1
|
Salehian-Dehkordi H, Huang JH, Pirany N, Mehrban H, Lv XY, Sun W, Esmailizadeh A, Lv FH. Genomic Landscape of Copy Number Variations and Their Associations with Climatic Variables in the World's Sheep. Genes (Basel) 2023; 14:1256. [PMID: 37372436 PMCID: PMC10298528 DOI: 10.3390/genes14061256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sheep show characteristics of phenotypic diversity and adaptation to diverse climatic regions. Previous studies indicated associations between copy number variations (CNVs) and climate-driven adaptive evolution in humans and other domestic animals. Here, we constructed a genomic landscape of CNVs (n = 39,145) in 47 old autochthonous populations genotyped at a set of high-density (600 K) SNPs to detect environment-driven signatures of CNVs using a multivariate regression model. We found 136 deletions and 52 duplications that were significantly (Padj. < 0.05) associated with climatic variables. These climate-mediated selective CNVs are involved in functional candidate genes for heat stress and cold climate adaptation (e.g., B3GNTL1, UBE2L3, and TRAF2), coat and wool-related traits (e.g., TMEM9, STRA6, RASGRP2, and PLA2G3), repairing damaged DNA (e.g., HTT), GTPase activity (e.g., COPG), fast metabolism (e.g., LMF2 and LPIN3), fertility and reproduction (e.g., SLC19A1 and CCDC155), growth-related traits (e.g., ADRM1 and IGFALS), and immune response (e.g., BEGAIN and RNF121) in sheep. In particular, we identified significant (Padj. < 0.05) associations between probes in deleted/duplicated CNVs and solar radiation. Enrichment analysis of the gene sets among all the CNVs revealed significant (Padj. < 0.05) enriched gene ontology terms and pathways related to functions such as nucleotide, protein complex, and GTPase activity. Additionally, we observed overlapping between the CNVs and 140 known sheep QTLs. Our findings imply that CNVs can serve as genomic markers for the selection of sheep adapted to specific climatic conditions.
Collapse
Affiliation(s)
- Hosein Salehian-Dehkordi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Jia-Hui Huang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
| | - Nasrollah Pirany
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Hossein Mehrban
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Xiao-Yang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.-Y.L.); (W.S.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.-Y.L.); (W.S.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
| |
Collapse
|
2
|
Kołomański M, Szyda J, Frąszczak M, Mielczarek M. DNA sequence features underlying large-scale duplications and deletions in human. J Appl Genet 2022; 63:527-533. [PMID: 35590085 PMCID: PMC9365719 DOI: 10.1007/s13353-022-00704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Copy number variants (CNVs) may cover up to 12% of the whole genome and have substantial impact on phenotypes. We used 5867 duplications and 33,181 deletions available from the 1000 Genomes Project to characterise genomic regions vulnerable to CNV formation and to identify sequence features characteristic for those regions. The GC content for deletions was lower and for duplications was higher than for randomly selected regions. In regions flanking deletions and downstream of duplications, content was higher than in the random sequences, but upstream of duplication content was lower. In duplications and downstream of deletion regions, the percentage of low-complexity sequences was not different from the randomised data. In deletions and upstream of CNVs, it was higher, while for downstream of duplications, it was lower as compared to random sequences. The majority of CNVs intersected with genic regions — mainly with introns. GC content may be associated with CNV formation and CNVs, especially duplications are initiated in low-complexity regions. Moreover, CNVs located or overlapped with introns indicate their role in shaping intron variability. Genic CNV regions were enriched in many essential biological processes such as cell adhesion, synaptic transmission, transport, cytoskeleton organization, immune response and metabolic mechanisms, which indicates that these large-scaled variants play important biological roles.
Collapse
Affiliation(s)
- Mateusz Kołomański
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Magdalena Frąszczak
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
3
|
Yang L, Gao Y, Oswalt A, Fang L, Boschiero C, Neupane M, Sattler CG, Li CJ, Seroussi E, Xu L, Yang L, Li L, Zhang H, Rosen BD, Van Tassell CP, Zhou Y, Ma L, Liu GE. Towards the detection of copy number variation from single sperm sequencing in cattle. BMC Genomics 2022; 23:215. [PMID: 35300589 PMCID: PMC8928590 DOI: 10.1186/s12864-022-08441-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy number variation (CNV) has been routinely studied using bulk-cell sequencing. However, CNV is not well studied on the single-cell level except for humans and a few model organisms. RESULTS We sequenced 143 single sperms of two Holstein bulls, from which we predicted CNV events using 14 single sperms with deep sequencing. We then compared the CNV results derived from single sperms with the bulk-cell sequencing of one bull's family trio of diploid genomes. As a known CNV hotspot, segmental duplications were also predicted using the bovine ARS-UCD1.2 genome. Although the trio CNVs validated only some single sperm CNVs, they still showed a distal chromosomal distribution pattern and significant associations with segmental duplications and satellite repeats. CONCLUSION Our preliminary results pointed out future research directions and highlighted the importance of uniform whole genome amplification, deep sequence coverage, and dedicated software pipelines for CNV detection using single cell sequencing data.
Collapse
Affiliation(s)
- Liu Yang
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Adam Oswalt
- Select Sires Inc, 11740 U.S. 42 North, Plain City, OH, 43064, USA
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Mahesh Neupane
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | | | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Eyal Seroussi
- Agricultural Research Organization (ARO), Institute of Animal Science, HaMaccabim Road, P.O.B 15159, 7528809, Volcani CenterRishon LeTsiyon, Israel
| | - Lingyang Xu
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lv Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.
| |
Collapse
|
4
|
Wang X, Wang Y, Cao X, Huang Y, Li P, Lan X, Buren C, Hu L, Chen H. Copy number variations of the KAT6A gene are associated with body measurements of Chinese sheep breeds. Anim Biotechnol 2021:1-8. [PMID: 34842492 DOI: 10.1080/10495398.2021.2005616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Copy number variation (CNV) is one kind of genomic structure variations and presents as gains and losses of genomic fragments. More recently, we have made an atlas of CNV maps for livestock. In the future, it is a primary focus to determine the phenotypic effects of candidate CNVs. Lysine Acetyltransferase 6 A (KAT6A) is a protein coding gene and plays a critical role in many cellular processes. However, the effects of KAT6A CNVs on sheep body measurements remains unknown. In this study, we performed quantitative polymerase chain reaction (qPCR) to detect the presences and distributions of three CNV regions within KAT6A gene in 672 sheep from four Chinese breeds. Association analysis indicated that the three CNVs of KAT6A gene were significantly associated with body measurement(s) in Small-tailed Han sheep (STH) and Hu sheep (HU) (p < 0.05), while no effects on Large-tailed Han sheep (LTH) were observed (p > 0.05) were observed. Additionally, only one CNV was significantly associated with body measurement (body length) in Chaka sheep (CK) (p < 0.05). Our study provided evidence that the CNV(s) of KAT6A gene could be used as candidate marker(s) for molecular breedings of STH, HU, and CK breeds.
Collapse
Affiliation(s)
- Xiaogang Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiru Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yongzhen Huang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pi Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaogetu Buren
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
5
|
Serres-Armero A, Davis BW, Povolotskaya IS, Morcillo-Suarez C, Plassais J, Juan D, Ostrander EA, Marques-Bonet T. Copy number variation underlies complex phenotypes in domestic dog breeds and other canids. Genome Res 2021; 31:762-774. [PMID: 33863806 PMCID: PMC8092016 DOI: 10.1101/gr.266049.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
Extreme phenotypic diversity, a history of artificial selection, and socioeconomic value make domestic dog breeds a compelling subject for genomic research. Copy number variation (CNV) is known to account for a significant part of inter-individual genomic diversity in other systems. However, a comprehensive genome-wide study of structural variation as it relates to breed-specific phenotypes is lacking. We have generated whole genome CNV maps for more than 300 canids. Our data set extends the canine structural variation landscape to more than 100 dog breeds, including novel variants that cannot be assessed using microarray technologies. We have taken advantage of this data set to perform the first CNV-based genome-wide association study (GWAS) in canids. We identify 96 loci that display copy number differences across breeds, which are statistically associated with a previously compiled set of breed-specific morphometrics and disease susceptibilities. Among these, we highlight the discovery of a long-range interaction involving a CNV near MED13L and TBX3, which could influence breed standard height. Integration of the CNVs with chromatin interactions, long noncoding RNA expression, and single nucleotide variation highlights a subset of specific loci and genes with potential functional relevance and the prospect to explain trait variation between dog breeds.
Collapse
Affiliation(s)
- Aitor Serres-Armero
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Brian W Davis
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA
| | - Inna S Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Carlos Morcillo-Suarez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David Juan
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tomas Marques-Bonet
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08201, Spain
| |
Collapse
|
6
|
Wang C, Wallerman O, Arendt ML, Sundström E, Karlsson Å, Nordin J, Mäkeläinen S, Pielberg GR, Hanson J, Ohlsson Å, Saellström S, Rönnberg H, Ljungvall I, Häggström J, Bergström TF, Hedhammar Å, Meadows JRS, Lindblad-Toh K. A novel canine reference genome resolves genomic architecture and uncovers transcript complexity. Commun Biol 2021; 4:185. [PMID: 33568770 PMCID: PMC7875987 DOI: 10.1038/s42003-021-01698-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
We present GSD_1.0, a high-quality domestic dog reference genome with chromosome length scaffolds and contiguity increased 55-fold over CanFam3.1. Annotation with generated and existing long and short read RNA-seq, miRNA-seq and ATAC-seq, revealed that 32.1% of lifted over CanFam3.1 gaps harboured previously hidden functional elements, including promoters, genes and miRNAs in GSD_1.0. A catalogue of canine "dark" regions was made to facilitate mapping rescue. Alignment in these regions is difficult, but we demonstrate that they harbour trait-associated variation. Key genomic regions were completed, including the Dog Leucocyte Antigen (DLA), T Cell Receptor (TCR) and 366 COSMIC cancer genes. 10x linked-read sequencing of 27 dogs (19 breeds) uncovered 22.1 million SNPs, indels and larger structural variants. Subsequent intersection with protein coding genes showed that 1.4% of these could directly influence gene products, and so provide a source of normal or aberrant phenotypic modifications.
