, No. 31, Jiaoyu Road, Nantong, Jiangsu, 226007, People's Republic of China
| | - Song Qin
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 17, Chunhui Road, Yantai, Shandong Province, 264003, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
37
|
Raethong N, Thananusak R, Cheawchanlertfa P, Prabhakaran P, Rattanaporn K, Laoteng K, Koffas M, Vongsangnak W. Functional genomics and systems biology of Cordyceps species for biotechnological applications. Curr Opin Biotechnol 2023; 81:102939. [PMID: 37075529 DOI: 10.1016/j.copbio.2023.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/21/2023]
Abstract
The use of Cordyceps species for the manufacture of natural products has been established; however, the tremendous advances observed in recent years in genetic engineering and molecular biology have revolutionized the optimization of Cordyceps as cell factories and drastically expanded the biotechnological potential of these fungi. Here, we present a review of systems and synthetic biology studies of Cordyceps and their implications for fungal biology and industrial applications. We summarize the current status of synthetic biology for enhancing targeted metabolites in Cordyceps species, such as cordycepin, adenosine, polysaccharide, and pentostatin. Progress in the systems and synthetic biology of Cordyceps provides a strategy for comprehensively comprehensive controlling efficient cell factories of natural bioproducts and novel synthetic biology toolbox for targeted engineering.
Collapse
Affiliation(s)
- Nachon Raethong
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Roypim Thananusak
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Pattsarun Cheawchanlertfa
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pranesha Prabhakaran
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kittipong Rattanaporn
- Fermentation Technology Research Center (FTRC), Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency NSTDA, Pathum Thani 12120, Thailand
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand.
| |
Collapse
|
38
|
Liu Q, Dong C. Dual Transcriptomics Reveals Interspecific Interactions between the Mycoparasite Calcarisporium cordycipiticola and Its Host Cordyceps militaris. Microbiol Spectr 2023; 11:e0480022. [PMID: 36946736 PMCID: PMC10100745 DOI: 10.1128/spectrum.04800-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Calcarisporium cordycipiticola is a mycoparasite of the edible fungus Cordyceps militaris, and mycoparasitism causes devastating diseases of mushrooms. In this study, dual-transcriptomic analysis was performed to reveal interspecific interactions between the mycoparasite C. cordycipiticola and its host C. militaris. At 4 and 8 days postinfection (dpi), 2,959 and 2,077 differentially expressed genes (DEGs) of C. cordycipiticola and 914 and 1,548 DEGs of C. militaris were identified compared with the mycelial stage, respectively, indicating that C. cordycipiticola responded more quickly than C. militaris. Lectins of the pathogen may play a role in the recognition of fungal prey. Both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that primary metabolism was vigorous for the pathogen to colonize the host and that the pathogen's attack substantially altered C. militaris' primary metabolism. C. cordycipiticola upregulated some carbohydrate-active enzyme (CAZyme) genes, including CBM18, GH18, GH16, and GH76, for degrading the host cell wall and defending against host immunity. C. militaris produced excessive reactive oxygen species (ROS) to respond to the infection. The GO term "heme binding" was the only shared term enriched at both stages at 4 and 8 dpi, indicating that iron was important for both the pathogen and the host. The uptake of iron by pathogens through multiple pathways promoted colonization and removed high ROS levels produced by the host. The transcription levels of Cmhsp78, Cmhsp70, and Cmhyd1 in C. militaris responded quickly, and these genes have potential as candidates for the breeding of resistant varieties. This study provides clues for understanding the interactions between a mycoparasite and its mushroom host and will be helpful for the breeding of resistant varieties and disease prevention and control for this edible fungus. IMPORTANCE White mildew disease caused by Calcarisporium cordycipiticola is devastating for the fruiting body cultivation of Cordyceps militaris, a popular and highly valued edible fungus. Here, the pathogenic mechanisms of C. cordycipiticola, the responses of C. militaris to the infection, and the interaction of these two phylogenetically close species were revealed by time course dual-transcriptome profiles. In general, the host C. militaris responds more slowly than the pathogen C. cordycipiticola. For the first time, we found that iron was important for both the mycoparasite and the host. C. cordycipiticola takes up iron by multiple pathways to promote colonization and remove high ROS levels produced by the host. The rapidly responding genes Cmhsp70, Cmhsp78, and Cmhyd1 in C. militaris may have the potential as candidate genes for the breeding of resistant varieties. This study expands our understanding of the mycoparasitic interactions of two species from sister families and will be helpful for the breeding of and disease prevention and control in mushrooms.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Song Z, Lin W, Duan X, Song L, Wang C, Yang H, Lu X, Ji X, Tian Y, Liu H. Increased Cordycepin Production in Yarrowia lipolytica Using Combinatorial Metabolic Engineering Strategies. ACS Synth Biol 2023; 12:780-787. [PMID: 36791366 DOI: 10.1021/acssynbio.2c00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
