1
|
Relationship between Nutrient Intake and Human Gut Microbiota in Monozygotic Twins. ACTA ACUST UNITED AC 2021; 57:medicina57030275. [PMID: 33809761 PMCID: PMC8002349 DOI: 10.3390/medicina57030275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
Background and Objectives: The gut microbiota is associated with human health and dietary nutrition. Various studies have been reported in this regard, but it is difficult to clearly analyze human gut microbiota as individual differences are significant. The causes of these individual differences in intestinal microflora are genetic and/or environmental. In this study, we focused on differences between identical twins in Japan to clarify the effects of nutrients consumed on the entire gut microbiome, while excluding genetic differences. Materials and Methods: We selected healthy Japanese monozygotic twins for the study and confirmed their zygosity by matching 15 short tandem repeat loci. Their fecal samples were subjected to 16S rRNA sequencing and bioinformatics analyses to identify and compare the fluctuations in intestinal bacteria. Results: We identified 12 genera sensitive to environmental factors, and found that Lactobacillus was relatively unaffected by environmental factors. Moreover, we identified protein, fat, and some nutrient intake that can affect 12 genera, which have been identified to be more sensitive to environmental factors. Among the 12 genera, Bacteroides had a positive correlation with retinol equivalent intake (rs = 0.38), Lachnospira had a significantly negative correlation with protein, sodium, iron, vitamin D, vitamin B6, and vitamin B12 intake (rs = −0.38, −0.41, −0.39, −0.63, −0.42, −0.49, respectively), Lachnospiraceae ND3007 group had a positive correlation with fat intake (rs = 0.39), and Lachnospiraceae UCG-008 group had a negative correlation with the saturated fatty acid intake (rs = −0.45). Conclusions: Our study is the first to focus on the relationship between human gut microbiota and nutrient intake using samples from Japanese twins to exclude the effects of genetic factors. These findings will broaden our understanding of the more intuitive relationship between nutrient intake and the gut microbiota and can be a useful basis for finding useful biomarkers that contribute to human health.
Collapse
|
2
|
Kennedy MS, Chang EB. The microbiome: Composition and locations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:1-42. [PMID: 33814111 DOI: 10.1016/bs.pmbts.2020.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human body is home to a diverse and functionally important assemblage of symbiotic microbes that varies predictably over different spatial scales, both within and across body sites. The composition of these spatially distinct microbial consortia can be impacted by a variety of stochastic and deterministic forces, including dispersal from different source communities, and selection by regionally-specific host processes for the enrichment of physiologically significant taxa. In this chapter, we review the composition, function, and assembly of the healthy human gastrointestinal, skin, vaginal, and respiratory microbiomes, with special emphasis on the regional distribution of microbes throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Megan S Kennedy
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States; Department of Ecology & Evolution, The University of Chicago, Chicago, IL, United States
| | - Eugene B Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
3
|
Bao HD, Pang MD, Olaniran A, Zhang XH, Zhang H, Zhou Y, Sun LC, Schmidt S, Wang R. Alterations in the diversity and composition of mice gut microbiota by lytic or temperate gut phage treatment. Appl Microbiol Biotechnol 2018; 102:10219-10230. [PMID: 30302521 DOI: 10.1007/s00253-018-9378-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
Abstract
Phages, the most abundant species in the mammalian gut, have numerous advantages as biocontrol agent over antibiotics. In this study, mice were orally treated with the lytic gut phage PA13076 (group B), the temperate phage BP96115 (group C), no phage (group A), or streptomycin (group D) over 31 days. At the end of the experiment, fecal microbiota diversity and composition was determined and compared using high-throughput sequencing of the V3-V4 hyper-variable region of the 16S rRNA gene and virus-like particles (VLPs) were quantified in feces. There was high diversity and richness of microbiota in the lytic and temperate gut phage-treated mice, with the lytic gut phage causing an increased alpha diversity based on the Chao1 index (p < 0.01). However, the streptomycin treatment reduced the microbiota diversity and richness (p = 0.0299). Both phage and streptomycin treatments reduced the abundance of Bacteroidetes at the phylum level (p < 0.01) and increased the abundance of the phylum Firmicutes. Interestingly, two beneficial genera, Lactobacillus and Bifidobacterium, were enhanced by treatment with the lytic and temperate gut phage. The abundance of the genus Escherichia/Shigella was higher in mice after temperate phage administration than in the control group (p < 0.01), but lower than in the streptomycin group. Moreover, streptomycin treatment increased the abundance of the genera Klebsiella and Escherichia/Shigella (p < 0.01). In terms of the gut virome, fecal VLPs did not change significantly after phage treatment. This study showed that lytic and temperate gut phage treatment modulated the composition and diversity of gut microbiota and the lytic gut phage promoted a beneficial gut ecosystem, while the temperate phage may promote conditions enabling diseases to occur.
Collapse
Affiliation(s)
- Hong-Duo Bao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Pietermaritzburg, 3201, South Africa
| | - Mao-da Pang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Ademola Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Xu-Hui Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Yan Zhou
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Li-Chang Sun
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Pietermaritzburg, 3201, South Africa.