Collapse
Affiliation(s)
- Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Ola Wallerman
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maja-Louise Arendt
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Clinical Sciences, University of Copenhagen, Frederiksberg D, Denmark
| | - Elisabeth Sundström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jessika Nordin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Suvi Mäkeläinen
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gerli Rosengren Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jeanette Hanson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Åsa Ohlsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Saellström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Rönnberg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tomas F Bergström
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Du H, Zheng X, Zhao Q, Hu Z, Wang H, Zhou L, Liu JF. Analysis of Structural Variants Reveal Novel Selective Regions in the Genome of Meishan Pigs by Whole Genome Sequencing. Front Genet 2021; 12:550676. [PMID: 33613628 PMCID: PMC7890942 DOI: 10.3389/fgene.2021.550676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Structural variants (SVs) represent essential forms of genetic variation, and they are associated with various phenotypic traits in a wide range of important livestock species. However, the distribution of SVs in the pig genome has not been fully characterized, and the function of SVs in the economic traits of pig has rarely been studied, especially for most domestic pig breeds. Meishan pig is one of the most famous Chinese domestic pig breeds, with excellent reproductive performance. Here, to explore the genome characters of Meishan pig, we construct an SV map of porcine using whole-genome sequencing data and report 33,698 SVs in 305 individuals of 55 globally distributed pig breeds. We perform selective signature analysis using these SVs, and a number of candidate variants are successfully identified. Especially for the Meishan pig, 64 novel significant selection regions are detected in its genome. A 140-bp deletion in the Indoleamine 2,3-Dioxygenase 2 (IDO2) gene, is shown to be associated with reproduction traits in Meishan pig. In addition, we detect two duplications only existing in Meishan pig. Moreover, the two duplications are separately located in cytochrome P450 family 2 subfamily J member 2 (CYP2J2) gene and phospholipase A2 group IVA (PLA2G4A) gene, which are related to the reproduction trait. Our study provides new insights into the role of selection in SVs' evolution and how SVs contribute to phenotypic variation in pigs.
Collapse
Affiliation(s)
- Heng Du
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiqi Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengzheng Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haifei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lei Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Yuan C, Lu Z, Guo T, Yue Y, Wang X, Wang T, Zhang Y, Hou F, Niu C, Sun X, Zhao H, Zhu S, Liu J, Yang B. A global analysis of CNVs in Chinese indigenous fine-wool sheep populations using whole-genome resequencing. BMC Genomics 2021; 22:78. [PMID: 33485316 PMCID: PMC7825165 DOI: 10.1186/s12864-021-07387-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background Copy number variation (CNV) is an important source of genetic variation that has a significant influence on phenotypic diversity, economically important traits and the evolution of livestock species. In this study, the genome-wide CNV distribution characteristics of 32 fine-wool sheep from three breeds were analyzed using resequencing. Results A total of 1,747,604 CNVs were detected in this study, and 7228 CNV regions (CNVR) were obtained after merging overlapping CNVs; these regions accounted for 2.17% of the sheep reference genome. The average length of the CNVRs was 4307.17 bp. “Deletion” events took place more frequently than “duplication” or “both” events. The CNVRs obtained overlapped with previously reported sheep CNVRs to variable extents (4.39–55.46%). Functional enrichment analysis showed that the CNVR-harboring genes were mainly involved in sensory perception systems, nutrient metabolism processes, and growth and development processes. Furthermore, 1855 of the CNVRs were associated with 166 quantitative trait loci (QTL), including milk QTLs, carcass QTLs, and health-related QTLs, among others. In addition, the 32 fine-wool sheep were divided into horned and polled groups to analyze for the selective sweep of CNVRs, and it was found that the relaxin family peptide receptor 2 (RXFP2) gene was strongly influenced by selection. Conclusions In summary, we constructed a genomic CNV map for Chinese indigenous fine-wool sheep using resequencing, thereby providing a valuable genetic variation resource for sheep genome research, which will contribute to the study of complex traits in sheep. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07387-7.
Collapse
Affiliation(s)
- Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Xijun Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Tianxiang Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Yajun Zhang
- Xinjiang Gongnaisi Breeding Sheep Farm, Xinyuan, 835808, China
| | - Fujun Hou
- Aohan Banner Breeding Sheep Farm, Chifeng, 024300, China
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Xiaopin Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Shaohua Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China.
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China.
| |
Collapse
|
9
|
Binversie EE, Baker LA, Engelman CD, Hao Z, Moran JJ, Piazza AM, Sample SJ, Muir P. Analysis of copy number variation in dogs implicates genomic structural variation in the development of anterior cruciate ligament rupture. PLoS One 2020; 15:e0244075. [PMID: 33382735 PMCID: PMC7774950 DOI: 10.1371/journal.pone.0244075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture is an important condition of the human knee. Second ruptures are common and societal costs are substantial. Canine cranial cruciate ligament (CCL) rupture closely models the human disease. CCL rupture is common in the Labrador Retriever (5.79% prevalence), ~100-fold more prevalent than in humans. Labrador Retriever CCL rupture is a polygenic complex disease, based on genome-wide association study (GWAS) of single nucleotide polymorphism (SNP) markers. Dissection of genetic variation in complex traits can be enhanced by studying structural variation, including copy number variants (CNVs). Dogs are an ideal model for CNV research because of reduced genetic variability within breeds and extensive phenotypic diversity across breeds. We studied the genetic etiology of CCL rupture by association analysis of CNV regions (CNVRs) using 110 case and 164 control Labrador Retrievers. CNVs were called from SNPs using three different programs (PennCNV, CNVPartition, and QuantiSNP). After quality control, CNV calls were combined to create CNVRs using ParseCNV and an association analysis was performed. We found no strong effect CNVRs but found 46 small effect (max(T) permutation P<0.05) CCL rupture associated CNVRs in 22 autosomes; 25 were deletions and 21 were duplications. Of the 46 CCL rupture associated CNVRs, we identified 39 unique regions. Thirty four were identified by a single calling algorithm, 3 were identified by two calling algorithms, and 2 were identified by all three algorithms. For 42 of the associated CNVRs, frequency in the population was <10% while 4 occurred at a frequency in the population ranging from 10–25%. Average CNVR length was 198,872bp and CNVRs covered 0.11 to 0.15% of the genome. All CNVRs were associated with case status. CNVRs did not overlap previous canine CCL rupture risk loci identified by GWAS. Associated CNVRs contained 152 annotated genes; 12 CNVRs did not have genes mapped to CanFam3.1. Using pathway analysis, a cluster of 19 homeobox domain transcript regulator genes was associated with CCL rupture (P = 6.6E-13). This gene cluster influences cranial-caudal body pattern formation during embryonic limb development. Clustered genes were found in 3 CNVRs on chromosome 14 (HoxA), 28 (NKX6-2), and 36 (HoxD). When analysis was limited to deletion CNVRs, the association was strengthened (P = 8.7E-16). This study suggests a component of the polygenic risk of CCL rupture in Labrador Retrievers is associated with small effect CNVs and may include aspects of stifle morphology regulated by homeobox domain transcript regulator genes.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lauren A. Baker
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Corinne D. Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhengling Hao
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John J. Moran
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexander M. Piazza
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susannah J. Sample
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Amiri Ghanatsaman Z, Wang GD, Asadollahpour Nanaei H, Asadi Fozi M, Peng MS, Esmailizadeh A, Zhang YP. Whole genome resequencing of the Iranian native dogs and wolves to unravel variome during dog domestication. BMC Genomics 2020; 21:207. [PMID: 32131720 PMCID: PMC7057629 DOI: 10.1186/s12864-020-6619-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/25/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Advances in genome technology have simplified a new comprehension of the genetic and historical processes crucial to rapid phenotypic evolution under domestication. To get new insight into the genetic basis of the dog domestication process, we conducted whole-genome sequence analysis of three wolves and three dogs from Iran which covers the eastern part of the Fertile Crescent located in Southwest Asia where the independent domestication of most of the plants and animals has been documented and also high haplotype sharing between wolves and dog breeds has been reported. RESULTS Higher diversity was found within the wolf genome compared with the dog genome. A total number of 12.45 million SNPs were detected in all individuals (10.45 and 7.82 million SNPs were identified for all the studied wolves and dogs, respectively) and a total number of 3.49 million small Indels were detected in all individuals (3.11 and 2.24 million small Indels were identified for all the studied wolves and dogs, respectively). A total of 10,571 copy number variation regions (CNVRs) were detected across the 6 individual genomes, covering 154.65 Mb, or 6.41%, of the reference genome (canFam3.1). Further analysis showed that the distribution of deleterious variants in the dog genome is higher than the wolf genome. Also, genomic annotation results from intron and intergenic regions showed that the proportion of variations in the wolf genome is higher than that in the dog genome, while the proportion of the coding sequences and 3'-UTR in the dog genome is higher than that in the wolf genome. The genes related to the olfactory and immune systems were enriched in the set of the structural variants (SVs) identified in this work. CONCLUSIONS Our results showed more deleterious mutations and coding sequence variants in the domestic dog genome than those in wolf genome. By providing the first Iranian dog and wolf variome map, our findings contribute to understanding the genetic architecture of the dog domestication.
Collapse
Affiliation(s)
- Zeinab Amiri Ghanatsaman
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
- Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
- Yong Researchers Society, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PB 76169-133, Kerman, Iran.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
11
|
Zhang Y, Hu Y, Wang X, Jiang Q, Zhao H, Wang J, Ju Z, Yang L, Gao Y, Wei X, Bai J, Zhou Y, Huang J. Population Structure, and Selection Signatures Underlying High-Altitude Adaptation Inferred From Genome-Wide Copy Number Variations in Chinese Indigenous Cattle. Front Genet 2020; 10:1404. [PMID: 32117428 PMCID: PMC7033542 DOI: 10.3389/fgene.2019.01404] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Copy number variations (CNVs) have been demonstrated as crucial substrates for evolution, adaptation and breed formation. Chinese indigenous cattle breeds exhibit a broad geographical distribution and diverse environmental adaptability. Here, we analyzed the population structure and adaptation to high altitude of Chinese indigenous cattle based on genome-wide CNVs derived from the high-density BovineHD SNP array. We successfully detected the genome-wide CNVs of 318 individuals from 24 Chinese indigenous cattle breeds and 37 yaks as outgroups. A total of 5,818 autosomal CNV regions (683 bp-4,477,860 bp in size), covering ~14.34% of the bovine genome (UMD3.1), were identified, showing abundant CNV resources. Neighbor-joining clustering, principal component analysis (PCA), and population admixture analysis based on these CNVs support that most Chinese cattle breeds are hybrids of Bos taurus taurus (hereinafter to be referred as Bos taurus) and Bos taurus indicus (Bos indicus). The distribution patterns of the CNVs could to some extent be related to the geographical backgrounds of the habitat of the breeds, and admixture among cattle breeds from different districts. We analyzed the selective signatures of CNVs positively involved in high-altitude adaptation using pairwise Fst analysis within breeds with a strong Bos taurus background (taurine-type breeds) and within Bos taurus×Bos indicus hybrids, respectively. CNV-overlapping genes with strong selection signatures (at top 0.5% of Fst value), including LETM1 (Fst = 0.490), TXNRD2 (Fst = 0.440), and STUB1 (Fst = 0.420) within taurine-type breeds, and NOXA1 (Fst = 0.233), RUVBL1 (Fst = 0.222), and SLC4A3 (Fst=0.154) within hybrids, were potentially involved in the adaptation to hypoxia. Thus, we provide a new profile of population structure from the CNV aspects of Chinese indigenous cattle and new insights into high-altitude adaptation in cattle.