As the first nucleoside antibiotic discovered in fungi, cordycepin, with its various biological activities, has wide applications. At present, cordycepin is mainly obtained from the natural fruiting bodies of Cordyceps militaris. However, due to long production periods, low yields, and low extraction efficiency, harvesting cordycepin from natural C. militaris is not ideal, making it difficult to meet market demands. In this study, an engineered Yarrowia lipolytica YlCor-18 strain, constructed by combining metabolic engineering strategies, achieved efficient de novo cordycepin production from glucose. First, the cordycepin biosynthetic pathway derived from C. militaris was introduced into Y. lipolytica. Furthermore, metabolic engineering strategies including promoter, protein, adenosine triphosphate, and precursor engineering were combined to enhance the synthetic ability of engineered strains of cordycepin. Fermentation conditions were also optimized, after which, the production titer and yields of cordycepin in the engineered strain YlCor-18 under fed-batch fermentation were improved to 4362.54 mg/L and 213.85 mg/g, respectively, after 168 h. This study demonstrates the potential of Y. lipolytica as a cell factory for cordycepin synthesis, which will serve as the model for the green biomanufacturing of other nucleoside antibiotics using artificial cell factories.
Collapse
Affiliation(s)
- Zeqi Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Wenbo Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiyu Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Liping Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiaojun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| |
Collapse
|
40
|
Zhang JG, Zhang K, Xu SY, Ying SH, Feng MG. Essential Role of WetA, but No Role of VosA, in Asexual Development, Conidial Maturation and Insect Pathogenicity of Metarhizium robertsii. Microbiol Spectr 2023; 11:e0007023. [PMID: 36916980 PMCID: PMC10100841 DOI: 10.1128/spectrum.00070-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Conidial maturation, which is crucial for conidial quality, is controlled by the asexual development activator WetA and the downstream, velvety protein VosA in Aspergillus. Their orthologs have proved functional in conidial quality control of Beauveria bassiana, as seen in Aspergillus, but are functionally unexplored, in Metarhizium robertsii, another hypocrealean insect pathogen. Here, WetA and VosA prove essential and nonessential for M. robertsii's life cycle, respectively. Disruption of wetA increased hyphal sensitivity to oxidative stress and Congo red-induced cell wall stress, but had little impact on radial growth. The ΔwetA mutant was severely compromised in conidiation capacity and conidial quality, which was featured by slower germination, decreased UV resistance, reduced hydrophobicity, and deformed hydrophobin rodlet bundles that were assembled onto conidial coat. The mutant's virulence was greatly attenuated via normal infection due to a blockage of infection-required cellular processes. All examined phenotypes were unaffected for the ΔvosA mutant. Intriguingly, mannitol was much less accumulated in the 7- and 15-day-old cultures of ΔwetA and ΔvosA than of control strains, while accumulated trehalose was not detectable at all, revealing little a link of intracellular polyol accumulation to conidial maturation. Transcriptomic analysis revealed differential regulation of 160 genes (up/down ratio: 72:88) in ΔwetA. These genes were mostly involved in cellular component, biological process, and molecular function but rarely associated with asexual development. Conclusively, WetA plays a relatively conserved role in M. robertsii's spore surface structure, and also a differentiated role in some other cellular processes associated with conidial maturation. VosA is functionally redundant in M. robertsii unlike its ortholog in B. bassiana. IMPORTANCE WetA and VosA regulate conidiation and conidial maturation required for the life cycle of Beauveria bassiana, like they do in Aspergillus, but remain functionally unexplored in Metarhizium robertsii, another hypocrealean pathogen considered to have evolved insect pathogenicity ~130 million years later than B. bassiana. This study reveals a similar role of WetA ortholog in asexual development, conidial maturation, and insect pathogenicity, and also its distinctive role in mediating some other conidial maturation-related cellular events, but has functional redundancy of VosA in M. robertsii. The maturation process vital for conidial quality proves dependent on a role of WetA in spore wall assembly but is independent of its role in intracellular polyol accumulation. Transcriptomic analysis reveals a link of WetA to 160 genes involved in cellular component, biological process, and molecular function. Our study unveils that M. robertsii WetA or VosA is functionally differential or different from those learned in B. bassiana and other ascomycetes.
Collapse
Affiliation(s)
- Jin-Guan Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ke Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Si-Yuan Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Zhang ZJ, Yin YY, Cui Y, Zhang YX, Liu BY, Ma YC, Liu YN, Liu GQ. Chitinase Is Involved in the Fruiting Body Development of Medicinal Fungus Cordyceps militaris. Life (Basel) 2023; 13:life13030764. [PMID: 36983919 PMCID: PMC10051443 DOI: 10.3390/life13030764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Cordyceps militaris is a famous traditional edible and medicinal fungus in Asia, and its fruiting body has rich medicinal value. The molecular mechanism of fruiting body development is still not well understood in C. militaris. In this study, phylogenetically analysis and protein domains prediction of the 14 putative chitinases were performed. The transcription level and enzyme activity of chitinase were significant increased during fruiting body development of C. militaris. Then, two chitinase genes (Chi1 and Chi4) were selected to construct gene silencing strain by RNA interference. When Chi1 and Chi4 genes were knockdown, the differentiation of the primordium was blocked, and the number of fruiting body was significantly decreased approximately by 50% compared to wild-type (WT) strain. The length of the single mature fruiting body was shortened by 27% and 38% in Chi1- and Chi4-silenced strains, respectively. In addition, the chitin content and cell wall thickness were significantly increased in Chi1- and Chi4-silenced strains. These results provide new insights into the biological functions of chitinase in fruiting body development of C. militaris.
Collapse
Affiliation(s)
- Zi-Juan Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - Yuan-Yuan Yin
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - Yao Cui
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - Yue-Xuan Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - Bi-Yang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - You-Chu Ma
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - Yong-Nan Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
- Correspondence: (Y.-N.L.); (G.-Q.L.); Tel./Fax: +86-731-8562-3490 (Y.N.-L.)
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
- Correspondence: (Y.-N.L.); (G.-Q.L.); Tel./Fax: +86-731-8562-3490 (Y.N.-L.)
| |
Collapse
|
42
|
Li X, Liu M, Dong C. Hydrophobin Gene Cmhyd4 Negatively Regulates Fruiting Body Development in Edible Fungi Cordyceps militaris. Int J Mol Sci 2023; 24:ijms24054586. [PMID: 36902017 PMCID: PMC10003708 DOI: 10.3390/ijms24054586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
A deep understanding of the mechanism of fruiting body development is important for mushroom breeding and cultivation. Hydrophobins, small proteins exclusively secreted by fungi, have been proven to regulate the fruiting body development in many macro fungi. In this study, the hydrophobin gene Cmhyd4 was revealed to negatively regulate the fruiting body development in Cordyceps militaris, a famous edible and medicinal mushroom. Neither the overexpression nor the deletion of Cmhyd4 affected the mycelial growth rate, the hydrophobicity of the mycelia and conidia, or the conidial virulence on silkworm pupae. There was also no difference between the micromorphology of the hyphae and conidia in WT and ΔCmhyd4 strains observed by SEM. However, the ΔCmhyd4 strain showed thicker aerial mycelia in darkness and quicker growth rates under abiotic stress than the WT strain. The deletion of Cmhyd4 could promote conidia production and increase the contents of carotenoid and adenosine. The biological efficiency of the fruiting body was remarkably increased in the ΔCmhyd4 strain compared with the WT strain by improving the fruiting body density, not the height. It was indicated that Cmhyd4 played a negative role in fruiting body development. These results revealed that the diverse negative roles and regulatory effects of Cmhyd4 were totally different from those of Cmhyd1 in C. militaris and provided insights into the developmental regulatory mechanism of C. militaris and candidate genes for C. militaris strain breeding.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence:
| |
Collapse
|
43
|
Choi H, Park SW, Oh J, Kim CS, Sung GH, Sang H. Efficient disruption of CmHk1 using CRISPR/Cas9 ribonucleoprotein delivery in Cordyceps militaris. FEMS Microbiol Lett 2023; 370:fnad072. [PMID: 37475654 DOI: 10.1093/femsle/fnad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Cordyceps militaris, an entomopathogenic ascomycete, produces edible medicinal mushrooms known to have medicinal and therapeutic functions. To develop the genetic transformation system in C. militaris, green fluorescent protein (GFP) mutants of C. militaris were generated by PEG-mediated protoplast transformation. The CRISPR/Cas9 ribonucleoprotein (RNP) targeting the class III histidine kinase of C. militaris (CmHk1) was then delivered into protoplasts of C. militaris through the transformation system. Mutations induced by the RNP in selected mutants were detected: 1 nt deletion (6 mutants), 3 nt deletion with substitution of 1 nt (1 mutant), insertion of 85 nts (1 mutant), 41 nts (2 mutants), and 35 nts (5 mutants). An in vitro sensitivity assay of the mutants indicated that knockout of CmHk1 reduced sensitivity to two fungicides, iprodione and fludioxonil, but increased sensitivity to osmotic stresses compared to the wild type. Summing up, the CRISPR/Cas9 RNP delivery system was successfully developed, and our results revealed that CmHk1 was involved in the fungicide resistance and osmotic stress in C. militaris.