Collapse
Affiliation(s)
- Yaran Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Han Zhao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jinpeng Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaping Gao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaochao Wei
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiachen Bai
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.,Engineering Center of Animal Breeding and Reproduction, Jinan, China
| |
Collapse
|
12
|
Janeš M, Zorc M, Cubric-Curik V, Curik I, Dovc P. Population structure and genetic history of Tibetan Terriers. Genet Sel Evol 2019; 51:79. [PMID: 31881816 PMCID: PMC6935067 DOI: 10.1186/s12711-019-0520-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Background Tibetan Terrier is a popular medium-sized companion dog breed. According to the history of the breed, the western population of Tibetan Terriers includes two lineages, Lamleh and Luneville. These two lineages derive from a small number of founder animals from the native Tibetan Terrier population, which were brought to Europe in the 1920s. For almost a century, the western population of Tibetan Terriers and the native population in Tibet were reproductively isolated. In this study, we analysed the structure of the western population of Tibetan Terriers, the original native population from Tibet and of different crosses between these two populations. We also examined the genetic relationships of Tibetan Terriers with other dog breeds, especially terriers and some Asian breeds, and the within-breed structure of both Tibetan Terrier populations. Results Our analyses were based on high-density single nucleotide polymorphism (SNP) array (Illumina HD Canine 170 K) and microsatellite (18 loci) genotypes of 64 Tibetan Terriers belonging to different populations and lineages. For the comparative analysis, we used 348 publicly available SNP array genotypes of dogs from other breeds. We found that the western population of Tibetan Terriers and the native Tibetan Terriers clustered together with other Asian dog breeds, whereas all other terrier breeds were grouped into a separate group. We were also able to differentiate the western Tibetan Terrier lineages (Lamleh and Luneville) from the native Tibetan Terrier population. Conclusions Our results reveal the relationships between the western and native populations of Tibetan Terriers and support the hypothesis that Tibetan Terrier belongs to the group of ancient dog breeds of Asian origin, which are close to the ancestors of the modern dog that were involved in the early domestication process. Thus, we were able to reject the initial hypothesis that Tibetan Terriers belong to the group of terrier breeds. The existence of this native population of Tibetan Terriers at its original location represents an exceptional and valuable genetic resource.
Collapse
Affiliation(s)
- Mateja Janeš
- Department of Animal Science, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
| | - Minja Zorc
- Department of Animal Science, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Vlatka Cubric-Curik
- Department of Animal Science, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
| | - Ino Curik
- Department of Animal Science, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
| | - Peter Dovc
- Department of Animal Science, University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Keel BN, Nonneman DJ, Lindholm-Perry AK, Oliver WT, Rohrer GA. A Survey of Copy Number Variation in the Porcine Genome Detected From Whole-Genome Sequence. Front Genet 2019; 10:737. [PMID: 31475038 PMCID: PMC6707380 DOI: 10.3389/fgene.2019.00737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Copy number variations (CNVs) are gains and losses of large regions of genomic sequence between individuals of a species. Although CNVs have been associated with various phenotypic traits in humans and other species, the extent to which CNVs impact phenotypic variation remains unclear. In swine, as well as many other species, relatively little is understood about the frequency of CNV in the genome, sizes, locations, and other chromosomal properties. In this work, we identified and characterized CNV by utilizing whole-genome sequence from 240 members of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the purebred founding boars (12 Duroc and 12 Landrace), 48 of the founding Yorkshire-Landrace composite sows, 109 composite animals from generations 4 through 9, 29 composite animals from generation 15, and 30 purebred industry boars (15 Landrace and 15 Yorkshire) used as sires in generations 10 through 15. Using a combination of split reads, paired-end mapping, and read depth approaches, we identified a total of 3,538 copy number variable regions (CNVRs), including 1,820 novel CNVRs not reported in previous studies. The CNVRs covered 0.94% of the porcine genome and overlapped 1,401 genes. Gene ontology analysis identified that CNV-overlapped genes were enriched for functions related to organism development. Additionally, CNVRs overlapped with many known quantitative trait loci (QTL). In particular, analysis of QTL previously identified in the USMARC herd showed that CNVRs were most overlapped with reproductive traits, such as age of puberty and ovulation rate, and CNVRs were significantly enriched for reproductive QTL.
Collapse
Affiliation(s)
- Brittney N Keel
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Dan J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | | | - William T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | - Gary A Rohrer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| |
Collapse
|
14
|
Jia C, Wang H, Li C, Wu X, Zan L, Ding X, Guo X, Bao P, Pei J, Chu M, Liang C, Yan P. Genome-wide detection of copy number variations in polled yak using the Illumina BovineHD BeadChip. BMC Genomics 2019; 20:376. [PMID: 31088363 PMCID: PMC6518677 DOI: 10.1186/s12864-019-5759-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 01/29/2023] Open
Abstract
Background Copy number variations (CNVs), which are genetic variations present throughout mammalian genomes, are a vital source of phenotypic variation that can lead to the development of unique traits. In this study we used the Illunima BovineHD BeadChip to conduct genome-wide detection of CNVs in 215 polled yaks. Results A total of 1066 CNV regions (CNVRs) were detected with a total length of 181.6 Mb, comprising ~ 7.2% of the bovine autosomal genome. The size of these CNVRs ranged from 5.53 kb to 1148.45 kb, with an average size of 170.31 kb. Eight out of nine randomly chosen CNVRs were successfully validated by qPCR. A functional enrichment analysis of the CNVR-associated genes indicated their relationship to a number of molecular adaptations that enable yaks to thrive at high altitudes. One third of the detected CNVRs were mapped to QTLs associated with six classes of economically important traits, indicating that these CNVRs may play an important role in variations of these traits. Conclusions Our genome-wide yak CNV map may thus provide valuable insights into both the molecular mechanisms of high altitude adaptation and the potential genomic basis of economically important traits in yak. Electronic supplementary material The online version of this article (10.1186/s12864-019-5759-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Congjun Jia
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hongbo Wang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chen Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
15
|
Khatri B, Kang S, Shouse S, Anthony N, Kuenzel W, Kong BC. Copy number variation study in Japanese quail associated with stress related traits using whole genome re-sequencing data. PLoS One 2019; 14:e0214543. [PMID: 30921419 PMCID: PMC6438477 DOI: 10.1371/journal.pone.0214543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Copy number variation (CNV) is a major driving factor for genetic variation and phenotypic diversity in animals. To detect CNVs and understand genetic components underlying stress related traits, we performed whole genome re-sequencing of pooled DNA samples of 20 birds each from High Stress (HS) and Low Stress (LS) Japanese quail lines using Illumina HiSeq 2×150 bp paired end method. Sequencing data were aligned to the quail genome and CNVnator was used to detect CNVs in the aligned data sets. The depth of coverage for the data reached to 41.4x and 42.6x for HS and LS birds, respectively. We identified 262 and 168 CNV regions affecting 1.6 and 1.9% of the reference genome that completely overlapped 454 and 493 unique genes in HS and LS birds, respectively. Ingenuity pathway analysis showed that the CNV genes were significantly enriched to phospholipase C signaling, neuregulin signaling, reelin signaling in neurons, endocrine and nervous development, humoral immune response, and carbohydrate and amino acid metabolisms in HS birds, whereas CNV genes in LS birds were enriched in cell-mediated immune response, and protein and lipid metabolisms. These findings suggest CNV genes identified in HS and LS birds could be candidate markers responsible for stress responses in birds.
Collapse
Affiliation(s)
- Bhuwan Khatri
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
| | - Seong Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
| | - Stephanie Shouse
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
| | - Nicholas Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
| | - Wayne Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
| | - Byungwhi C. Kong
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail:
| |
Collapse
|
16
|
Di Gerlando R, Mastrangelo S, Sardina MT, Ragatzu M, Spaterna A, Portolano B, Biscarini F, Ciampolini R. A Genome-Wide Detection of Copy Number Variations Using SNP Genotyping Arrays in Braque Français Type Pyrénées Dogs. Animals (Basel) 2019; 9:E77. [PMID: 30832273 PMCID: PMC6466271 DOI: 10.3390/ani9030077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Copy number variants (CNVs) are an important source of genetic variation complementary to single nucleotide polymorphisms (SNPs). Only few studies have been conducted in dogs on CNVs derived from high-density SNP array data, and many canine breeds still remain uncharacterized, e.g., the Braque Français, type Pyrénées breed (BRA). Therefore, in an effort to more comprehensively investigate the canine genome for CNVs, we used a high-density SNP array (170 K) to discover CNVs in BRA. The CNV regions (CNVRs) were identified through the merging of two different CNVRs datasets, obtained separately from SNP data using the PennCNV and SVS software. A total of 45 stringent CNVRs, ranging from 3.5 kb to 458,716 kb in length were detected in 26 dog samples. Results overlapped moderately in comparison with previous studies on CNVs in dogs, leading to the identification of 16 novel CNVRs. A total of 159 genes were annotated in the CNVRs detected with stringent quality criteria in particular high classification stringency and false discovery rate correction. The gene ontology enrichment analysis provided information on biological processes and cellular components related to muscle structure development and muscle cell differentiation. Considering that BRA is a breed used for speed in hunting and retrieval, for the ability to find feathered game, and for pointing, we can hypothesize that selection for such hunting behavior could have driven, at least in part, the presence of these genes into the CNVRs.
Collapse
Affiliation(s)
- Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy.
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy.
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy.
| | - Marco Ragatzu
- Club Italiano Braque Français Type Pyrénées, 58011 Capalbio, Italy.
| | - Andrea Spaterna
- Scuola di Scienze Mediche Veterinarie, University of Camerino, 62024 Matelica, Italy.
- Centro interuniversitario di ricerca e di consulenza sulla genetica e la clinica del cane, 62024, Matelica, MC, Italy.