Collapse
Affiliation(s)
- Hyeongju Choi
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Sung-Won Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Junsang Oh
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, Gwangju 61186, Korea
| | - Gi-Ho Sung
- Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
- Department of Microbiology, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
44
|
Increasing the production of the bioactive compounds in medicinal mushrooms: an omics perspective. Microb Cell Fact 2023; 22:11. [PMID: 36647087 PMCID: PMC9841694 DOI: 10.1186/s12934-022-02013-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Macroscopic fungi, mainly higher basidiomycetes and some ascomycetes, are considered medicinal mushrooms and have long been used in different areas due to their pharmaceutically/nutritionally valuable bioactive compounds. However, the low production of these bioactive metabolites considerably limits the utilization of medicinal mushrooms both in commerce and clinical trials. As a result, many attempts, ranging from conventional methods to novel approaches, have been made to improve their production. The novel strategies include conducting omics investigations, constructing genome-scale metabolic models, and metabolic engineering. So far, genomics and the combined use of different omics studies are the most utilized omics analyses in medicinal mushroom research (both with 31% contribution), while metabolomics (with 4% contribution) is the least. This article is the first attempt for reviewing omics investigations in medicinal mushrooms with the ultimate aim of bioactive compound overproduction. In this regard, the role of these studies and systems biology in elucidating biosynthetic pathways of bioactive compounds and their contribution to metabolic engineering will be highlighted. Also, limitations of omics investigations and strategies for overcoming them will be provided in order to facilitate the overproduction of valuable bioactive metabolites in these valuable organisms.
Collapse
|
45
|
Duan X, Yang H, Wang C, Liu H, Lu X, Tian Y. Microbial synthesis of cordycepin, current systems and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Dissecting Metabolic Regulation in Mycelial Growth and Fruiting Body Developmental Stages of Cordyceps militaris through Integrative Transcriptome Analysis. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Zhang H, Chen P, Xu L, Xu D, Hu W, Cheng Y, Yang S. Construction of Cordycepin High-Production Strain and Optimization of Culture Conditions. Curr Microbiol 2022; 80:12. [PMID: 36459233 DOI: 10.1007/s00284-022-03110-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/06/2022] [Indexed: 12/04/2022]
Abstract
This study aimed to increase cordycepin production by over-expressing bio-synthetic enzyme genes, including the adenylosuccinate synthase, adenylosuccinate lyase, and 5'-nucleotidase genes. Research data showed that the extracellular and intracellular cordycepin concent of 24 recombinant strains were higher than those of C. militaris WT, indicating that over-expression of key enzyme genes increased cordycepin production. Among them, the CM-adss-5 strain had highest cordycepin production, and the extracellular and intracellular cordycepin concent were 1119.75 ± 1.61 and 65.56 ± 0.97 mg/L, which were 1.26 and 2.61 times that of C. militaris WT. This study also optimized the culture conditions of CM-adss-5 strain through single factor experiments to obtain the best culture conditions. The best culture condition was 25 °C constant temperature, 180-rpm shaking culture, fermentation period 12 days, inoculate amount 5%, initial pH 6, seed age 108 h, and liquid volume 110/250 mL. Then, the extracellular and intracellular cordycepin content of CM-adss-5 strain reached 2581.96 ± 21.07 and 164.08 ± 1.44 mg/L, which were higher by 130.6% and 150.3%, respectively. Therefore, our research provides a way to efficiently produce cordycepin for the development of cordycepin and its downstream products.
Collapse
Affiliation(s)
- Hui Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China.
| | - Ping Chen
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lin Xu
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - De Xu
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wendi Hu
- Zhejiang Skyherb Biotechnology Inc., Anji, 313300, People's Republic of China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Anji, 313300, People's Republic of China
| | - Shengli Yang
- The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
48
|
Cmcrf1, a Putative Zn2Cys6 Fungal Transcription Factor, Is Involved in Conidiation, Carotenoid Production, and Fruiting Body Development in Cordyceps militaris. BIOLOGY 2022; 11:biology11101535. [PMID: 36290438 PMCID: PMC9598893 DOI: 10.3390/biology11101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Cordyceps militaris is a high-value medicinal and edible fungus that produces many bioactive compounds, including carotenoid, and thus, improving the carotenoid productivity of C. militaris will increase its commercial value. However, little is known about the genetic regulatory mechanism of carotenoid biosynthesis in C. militaris. To further understanding the regulatory mechanism of carotenoid biosynthesis, we performed a large-scale screen of T-DNA insertional mutant library and identified a defective mutant, denoted T111, whose colonies did not change color from white to yellow upon exposure to light. Mutation analysis confirmed that a single T-DNA insertion occurred in the gene encoding a 695-amino-acid putative fungal-specific transcription factor with a predicted Zn2Cys6 binuclear cluster DNA-binding domain found uniquely in fungi. Targeted deletion of this gene, denoted C. militaris carotenogenesis regulatory factor 1 (Cmcrf1), generated the ΔCmcrf1 mutant that exhibited drastically reduced carotenoid biosynthesis and failed to generate fruiting bodies. In addition, the ΔCmcrf1 mutant showed significantly increased conidiation and increased hypersensitivity to cell-wall-perturbing agents compared with the wild-type strain. However, the Cmcrf1 gene did not have an impact on the mycelia growth of C. militaris. These results show that Cmcrf1 is involved in carotenoid biosynthesis and is required for conidiation and fruiting body formation in C. militaris.
Collapse
|
49
|
De Novo Assembly Transcriptome Analysis Reveals the Preliminary Molecular Mechanism of Primordium Formation in Pleurotus tuoliensis. Genes (Basel) 2022; 13:genes13101747. [PMID: 36292631 PMCID: PMC9601356 DOI: 10.3390/genes13101747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Primordium formation is extremely important for yield of Pleurotus tuoliensis. However, the molecular mechanism underlying primordium formation is largely unknown. This study investigated the transcriptional properties during primordium formation of P. tuoliensis by comparing transcriptome. Clean reads were assembled into 57,075 transcripts and 6874 unigenes. A total of 1397 differentially expressed genes were identified (26 DEGs altered in all stages). GO and KEGG enrichment analysis showed that these DEGs were involved in “oxidoreductase activity”, “glycolysis/gluconeogenesis”, “MAPK signaling pathways”, and “ribosomes”. Our results support further understanding of the transcriptional changes and molecular processes underlying primordium formation and differentiation of P. tuoliensis.
Collapse
|
50
|
Chen B, Xue L, Wei T, Wang N, Zhong J, Ye Z, Guo L, Lin J. Multiplex gene precise editing and large DNA fragment deletion by the CRISPR-Cas9-TRAMA system in edible mushroom Cordyceps militaris. Microb Biotechnol 2022; 15:2982-2991. [PMID: 36134724 PMCID: PMC9733643 DOI: 10.1111/1751-7915.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 12/14/2022] Open
Abstract
The medicinal mushroom Cordyceps militaris contains abundant valuable bioactive ingredients that have attracted a great deal of attention in the pharmaceutical and cosmetic industries. However, the development of this valuable mushroom faces the obstacle of lacking powerful genomic engineering tools. Here, by excavating the endogenous tRNA-processed element, introducing the extrachromosomal plasmid and alongside with homologous template, we develop a marker-free CRISPR-Cas9-TRAMA genomic editing system to achieve the multiplex gene precise editing and large synthetic cluster deletion in C. militaris. We further operated editing in the synthetases of cordycepin and ergothioneine to demonstrate the application of Cas9-TRAMA system in protein modification, promoter strength evaluation and 10 kb metabolic synthetic cluster deletion. The Cas9-TRAMA system provides a scalable method for excavating the valuable metabolic resource of medicinal mushrooms and constructing a mystical cellular pathway to elucidate the complex cell behaviours of the edible mushroom.
Collapse
Affiliation(s)
- Bai‐Xiong Chen
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Ling‐Na Xue
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Tao Wei
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Na Wang
- Guangzhou Alchemy Biotechnology Co., LtdGuangzhouChina
| | - Jing‐Ru Zhong
- Guangzhou Alchemy Biotechnology Co., LtdGuangzhouChina
| | - Zhi‐Wei Ye
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Li‐Qiong Guo
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| | - Jun‐Fang Lin
- Institute of Food Biotechnology & College of Food ScienceSouth China Agricultural UniversityGuangzhouChina,Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong ProvinceGuangzhouChina
| |
Collapse
|