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy.
| | - Filippo Biscarini
- Consiglio Nazionale delle Ricerche-Istituto di Biologia e Biotecnologia Agraria, 20133 Milano, Italy.
| | - Roberta Ciampolini
- Centro interuniversitario di ricerca e di consulenza sulla genetica e la clinica del cane, 62024, Matelica, MC, Italy.
- Dipartimento di Scienze Veterinarie, University of Pisa, 56100 Pisa, Italy.
| |
Collapse
|
17
|
Mortlock SA, Williamson P, Khatkar MS. Copy number variation and variant discovery in Bullmastiff dogs. Anim Genet 2019; 50:177-181. [PMID: 30793343 DOI: 10.1111/age.12754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2018] [Indexed: 01/05/2023]
Abstract
Identification of genomic variants within dogs is important for understanding genetic factors contributing to breed diversity and phenotypic traits. This study aimed to identify sources of variation in the Bullmastiff using high-density signal intensity and whole-genome sequence data. Close to 3000 copy number variants (CNVs) were identified in Bullmastiff dogs using Canine HD BeadChip data. When CNVs were collated, 82 CNV regions (CNVRs) were detected, 50% in transcribed regions encompassing 432 genes. Fifty of the CNVRs detected have not been reported in other breeds and represent potential breed-specific variants. A proportion of the CNVR variants with predicted modifying effects on gene pathways may contribute to breed traits. Approximately 5 million putative variants per dog, inclusive of single nucleotide polymorphisms (SNPs), multi-nucleotide polymorphisms (MNPs) and insertion and deletions (INDELs), were identified from DNA sequence data on a small number of animals. Identification of genetic variants in the Bullmastiff highlights sources of variation in the breed and molecular markers that will assist in future trait and disease investigations in dogs.
Collapse
Affiliation(s)
- S-A Mortlock
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - P Williamson
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia.,School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - M S Khatkar
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
18
|
Xu L, Yang L, Wang L, Zhu B, Chen Y, Gao H, Gao X, Zhang L, Liu GE, Li J. Probe-based association analysis identifies several deletions associated with average daily gain in beef cattle. BMC Genomics 2019; 20:31. [PMID: 30630414 PMCID: PMC6327516 DOI: 10.1186/s12864-018-5403-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Average daily gain (ADG) is an important trait that contributes to the production efficiency and economic benefits in the beef cattle industry. The molecular mechanisms of ADG have not yet been fully explored because most recent association studies for ADG are based on SNPs or haplotypes. We reported a systematic CNV discovery and association analysis for ADG in Chinese Simmental beef cattle. RESULTS Our study identified 4912 nonredundant CNVRs with a total length of ~ 248.7 Mb, corresponding to ~ 8.9% of the cattle genome. Using probe-based CNV association, we identified 24 and 12 significant SNP probes within five deletions and two duplications for ADG, respectively. Among them, we found one common deletion with 89 kb imbedded in LHFPL Tetraspan Subfamily Member 6 (LHFPL6) at 22.9 Mb on BTA12, which has high frequency (12.9%) dispersing across population. CNV selection test using VST statistic suggested this common deletion may be under positive selection in Chinese Simmental cattle. Moreover, this deletion was not overlapped with any candidate SNP for ADG compared with previous SNPs-based association studies, suggesting its important role for ADG. In addition, we identified one rare deletion near gene Growth Factor Receptor-bound Protein 10 (GRB10) at 5.1 Mb on BTA4 for ADG using both probe-based association and region-based approaches. CONCLUSIONS Our results provided some valuable insights to elucidate the genetic basis of ADG in beef cattle, and these findings offer an alternative perspective to understand the genetic mechanism of complex traits in terms of copy number variations in farm animals.
Collapse
Affiliation(s)
- Lingyang Xu
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Liu Yang
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Wang
- Beijing Genecast Biotechnology Co., Beijing, 100191, China
| | - Bo Zhu
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Chen
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - George E Liu
- U.S. Department of Agriculture-Agricultural Research Services, Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705, USA.
| | - Junya Li
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
19
|
Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes. BMC Biol 2018; 16:40. [PMID: 29661185 PMCID: PMC5901865 DOI: 10.1186/s12915-018-0509-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Background Conventionally, comparison among amniotes – birds, mammals, and reptiles – has often been approached through analyses of mammals and, for comparison, birds. However, birds are morphologically and physiologically derived and, moreover, some parts of their genomes are recognized as difficult to sequence and/or assemble and are thus missing in genome assemblies. Therefore, sequencing the genomes of reptiles would aid comparative studies on amniotes by providing more comprehensive coverage to help understand the molecular mechanisms underpinning evolutionary changes. Results Herein, we present the whole genome sequences of the Madagascar ground gecko (Paroedura picta), a promising study system especially in developmental biology, and used it to identify changes in gene repertoire across amniotes. The genome-wide analysis of the Madagascar ground gecko allowed us to reconstruct a comprehensive set of gene phylogenies comprising 13,043 ortholog groups from diverse amniotes. Our study revealed 469 genes retained by some reptiles but absent from available genome-wide sequence data of both mammals and birds. Importantly, these genes, herein collectively designated as ‘elusive’ genes, exhibited high nucleotide substitution rates and uneven intra-genomic distribution. Furthermore, the genomic regions flanking these elusive genes exhibited distinct characteristics that tended to be associated with increased gene density, repeat element density, and GC content. Conclusion This highly continuous and nearly complete genome assembly of the Madagascar ground gecko will facilitate the use of this species as an experimental animal in diverse fields of biology. Gene repertoire comparisons across amniotes further demonstrated that the fate of a duplicated gene can be affected by the intrinsic properties of its genomic location, which can persist for hundreds of millions of years. Electronic supplementary material The online version of this article (10.1186/s12915-018-0509-4) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
|
21
|
Xu L, Yang L, Bickhart DM, Li J, Liu GE. Analysis of Population-Genetic Properties of Copy Number Variations. Methods Mol Biol 2018; 1833:179-186. [PMID: 30039373 DOI: 10.1007/978-1-4939-8666-8_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While single nucleotide polymorphisms (SNPs) are typically the variant of choice for population genetics, copy number variations (CNVs) which comprise insertions, deletions and duplications of genomic sequences, is also an informative type of genetic variation. CNVs have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. Moreover, population-specific CNVs are candidate regions under selection and are potentially responsible for diverse phenotypes.
Collapse
Affiliation(s)
- Lingyang Xu
- Institute of Animal Science, Beijing, China.
| | - Liu Yang
- Institute of Animal Science, Beijing, China
| | - Derek M Bickhart
- Research Microbiologist/Bioinformatician, USDA ARS DFRC, Madison, WI, USA
| | - JunYa Li
- Institute of Animal Science, Beijing, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, USDA ARS, Beltsville, MD, USA
| |
Collapse
|
22
|
Serres-Armero A, Povolotskaya IS, Quilez J, Ramirez O, Santpere G, Kuderna LFK, Hernandez-Rodriguez J, Fernandez-Callejo M, Gomez-Sanchez D, Freedman AH, Fan Z, Novembre J, Navarro A, Boyko A, Wayne R, Vilà C, Lorente-Galdos B, Marques-Bonet T. Similar genomic proportions of copy number variation within gray wolves and modern dog breeds inferred from whole genome sequencing. BMC Genomics 2017; 18:977. [PMID: 29258433 PMCID: PMC5735816 DOI: 10.1186/s12864-017-4318-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/17/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Whole genome re-sequencing data from dogs and wolves are now commonly used to study how natural and artificial selection have shaped the patterns of genetic diversity. Single nucleotide polymorphisms, microsatellites and variants in mitochondrial DNA have been interrogated for links to specific phenotypes or signals of domestication. However, copy number variation (CNV), despite its increasingly recognized importance as a contributor to phenotypic diversity, has not been extensively explored in canids. RESULTS Here, we develop a new accurate probabilistic framework to create fine-scale genomic maps of segmental duplications (SDs), compare patterns of CNV across groups and investigate their role in the evolution of the domestic dog by using information from 34 canine genomes. Our analyses show that duplicated regions are enriched in genes and hence likely possess functional importance. We identify 86 loci with large CNV differences between dogs and wolves, enriched in genes responsible for sensory perception, immune response, metabolic processes, etc. In striking contrast to the observed loss of nucleotide diversity in domestic dogs following the population bottlenecks that occurred during domestication and breed creation, we find a similar proportion of CNV loci in dogs and wolves, suggesting that other dynamics are acting to particularly select for CNVs with potentially functional impacts. CONCLUSIONS This work is the first comparison of genome wide CNV patterns in domestic and wild canids using whole-genome sequencing data and our findings contribute to study the impact of novel kinds of genetic changes on the evolution of the domestic dog.
Collapse
Affiliation(s)
- Aitor Serres-Armero
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain
| | - Inna S Povolotskaya
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain
| | - Javier Quilez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Oscar Ramirez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain.,Vetgenomics, 08193, Barcelona, Spain
| | - Gabriel Santpere
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain.,Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Lukas F K Kuderna
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain
| | - Jessica Hernandez-Rodriguez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain
| | - Marcos Fernandez-Callejo
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel Gomez-Sanchez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain
| | - Adam H Freedman
- UCLA, Department of Ecology and Evolutionary Biology, Los Angeles, CA, 90095, USA
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - John Novembre
- UCLA, Department of Ecology and Evolutionary Biology, Los Angeles, CA, 90095, USA
| | - Arcadi Navarro
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Catalonia, Spain
| | - Adam Boyko
- Cornell University, Department of Biological Statistics and Computational Biology, New York, NY, 14853, USA
| | - Robert Wayne
- UCLA, Department of Ecology and Evolutionary Biology, Los Angeles, CA, 90095, USA
| | - Carles Vilà
- Estación Biológica de Doñana EBD-CSIC, Department of Integrative Ecology, 41092, Sevilla, Spain
| | - Belen Lorente-Galdos
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain. .,Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| | - Tomas Marques-Bonet
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, 08003, Barcelona, Spain. .,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. .,Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Catalonia, Spain.
| |
Collapse
|
23
|
Dolatabadian A, Patel DA, Edwards D, Batley J. Copy number variation and disease resistance in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2479-2490. [PMID: 29043379 DOI: 10.1007/s00122-017-2993-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/27/2017] [Indexed: 05/06/2023]
Abstract
Plant genome diversity varies from single nucleotide polymorphisms to large-scale deletions, insertions, duplications, or re-arrangements. These re-arrangements of sequences resulting from duplication, gains or losses of DNA segments are termed copy number variations (CNVs). During the last decade, numerous studies have emphasized the importance of CNVs as a factor affecting human phenotype; in particular, CNVs have been associated with risks for several severe diseases. In plants, the exploration of the extent and role of CNVs in resistance against pathogens and pests is just beginning. Since CNVs are likely to be associated with disease resistance in plants, an understanding of the distribution of CNVs could assist in the identification of novel plant disease-resistance genes. In this paper, we review existing information about CNVs; their importance, role and function, as well as their association with disease resistance in plants.
Collapse
Affiliation(s)
- Aria Dolatabadian
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - Dhwani Apurva Patel
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
24
|
Yang L, Xu L, Zhu B, Niu H, Zhang W, Miao J, Shi X, Zhang M, Chen Y, Zhang L, Gao X, Gao H, Li L, Liu GE, Li J. Genome-wide analysis reveals differential selection involved with copy number variation in diverse Chinese Cattle. Sci Rep 2017; 7:14299. [PMID: 29085051 PMCID: PMC5662686 DOI: 10.1038/s41598-017-14768-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Copy number variations (CNVs) are defined as deletions, insertions, and duplications between two individuals of a species. To investigate the diversity and population-genetic properties of CNVs and their diverse selection patterns, we performed a genome-wide CNV analysis using high density SNP array in Chinese native cattle. In this study, we detected a total of 13,225 CNV events and 3,356 CNV regions (CNVRs), overlapping with 1,522 annotated genes. Among them, approximately 71.43 Mb of novel CNVRs were detected in the Chinese cattle population for the first time, representing the unique genomic resources in cattle. A new V i statistic was proposed to estimate the region-specific divergence in CNVR for each group based on unbiased estimates of pairwise V ST . We obtained 12 and 62 candidate CNVRs at the top 1% and top 5% of genome-wide V i value thresholds for each of four groups (North, Northwest, Southwest and South). Moreover, we identified many lineage-differentiated CNV genes across four groups, which were associated with several important molecular functions and biological processes, including metabolic process, response to stimulus, immune system, and others. Our findings provide some insights into understanding lineage-differentiated CNVs under divergent selection in the Chinese native cattle.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hong Niu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wengang Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Miao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xinping Shi
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland, 20705, USA
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
25
|
Abe H, Aoya D, Takeuchi HA, Inoue-Murayama M. Gene expression patterns of chicken neuregulin 3 in association with copy number variation and frameshift deletion. BMC Genet 2017; 18:69. [PMID: 28732471 PMCID: PMC5521077 DOI: 10.1186/s12863-017-0537-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/11/2017] [Indexed: 01/21/2023] Open
Abstract
Background Neuregulin 3 (NRG3) plays a key role in central nervous system development and is a strong candidate for human mental disorders. Thus, genetic variation in NRG3 may have some impact on a variety of phenotypes in non-mammalian vertebrates. Recently, genome-wide screening for short insertions and deletions in chicken (Gallus gallus) genomes has provided useful information about structural variation in functionally important genes. NRG3 is one such gene that has a putative frameshift deletion in exon 2, resulting in premature termination of translation. Our aims were to characterize the structure of chicken NRG3 and to compare expression patterns between NRG3 isoforms. Results Depending on the presence or absence of the 2-bp deletion in chicken NRG3, 3 breeds (red junglefowl [RJF], Boris Brown [BB], and Hinai-jidori [HJ]) were genotyped using flanking primers. In the commercial breeds (BB and HJ), approximately 45% of individuals had at least one exon 2 allele with the 2-bp deletion, whereas there was no deletion allele in RJF. The lack of a homozygous mutant indicated the existence of duplicated NRG3 segments in the chicken genome. Indeed, highly conserved elements consisting of exon 1, intron 1, exon 2, and part of intron 2 were found in the reference RJF genome, and quantitative PCR detected copy number variation (CNV) between breeds as well as between individuals. The copy number of conserved elements was significantly higher in chicks harboring the 2-bp deletion in exon 2. We identified 7 novel transcript variants using total mRNA isolated from the amygdala. Novel isoforms were found to lack the exon 2 cassette, which probably harbored the premature termination codon. The relative transcription levels of the newly identified isoforms were almost the same between chick groups with and without the 2-bp deletion, while chicks with the deletion showed significant suppression of the expression of previously reported isoforms. Conclusions A putative frameshift deletion and CNV in chicken NRG3 are structural mutations that occurred before the establishment of commercial chicken lines. Our results further suggest that the putative frameshift deletion in exon 2 may potentially affect the expression level of particular isoforms of chicken NRG3. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0537-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hideaki Abe
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan.
| | - Daiki Aoya
- Akita Prefectural Livestock Experiment Station, 13-3 Kaisonumayachi, Jinguji, Daisen, Akita, 019-1701, Japan
| | - Hiro-Aki Takeuchi
- Department of Biological Science, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan.,Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
26
|
Li BJ, Li HL, Meng Z, Zhang Y, Lin H, Yue GH, Xia JH. Copy Number Variations in Tilapia Genomes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:11-21. [PMID: 28168542 DOI: 10.1007/s10126-017-9733-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Discovering the nature and pattern of genome variation is fundamental in understanding phenotypic diversity among populations. Although several millions of single nucleotide polymorphisms (SNPs) have been discovered in tilapia, the genome-wide characterization of larger structural variants, such as copy number variation (CNV) regions has not been carried out yet. We conducted a genome-wide scan for CNVs in 47 individuals from three tilapia populations. Based on 254 Gb of high-quality paired-end sequencing reads, we identified 4642 distinct high-confidence CNVs. These CNVs account for 1.9% (12.411 Mb) of the used Nile tilapia reference genome. A total of 1100 predicted CNVs were found overlapping with exon regions of protein genes. Further association analysis based on linear model regression found 85 CNVs ranging between 300 and 27,000 base pairs significantly associated to population types (R 2 > 0.9 and P > 0.001). Our study sheds first insights on genome-wide CNVs in tilapia. These CNVs among and within tilapia populations may have functional effects on phenotypes and specific adaptation to particular environments.
Collapse
Affiliation(s)
- Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hong Lian Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
27
|
Keel BN, Lindholm-Perry AK, Snelling WM. Evolutionary and Functional Features of Copy Number Variation in the Cattle Genome. Front Genet 2016; 7:207. [PMID: 27920798 PMCID: PMC5118444 DOI: 10.3389/fgene.2016.00207] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023] Open
Abstract
Genomic structural variations are an important source of genetic diversity. Copy number variations (CNVs), gains and losses of large regions of genomic sequence between individuals of a species, have been associated with a wide variety of phenotypic traits. However, in cattle, as well as many other species, relatively little is understood about CNV, including frequency of CNVs in the genome, sizes, and locations, chromosomal properties, and evolutionary processes acting to shape CNV. In this work, we focused on copy number variation in the bovine genome, with the aim to detect CNVs in Bos taurus coding sequence and explore potential evolutionary mechanisms shaping these CNV. We identified and characterized CNV regions by utilizing exome sequence from 175 influential sires used in the Germplasm Evaluation project, representing 10 breeds. We examined various evolutionary and functional aspects of these CNVs, including selective constraint on CNV-overlapped genes, centrality of CNV genes in protein-protein interaction networks, and tissue-specific expression of CNV genes. Patterns of CNV in the Bos taurus genome reveal that reduced functional constraint and mutational bias may play a prominent role in shaping this type of structural variation.
Collapse
Affiliation(s)
- Brittney N Keel
- Agricultural Research Service (USDA), Meat Animal Research Center Clay Center, NE, USA
| | | | - Warren M Snelling
- Agricultural Research Service (USDA), Meat Animal Research Center Clay Center, NE, USA
| |
Collapse
|
28
|
Keel BN, Keele JW, Snelling WM. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds,. Anim Genet 2016; 48:141-150. [DOI: 10.1111/age.12519] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2016] [Indexed: 12/19/2022]
Affiliation(s)
- B. N. Keel
- USDA; ARS; U.S. Meat Animal Research Center; Clay Center NE 68933 USA
| | - J. W. Keele
- USDA; ARS; U.S. Meat Animal Research Center; Clay Center NE 68933 USA
| | - W. M. Snelling
- USDA; ARS; U.S. Meat Animal Research Center; Clay Center NE 68933 USA
| |
Collapse
|
29
|
Steenwyk JL, Soghigian JS, Perfect JR, Gibbons JG. Copy number variation contributes to cryptic genetic variation in outbreak lineages of Cryptococcus gattii from the North American Pacific Northwest. BMC Genomics 2016; 17:700. [PMID: 27590805 PMCID: PMC5009542 DOI: 10.1186/s12864-016-3044-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Background Copy number variants (CNVs) are a class of structural variants (SVs) and are defined as fragments of DNA that are present at variable copy number in comparison with a reference genome. Recent advances in bioinformatics methodologies and sequencing technologies have enabled the high-resolution quantification of genome-wide CNVs. In pathogenic fungi SVs have been shown to alter gene expression, influence host specificity, and drive fungicide resistance, but little attention has focused specifically on CNVs. Using publicly available sequencing data, we identified 90 isolates across 212 Cryptococcus gattii genomes that belong to the VGII subgroups responsible for the recent deadly outbreaks in the North American Pacific Northwest. We generated CNV profiles for each sample to investigate the prevalence and function of CNV in C. gattii. Results We identified eight genetic clusters among publicly available Illumina whole genome sequence data from 212 C. gattii isolates through population structure analysis. Three clusters represent the VGIIa, VGIIb, and VGIIc subgroups from the North American Pacific Northwest. CNV was bioinformatically predicted and affected ~300–400 Kilobases (Kb) of the C. gattii VGII subgroup genomes. Sixty-seven loci, encompassing 58 genes, showed highly divergent patterns of copy number variation between VGII subgroups. Analysis of PFam domains within divergent CN variable genes revealed enrichment of protein domains associated with transport, cell wall organization and external encapsulating structure. Conclusions CNVs may contribute to pathological and phenotypic differences observed between the C. gattii VGIIa, VGIIb, and VGIIc subpopulations. Genes overlapping with population differentiated CNVs were enriched for several virulence related functional terms. These results uncover novel candidate genes to examine the genetic and functional underpinnings of C. gattii pathogenicity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3044-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Biology Department, Clark University, 950 Main Street, Worcester, MA, USA.,Current address: Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John S Soghigian
- Biology Department, Clark University, 950 Main Street, Worcester, MA, USA.,Current address: Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - John G Gibbons
- Biology Department, Clark University, 950 Main Street, Worcester, MA, USA.
| |
Collapse
|
30
|
Pilot M, Malewski T, Moura AE, Grzybowski T, Oleński K, Kamiński S, Fadel FR, Alagaili AN, Mohammed OB, Bogdanowicz W. Diversifying Selection Between Pure-Breed and Free-Breeding Dogs Inferred from Genome-Wide SNP Analysis. G3 (BETHESDA, MD.) 2016; 6:2285-98. [PMID: 27233669 PMCID: PMC4978884 DOI: 10.1534/g3.116.029678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/20/2016] [Indexed: 12/13/2022]
Abstract
Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e., unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH) signaling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on the BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signaling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signaling pathway. HH inhibits adhesion and the migration of neural crest cells from the neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of "domestication syndrome." This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication.
Collapse
Affiliation(s)
- Małgorzata Pilot
- School of Life Sciences, University of Lincoln, Lincolnshire, LN6 7DL, UK Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warszawa, Poland
| | - Tadeusz Malewski
- Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warszawa, Poland
| | - Andre E Moura
- School of Life Sciences, University of Lincoln, Lincolnshire, LN6 7DL, UK
| | - Tomasz Grzybowski
- Division of Molecular and Forensic Genetics, Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| | - Kamil Oleński
- Department of Animal Genetics, University of Warmia and Mazury, 10-711 Olsztyn, Poland
| | - Stanisław Kamiński
- Department of Animal Genetics, University of Warmia and Mazury, 10-711 Olsztyn, Poland
| | | | - Abdulaziz N Alagaili
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama B Mohammed
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wiesław Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warszawa, Poland
| |
Collapse
|
31
|
Zapata I, Serpell JA, Alvarez CE. Genetic mapping of canine fear and aggression. BMC Genomics 2016; 17:572. [PMID: 27503363 PMCID: PMC4977763 DOI: 10.1186/s12864-016-2936-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Fear/anxiety and anger/aggression greatly influence health, quality of life and social interactions. They are a huge burden to wellbeing, and personal and public economics. However, while much is known about the physiology and neuroanatomy of such emotions, little is known about their genetics - most importantly, why some individuals are more susceptible to pathology under stress. RESULTS We conducted genomewide association (GWA) mapping of breed stereotypes for many fear and aggression traits across several hundred dogs from diverse breeds. We confirmed those findings using GWA in a second cohort of partially overlapping breeds. Lastly, we used the validated loci to create a model that effectively predicted fear and aggression stereotypes in a third group of dog breeds that were not involved in the mapping studies. We found that i) known IGF1 and HMGA2 loci variants for small body size are associated with separation anxiety, touch-sensitivity, owner directed aggression and dog rivalry; and ii) two loci, between GNAT3 and CD36 on chr18, and near IGSF1 on chrX, are associated with several traits, including touch-sensitivity, non-social fear, and fear and aggression that are directed toward unfamiliar dogs and humans. All four genome loci are among the most highly evolutionarily-selected in dogs, and each of those was previously shown to be associated with morphological traits. We propose that the IGF1 and HMGA2 loci are candidates for identical variation being associated with both behavior and morphology. In contrast, we show that the GNAT3-CD36 locus has distinct variants for behavior and morphology. The chrX region is a special case due to its extensive linkage disequilibrium (LD). Our evidence strongly suggests that sociability (which we propose is associated with HS6ST2) and fear/aggression are two distinct GWA loci within this LD block on chrX, but there is almost perfect LD between the peaks for fear/aggression and animal size. CONCLUSIONS We have mapped many canine fear and aggression traits to single haplotypes at the GNAT3-CD36 and IGSF1 loci. CD36 is widely expressed, but areas of the amygdala and hypothalamus are among the brain regions with highest enrichment; and CD36-knockout mice are known to have significantly increased anxiety and aggression. Both of the other genes have very high tissue-specificity and are very abundantly expressed in brain regions that comprise the core anatomy of fear and aggression - the amygdala to hypothalamic-pituitary-adrenal (HPA) axis. We propose that reduced-fear variants at these loci may have been involved in the domestication process.
Collapse
Affiliation(s)
- Isain Zapata
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
| | - James A. Serpell
- Center for the Interaction of Animals and Society, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Carlos E. Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205 USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210 USA
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210 USA
| |
Collapse
|
32
|
Comparative analyses across cattle genders and breeds reveal the pitfalls caused by false positive and lineage-differential copy number variations. Sci Rep 2016; 6:29219. [PMID: 27381368 PMCID: PMC4933914 DOI: 10.1038/srep29219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/14/2016] [Indexed: 12/31/2022] Open
Abstract
We compared CNV region (CNVR) results derived from 1,682 Nellore cattle with equivalent results derived from our previous analysis of Bovine HapMap samples. By comparing CNV segment frequencies between different genders and groups, we identified 9 frequent, false positive CNVRs with a total length of 0.8 Mbp that were likely caused by assembly errors. Although there was a paucity of lineage specific events, we did find one 54 kb deletion on chr5 significantly enriched in Nellore cattle. A few highly frequent CNVRs present in both datasets were detected within genomic regions containing olfactory receptor, ATP-binding cassette, and major histocompatibility complex genes. We further evaluated their impacts on downstream bioinformatics and CNV association analyses. Our results revealed pitfalls caused by false positive and lineage-differential copy number variations and will increase the accuracy of future CNV studies in both taurine and indicine cattle.
Collapse
|
33
|
da Silva JM, Giachetto PF, da Silva LO, Cintra LC, Paiva SR, Yamagishi MEB, Caetano AR. Genome-wide copy number variation (CNV) detection in Nelore cattle reveals highly frequent variants in genome regions harboring QTLs affecting production traits. BMC Genomics 2016; 17:454. [PMID: 27297173 PMCID: PMC4907077 DOI: 10.1186/s12864-016-2752-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/19/2016] [Indexed: 11/10/2022] Open
Abstract
Background Copy number variations (CNVs) have been shown to account for substantial portions of observed genomic variation and have been associated with qualitative and quantitative traits and the onset of disease in a number of species. Information from high-resolution studies to detect, characterize and estimate population-specific variant frequencies will facilitate the incorporation of CNVs in genomic studies to identify genes affecting traits of importance. Results Genome-wide CNVs were detected in high-density single nucleotide polymorphism (SNP) genotyping data from 1,717 Nelore (Bos indicus) cattle, and in NGS data from eight key ancestral bulls. A total of 68,007 and 12,786 distinct CNVs were observed, respectively. Cross-comparisons of results obtained for the eight resequenced animals revealed that 92 % of the CNVs were observed in both datasets, while 62 % of all detected CNVs were observed to overlap with previously validated cattle copy number variant regions (CNVRs). Observed CNVs were used for obtaining breed-specific CNV frequencies and identification of CNVRs, which were subsequently used for gene annotation. A total of 688 of the detected CNVRs were observed to overlap with 286 non-redundant QTLs associated with important production traits in cattle. All of 34 CNVs previously reported to be associated with milk production traits in Holsteins were also observed in Nelore cattle. Comparisons of estimated frequencies of these CNVs in the two breeds revealed 14, 13, 6 and 14 regions in high (>20 %), low (<20 %) and divergent (NEL > HOL, NEL < HOL) frequencies, respectively. Conclusions Obtained results significantly enriched the bovine CNV map and enabled the identification of variants that are potentially associated with traits under selection in Nelore cattle, particularly in genome regions harboring QTLs affecting production traits. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2752-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joaquim Manoel da Silva
- Faculdade de Ciências Agrárias, Biológicas e Sociais Aplicadas, Universidade do Estado de Mato Grosso (UNEMAT), Av. Prof Dr. Renato Figueiro Varella, CEP 78.690-000, Nova Xavantina, Mato Grosso, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular-Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Poliana Fernanda Giachetto
- Embrapa Informática Agropecuária - Laboratório Multiusuário de Bioinformática (LMB), Campinas, São Paulo, Brazil
| | | | - Leandro Carrijo Cintra
- Embrapa Informática Agropecuária - Laboratório Multiusuário de Bioinformática (LMB), Campinas, São Paulo, Brazil
| | - Samuel Rezende Paiva
- Embrapa - Secretaria de Relações Internacionais, Brasília, Distrito Federal, Brazil.,Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil.,CNPq Fellow, ᅟ, ᅟ
| | | | | |
Collapse
|
34
|
Jenkins GM, Goddard ME, Black MA, Brauning R, Auvray B, Dodds KG, Kijas JW, Cockett N, McEwan JC. Copy number variants in the sheep genome detected using multiple approaches. BMC Genomics 2016; 17:441. [PMID: 27277319 PMCID: PMC4898393 DOI: 10.1186/s12864-016-2754-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Background Copy number variants (CNVs) are a type of polymorphism found to underlie phenotypic variation, both in humans and livestock. Most surveys of CNV in livestock have been conducted in the cattle genome, and often utilise only a single approach for the detection of copy number differences. Here we performed a study of CNV in sheep, using multiple methods to identify and characterise copy number changes. Comprehensive information from small pedigrees (trios) was collected using multiple platforms (array CGH, SNP chip and whole genome sequence data), with these data then analysed via multiple approaches to identify and verify CNVs. Results In total, 3,488 autosomal CNV regions (CNVRs) were identified in this study, which substantially builds on an initial survey of the sheep genome that identified 135 CNVRs. The average length of the identified CNVRs was 19 kb (range of 1 kb to 3.6 Mb), with shorter CNVRs being more frequent than longer CNVRs. The total length of all CNVRs was 67.6Mbps, which equates to 2.7 % of the sheep autosomes. For individuals this value ranged from 0.24 to 0.55 %, and the majority of CNVRs were identified in single animals. Rather than being uniformly distributed throughout the genome, CNVRs tended to be clustered. Application of three independent approaches for CNVR detection facilitated a comparison of validation rates. CNVs identified on the Roche-NimbleGen 2.1M CGH array generally had low validation rates with lower density arrays, while whole genome sequence data had the highest validation rate (>60 %). Conclusions This study represents the first comprehensive survey of the distribution, prevalence and characteristics of CNVR in sheep. Multiple approaches were used to detect CNV regions and it appears that the best method for verifying CNVR on a large scale involves using a combination of detection methodologies. The characteristics of the 3,488 autosomal CNV regions identified in this study are comparable to other CNV regions reported in the literature and provide a valuable and sizeable addition to the small subset of published sheep CNVs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2754-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gemma M Jenkins
- AbacusBio Limited, 442 Moray Place, PO Box 5585, Dunedin, 9058, New Zealand.
| | - Michael E Goddard
- Victorian Department of Economic Development, Jobs, Transport and Resources, Bundoora, VIC, 3083, Australia
| | - Michael A Black
- Department of Biochemistry, University of Otago, 710 Cumberland St, Dunedin, 9054, New Zealand
| | - Rudiger Brauning
- AgResearch, Invermay Agricultural Centre, PB 50034, Mosgiel, 9053, New Zealand
| | - Benoit Auvray
- Department of Biochemistry, University of Otago, 710 Cumberland St, Dunedin, 9054, New Zealand
| | - Ken G Dodds
- AgResearch, Invermay Agricultural Centre, PB 50034, Mosgiel, 9053, New Zealand
| | - James W Kijas
- CSIRO Animal, Food and Health Sciences, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Noelle Cockett
- Utah State University, 1435 Old Main Hill, Logan, UT, 84322-1435-1435, USA
| | - John C McEwan
- AgResearch, Invermay Agricultural Centre, PB 50034, Mosgiel, 9053, New Zealand
| |
Collapse
|
35
|
Bickhart DM, Xu L, Hutchison JL, Cole JB, Null DJ, Schroeder SG, Song J, Garcia JF, Sonstegard TS, Van Tassell CP, Schnabel RD, Taylor JF, Lewin HA, Liu GE. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle. DNA Res 2016; 23:253-62. [PMID: 27085184 PMCID: PMC4909312 DOI: 10.1093/dnares/dsw013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/29/2016] [Indexed: 11/14/2022] Open
Abstract
The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future.
Collapse
Affiliation(s)
- Derek M Bickhart
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Lingyang Xu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Jana L Hutchison
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - John B Cole
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Daniel J Null
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Steven G Schroeder
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | - Tad S Sonstegard
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | | | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Harris A Lewin
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - George E Liu
- USDA-ARS, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| |
Collapse
|
36
|
Bai Z, Chen J, Liao Y, Wang M, Liu R, Ge S, Wing RA, Chen M. The impact and origin of copy number variations in the Oryza species. BMC Genomics 2016; 17:261. [PMID: 27025496 PMCID: PMC4812662 DOI: 10.1186/s12864-016-2589-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 03/15/2016] [Indexed: 02/16/2023] Open
Abstract
Background Copy number variation (CNV), a complex genomic rearrangement, has been extensively studied in humans and other organisms. In plants, CNVs of several genes were found to be responsible for various important traits; however, the cause and consequence of CNVs remains largely unknown. Recently released next-generation sequencing (NGS) data provide an opportunity for a genome-wide study of CNVs in rice. Results Here, by an NGS-based approach, we generated a CNV map comprising 9,196 deletions compared to the reference genome ‘Nipponbare’. Using Oryza glaberrima as the outgroup, 80 % of the CNV events turned out to be insertions in Nipponbare. There were 2,806 annotated genes affected by these CNV events. We experimentally validated 28 functional CNV genes including OsMADS56, BPH14, OsDCL2b and OsMADS30, implying that CNVs might have contributed to phenotypic variations in rice. Most CNV genes were found to be located in non-co-linear positions by comparison to O. glaberrima. One of the origins of these non-co-linear genes was genomic duplications caused by transposon activity or double-strand break repair. Comprehensive analysis of mutation mechanisms suggested an abundance of CNVs formed by non-homologous end-joining and mobile element insertion. Conclusions This study showed the impact and origin of copy number variations in rice on a genomic scale. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2589-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zetao Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfeng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Liao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meijiao Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
37
|
Xu L, Hou Y, Bickhart DM, Zhou Y, Hay EHA, Song J, Sonstegard TS, Van Tassell CP, Liu GE. Population-genetic properties of differentiated copy number variations in cattle. Sci Rep 2016; 6:23161. [PMID: 27005566 PMCID: PMC4804293 DOI: 10.1038/srep23161] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/25/2016] [Indexed: 01/24/2023] Open
Abstract
While single nucleotide polymorphism (SNP) is typically the variant of choice for population genetics, copy number variation (CNV) which comprises insertion, deletion and duplication of genomic sequence, is an informative type of genetic variation. CNVs have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a population genetics survey based on CNVs derived from the BovineHD SNP array data of eight distinct cattle breeds. We generated high resolution results that show geographical patterns of variations and genome-wide admixture proportions within and among breeds. Similar to the previous SNP-based studies, our CNV-based results displayed a strong correlation of population structure and geographical location. By conducting three pairwise comparisons among European taurine, African taurine, and indicine groups, we further identified 78 unique CNV regions that were highly differentiated, some of which might be due to selection. These CNV regions overlapped with genes involved in traits related to parasite resistance, immunity response, body size, fertility, and milk production. Our results characterize CNV diversity among cattle populations and provide a list of lineage-differentiated CNVs.
Collapse
Affiliation(s)
- Lingyang Xu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA.,Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Yali Hou
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Derek M Bickhart
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA
| | - Yang Zhou
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA.,College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Agricultural Molecular Biology, Yangling, Shaanxi, 712100, China
| | - El Hamidi Abdel Hay
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Tad S Sonstegard
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland 20705, USA
| |
Collapse
|
38
|
Structural Variant Detection by Large-scale Sequencing Reveals New Evolutionary Evidence on Breed Divergence between Chinese and European Pigs. Sci Rep 2016; 6:18501. [PMID: 26729041 PMCID: PMC4700453 DOI: 10.1038/srep18501] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/19/2015] [Indexed: 01/28/2023] Open
Abstract
In this study, we performed a genome-wide SV detection among the genomes of thirteen pigs from diverse Chinese and European originated breeds by next genetation sequencing, and constrcuted a single-nucleotide resolution map involving 56,930 putative SVs. We firstly identified a SV hotspot spanning 35 Mb region on the X chromosome specifically in the genomes of Chinese originated individuals. Further scrutinizing this region by large-scale sequencing data of extra 111 individuals, we obtained the confirmatory evidence on our initial finding. Moreover, thirty five SV-related genes within the hotspot region, being of importance for reproduction ability, rendered significant different evolution rates between Chinese and European originated breeds. The SV hotspot identified herein offers a novel evidence for assessing phylogenetic relationships, as well as likely explains the genetic difference of corresponding phenotypes and features, among Chinese and European pig breeds. Furthermore, we employed various SVs to infer genetic structure of individuls surveyed. We found SVs can clearly detect the difference of genetic background among individuals. This clues us that genome-wide SVs can capture majority of geneic variation and be applied into cladistic analyses. Characterizing whole genome SVs demonstrated that SVs are significantly enriched/depleted with various genomic features.
Collapse
|
39
|
Copy number variation in the region harboring SOX9 gene in dogs with testicular/ovotesticular disorder of sex development (78,XX; SRY-negative). Sci Rep 2015; 5:14696. [PMID: 26423656 PMCID: PMC4589768 DOI: 10.1038/srep14696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/04/2015] [Indexed: 11/09/2022] Open
Abstract
Although the disorder of sex development in dogs with female karyotype (XX DSD) is quite common, its molecular basis is still unclear. Among mutations underlying XX DSD in mammals are duplication of a long sequence upstream of the SOX9 gene (RevSex) and duplication of the SOX9 gene (also observed in dogs). We performed a comparative analysis of 16 XX DSD and 30 control female dogs, using FISH and MLPA approaches. Our study was focused on a region harboring SOX9 and a region orthologous to the human RevSex (CanRevSex), which was located by in silico analysis downstream of SOX9. Two highly polymorphic copy number variable regions (CNVRs): CNVR1 upstream of SOX9 and CNVR2 encompassing CanRevSex were identified. Although none of the detected copy number variants were specific to either affected or control animals, we observed that the average number of copies in CNVR1 was higher in XX DSD. No copy variation of SOX9 was observed. Our extensive studies have excluded duplication of SOX9 as the common cause of XX DSD in analyzed samples. However, it remains possible that the causative mutation is hidden in highly polymorphic CNVR1.
Collapse
|
40
|
Rossi E, Radi O, De Lorenzi L, Iannuzzi A, Camerino G, Zuffardi O, Parma P. A Revised Genome Assembly of the Region 5′ to Canine SOX9 Includes the RevSex Orthologous Region. Sex Dev 2015; 9:155-61. [DOI: 10.1159/000435871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 11/19/2022] Open
|
41
|
Locke MEO, Milojevic M, Eitutis ST, Patel N, Wishart AE, Daley M, Hill KA. Genomic copy number variation in Mus musculus. BMC Genomics 2015; 16:497. [PMID: 26141061 PMCID: PMC4490682 DOI: 10.1186/s12864-015-1713-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously. RESULTS We found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR). CONCLUSION The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Collapse
Affiliation(s)
- M Elizabeth O Locke
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Susan T Eitutis
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Nisha Patel
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Andrea E Wishart
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Mark Daley
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| | - Kathleen A Hill
- Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada.
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| |
Collapse
|
42
|
Genome-wide analysis of copy number variations in Chinese sheep using array comparative genomic hybridization. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Radke DW, Lee C. Adaptive potential of genomic structural variation in human and mammalian evolution. Brief Funct Genomics 2015; 14:358-68. [PMID: 26003631 DOI: 10.1093/bfgp/elv019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Because phenotypic innovations must be genetically heritable for biological evolution to proceed, it is natural to consider new mutation events as well as standing genetic variation as sources for their birth. Previous research has identified a number of single-nucleotide polymorphisms that underlie a subset of adaptive traits in organisms. However, another well-known class of variation, genomic structural variation, could have even greater potential to produce adaptive phenotypes, due to the variety of possible types of alterations (deletions, insertions, duplications, among others) at different genomic positions and with variable lengths. It is from these dramatic genomic alterations, and selection on their phenotypic consequences, that adaptations leading to biological diversification could be derived. In this review, using studies in humans and other mammals, we highlight examples of how phenotypic variation from structural variants might become adaptive in populations and potentially enable biological diversification. Phenotypic change arising from structural variants will be described according to their immediate effect on organismal metabolic processes, immunological response and physical features. Study of population dynamics of segregating structural variation can therefore provide a window into understanding current and historical biological diversification.
Collapse
|
44
|
Riccardo F, Aurisicchio L, Impellizeri JA, Cavallo F. The importance of comparative oncology in translational medicine. Cancer Immunol Immunother 2015; 64:137-48. [PMID: 25548094 PMCID: PMC11029667 DOI: 10.1007/s00262-014-1645-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
Abstract
Human cancer is so complex that in vivo preclinical models are needed if effective therapies are to be developed. Naturally occurring cancers in companion animals are therefore a great resource, as shown by the remarkable growth that comparative oncology has seen over the last 30 years. Cancer has become a leading cause of death in companion animals now that more pets are living long enough to develop the disease. Furthermore, more owners are seeking advanced and novel therapies for their pets as they are very much considered family members. Living in the same environments, pets and humans are often afflicted by the same types of cancer which show similar behavior and, in some species, express the same antigen molecules. The treatment of pet tumors using novel therapies is of compelling translational significance.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126 Turin, Italy
| | | | | | - Federica Cavallo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126 Turin, Italy
| |
Collapse
|
45
|
Berglund J, Quilez J, Arndt PF, Webster MT. Germline methylation patterns determine the distribution of recombination events in the dog genome. Genome Biol Evol 2014; 7:522-30. [PMID: 25527838 PMCID: PMC4350167 DOI: 10.1093/gbe/evu282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The positive-regulatory domain containing nine gene, PRDM9, which strongly associates with the location of recombination events in several vertebrates, is inferred to be inactive in the dog genome. Here, we address several questions regarding the control of recombination and its influence on genome evolution in dogs. First, we address whether the association between CpG islands (CGIs) and recombination hotspots is generated by lack of methylation, GC-biased gene conversion (gBGC), or both. Using a genome-wide dog single nucleotide polymorphism data set and comparisons of the dog genome with related species, we show that recombination-associated CGIs have low CpG mutation rates, and that CpG mutation rate is negatively correlated with recombination rate genome wide, indicating that nonmethylation attracts the recombination machinery. We next use a neighbor-dependent model of nucleotide substitution to disentangle the effects of CpG mutability and gBGC and analyze the effects that loss of PRDM9 has on these rates. We infer that methylation patterns have been stable during canid genome evolution, but that dog CGIs have experienced a drastic increase in substitution rate due to gBGC, consistent with increased levels of recombination in these regions. We also show that gBGC is likely to have generated many new CGIs in the dog genome, but these mostly occur away from genes, whereas the number of CGIs in gene promoter regions has not increased greatly in recent evolutionary history. Recombination has a major impact on the distribution of CGIs that are detected in the dog genome due to the interaction between methylation and gBGC. The results indicate that germline methylation patterns are the main determinant of recombination rates in the absence of PRDM9.
Collapse
Affiliation(s)
- Jonas Berglund
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Javier Quilez
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Peter F Arndt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Matthew T Webster
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| |
Collapse
|
46
|
Abstract
We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. Genomes of individuals in a species vary in many ways, one of which is DNA copy number variation (CNV). This includes deletions, duplications, and complex rearrangements typically larger than 50 base-pairs. CNVs are part of normal genetic variation contributing to phenotypic diversity but can also be pathogenic and associated with diseases and disorders. In order to distinguish between the two, detailed knowledge about CNVs in the species of interest is needed. Here we studied the genomes of 38 normal horses of 16 diverse breeds, and identified 258 CNV regions. We integrated our findings with previously published horse CNVs and generated a composite dataset of ∼1400 CNVRs. Despite this large number, our analysis shows that CNV research in horses needs further improvement because the current data are based on 10% of horse breeds and that most CNVRs are study-specific and require validation. Finally, we analyzed CNVs in horses with disorders of sexual development and found in two male pseudo-hermaphrodites a large deletion disrupting a group of genes involved in sex hormone metabolism and sexual differentiation. The findings underline the possible role of CNVs in complex disorders such as development and reproduction.
Collapse
|
47
|
Jiang J, Wang J, Wang H, Zhang Y, Kang H, Feng X, Wang J, Yin Z, Bao W, Zhang Q, Liu JF. Global copy number analyses by next generation sequencing provide insight into pig genome variation. BMC Genomics 2014; 15:593. [PMID: 25023178 PMCID: PMC4111851 DOI: 10.1186/1471-2164-15-593] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/04/2014] [Indexed: 01/10/2023] Open
Abstract
Background Copy number variations (CNVs) confer significant effects on genetic innovation and phenotypic variation. Previous CNV studies in swine seldom focused on in-depth characterization of global CNVs. Results Using whole-genome assembly comparison (WGAC) and whole-genome shotgun sequence detection (WSSD) approaches by next generation sequencing (NGS), we probed formation signatures of both segmental duplications (SDs) and individualized CNVs in an integrated fashion, building the finest resolution CNV and SD maps of pigs so far. We obtained copy number estimates of all protein-coding genes with copy number variation carried by individuals, and further confirmed two genes with high copy numbers in Meishan pigs through an enlarged population. We determined genome-wide CNV hotspots, which were significantly enriched in SD regions, suggesting evolution of CNV hotspots may be affected by ancestral SDs. Through systematically enrichment analyses based on simulations and bioinformatics analyses, we revealed CNV-related genes undergo a different selective constraint from those CNV-unrelated regions, and CNVs may be associated with or affect pig health and production performance under recent selection. Conclusions Our studies lay out one way for characterization of CNVs in the pig genome, provide insight into the pig genome variation and prompt CNV mechanisms studies when using pigs as biomedical models for human diseases. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-593) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
48
|
Rossi E, Radi O, De Lorenzi L, Vetro A, Groppetti D, Bigliardi E, Luvoni GC, Rota A, Camerino G, Zuffardi O, Parma P. Sox9 duplications are a relevant cause of Sry-negative XX sex reversal dogs. PLoS One 2014; 9:e101244. [PMID: 25010117 PMCID: PMC4091935 DOI: 10.1371/journal.pone.0101244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/04/2014] [Indexed: 01/06/2023] Open
Abstract
Sexual development in mammals is based on a complicated and delicate network of genes and hormones that have to collaborate in a precise manner. The dark side of this pathway is represented by pathological conditions, wherein sexual development does not occur properly either in the XX and the XY background. Among them a conundrum is represented by the XX individuals with at least a partial testis differentiation even in absence of SRY. This particular condition is present in various mammals including the dog. Seven dogs characterized by XX karyotype, absence of SRY gene, and testicular tissue development were analysed by Array-CGH. In two cases the array-CGH analysis detected an interstitial heterozygous duplication of chromosome 9. The duplication contained the SOX9 coding region. In this work we provide for the first time a causative mutation for the XXSR condition in the dog. Moreover this report supports the idea that the dog represents a good animal model for the study of XXSR condition caused by abnormalities in the SOX9 locus.
Collapse
Affiliation(s)
- Elena Rossi
- Department of Molecular Medicine, Pavia University, Pavia, Italy
| | - Orietta Radi
- Department of Molecular Medicine, Pavia University, Pavia, Italy
| | - Lisa De Lorenzi
- Department of Agricultural and Environmental Sciences, Milan University, Milan, Italy
| | - Annalisa Vetro
- Biotechnology Research Laboratories, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Debora Groppetti
- Department of Veterinary Science and Public Health, Milan University, Milan, Italy
| | - Enrico Bigliardi
- Department of Veterinary Science, Parma University, Parma, Italy
| | - Gaia Cecilia Luvoni
- Department of Health, Animal Science and Food Safety, Milan University, Milan, Italy
| | - Ada Rota
- Department of Veterinary Science, Torino University, Torino, Italy
| | | | - Orsetta Zuffardi
- Department of Molecular Medicine, Pavia University, Pavia, Italy
| | - Pietro Parma
- Department of Agricultural and Environmental Sciences, Milan University, Milan, Italy
- * E-mail:
| |
Collapse
|
49
|
Analysis of structural diversity in wolf-like canids reveals post-domestication variants. BMC Genomics 2014; 15:465. [PMID: 24923435 PMCID: PMC4070573 DOI: 10.1186/1471-2164-15-465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/06/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Although a variety of genetic changes have been implicated in causing phenotypic differences among dogs, the role of copy number variants (CNVs) and their impact on phenotypic variation is still poorly understood. Further, very limited knowledge exists on structural variation in the gray wolf, the ancestor of the dog, or other closely related wild canids. Documenting CNVs variation in wild canids is essential to identify ancestral states and variation that may have appeared after domestication. RESULTS In this work, we genotyped 1,611 dog CNVs in 23 wolf-like canids (4 purebred dogs, one dingo, 15 gray wolves, one red wolf, one coyote and one golden jackal) to identify CNVs that may have arisen after domestication. We have found an increase in GC-rich regions close to the breakpoints and around 1 kb away from them suggesting that some common motifs might be associated with the formation of CNVs. Among the CNV regions that showed the largest differentiation between dogs and wild canids we found 12 genes, nine of which are related to two known functions associated with dog domestication; growth (PDE4D, CRTC3 and NEB) and neurological function (PDE4D, EML5, ZNF500, SLC6A11, ELAVL2, RGS7 and CTSB). CONCLUSIONS Our results provide insight into the evolution of structural variation in canines, where recombination is not regulated by PRDM9 due to the inactivation of this gene. We also identified genes within the most differentiated CNV regions between dogs and wolves, which could reflect selection during the domestication process.
Collapse
|
50
|
Lucas-Lledó JI, Vicente-Salvador D, Aguado C, Cáceres M. Population genetic analysis of bi-allelic structural variants from low-coverage sequence data with an expectation-maximization algorithm. BMC Bioinformatics 2014; 15:163. [PMID: 24884587 PMCID: PMC4055234 DOI: 10.1186/1471-2105-15-163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/14/2014] [Indexed: 11/21/2022] Open
Abstract
Background Population genetics and association studies usually rely on a set of known variable sites that are then genotyped in subsequent samples, because it is easier to genotype than to discover the variation. This is also true for structural variation detected from sequence data. However, the genotypes at known variable sites can only be inferred with uncertainty from low coverage data. Thus, statistical approaches that infer genotype likelihoods, test hypotheses, and estimate population parameters without requiring accurate genotypes are becoming popular. Unfortunately, the current implementations of these methods are intended to analyse only single nucleotide and short indel variation, and they usually assume that the two alleles in a heterozygous individual are sampled with equal probability. This is generally false for structural variants detected with paired ends or split reads. Therefore, the population genetics of structural variants cannot be studied, unless a painstaking and potentially biased genotyping is performed first. Results We present svgem, an expectation-maximization implementation to estimate allele and genotype frequencies, calculate genotype posterior probabilities, and test for Hardy-Weinberg equilibrium and for population differences, from the numbers of times the alleles are observed in each individual. Although applicable to single nucleotide variation, it aims at bi-allelic structural variation of any type, observed by either split reads or paired ends, with arbitrarily high allele sampling bias. We test svgem with simulated and real data from the 1000 Genomes Project. Conclusions svgem makes it possible to use low-coverage sequencing data to study the population distribution of structural variants without having to know their genotypes. Furthermore, this advance allows the combined analysis of structural and nucleotide variation within the same genotype-free statistical framework, thus preventing biases introduced by genotype imputation.
Collapse
Affiliation(s)
- José Ignacio Lucas-Lledó
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | | | | | | |
Collapse
|