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China.
| |
Collapse
|
4
|
Li XY, Lachnit T, Fraune S, Bosch TCG, Traulsen A, Sieber M. Temperate phages as self-replicating weapons in bacterial competition. J R Soc Interface 2018; 14:rsif.2017.0563. [PMID: 29263125 DOI: 10.1098/rsif.2017.0563] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022] Open
Abstract
Microbial communities are accompanied by a diverse array of viruses. Through infections of abundant microbes, these viruses have the potential to mediate competition within the community, effectively weakening competitive interactions and promoting coexistence. This is of particular relevance for host-associated microbial communities, because the diversity of the microbiota has been linked to host health and functioning. Here, we study the interaction between two key members of the microbiota of the freshwater metazoan Hydra vulgaris The two commensal bacteria Curvibacter sp. and Duganella sp. protect their host from fungal infections, but only if both of them are present. Coexistence of the two bacteria is thus beneficial for Hydra Intriguingly, Duganella sp. appears to be the superior competitor in vitro due to its higher growth rate when both bacteria are grown separately, but in co-culture the outcome of competition depends on the relative initial abundances of the two species. The presence of an inducible prophage in the Curvibacter sp. genome, which is able to lytically infect Duganella sp., led us to hypothesize that the phage modulates the interaction between these two key members of the Hydra microbiota. Using a mathematical model, we show that the interplay of the lysogenic life cycle of the Curvibacter phage and the lytic life cycle on Duganella sp. can explain the observed complex competitive interaction between the two bacteria. Our results highlight the importance of taking lysogeny into account for understanding microbe-virus interactions and show the complex role phages can play in promoting coexistence of their bacterial hosts.
Collapse
Affiliation(s)
- Xiang-Yi Li
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Sebastian Fraune
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Michael Sieber
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
5
|
The human gut virome: form and function. Emerg Top Life Sci 2017; 1:351-362. [PMID: 33525769 DOI: 10.1042/etls20170039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/15/2023]
Abstract
Advances in next-generation sequencing technologies and the application of metagenomic approaches have fuelled an exponential increase in our understanding of the human gut microbiome. These approaches are now also illuminating features of the diverse and abundant collection of viruses (termed the virome) subsisting with the microbial ecosystems residing within the human holobiont. Here, we focus on the current and emerging knowledge of the human gut virome, in particular on viruses infecting bacteria (bacteriophage or phage), which are a dominant component of this viral community. We summarise current insights regarding the form and function of this 'human gut phageome' and highlight promising avenues for future research. In doing so, we discuss the potential for phage to drive ecological functioning and evolutionary change within this important microbial ecosystem, their contribution to modulation of host-microbiome interactions and stability of the community as a whole, as well as the potential role of the phageome in human health and disease. We also consider the emerging concepts of a 'core healthy gut phageome' and the putative existence of 'viral enterotypes' and 'viral dysbiosis'.
Collapse
|
6
|
The Human Gut Phage Community and Its Implications for Health and Disease. Viruses 2017; 9:v9060141. [PMID: 28594392 PMCID: PMC5490818 DOI: 10.3390/v9060141] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/23/2017] [Accepted: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages. In healthy individuals, only a small fraction of the prophage reservoir is activated and found as extracellular phages. Phage community dysbiosis is characterized by a shift in the activated prophage community or an increase of lytic phages, and has been correlated with disease, suggesting that a proper balance between lysis and lysogeny is needed to maintain health. Consequently, the concept of microbial dysbiosis might be extended to the phage component of the microbiome as well. Understanding the dynamics and mechanisms to restore balance after dysbiosis is an active area of research. The use of phage transplants to re-establish health suggests that phages can be used as disease treatment. Such advances represent milestones in our understanding of gut phages in human health and should fuel research on their role in health and disease.
Collapse
|
7
|
Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ. Natural mummification of the human gut preserves bacteriophage DNA. FEMS Microbiol Lett 2015; 363:fnv219. [PMID: 26564967 DOI: 10.1093/femsle/fnv219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 12/23/2022] Open
Abstract
The natural mummification process of the human gut represents a unique opportunity to study the resulting microbial community structure and composition. While results are providing insights into the preservation of bacteria, fungi, pathogenic eukaryotes and eukaryotic viruses, no studies have demonstrated that the process of natural mummification also results in the preservation of bacteriophage DNA. We characterized the gut microbiome of three pre-Columbian Andean mummies, namely FI3, FI9 and FI12, and found sequences homologous to viruses. From the sequences attributable to viruses, 50.4% (mummy FI3), 1.0% (mummy FI9) and 84.4% (mummy FI12) were homologous to bacteriophages. Sequences corresponding to the Siphoviridae, Myoviridae, Podoviridae and Microviridae families were identified. Predicted putative bacterial hosts corresponded mainly to the Firmicutes and Proteobacteria, and included Bacillus, Staphylococcus, Clostridium, Escherichia, Vibrio, Klebsiella, Pseudomonas and Yersinia. Predicted functional categories associated with bacteriophages showed a representation of structural, replication, integration and entry and lysis genes. The present study suggests that the natural mummification of the human gut results in the preservation of bacteriophage DNA, representing an opportunity to elucidate the ancient phageome and to hypothesize possible mechanisms of preservation.
Collapse
Affiliation(s)
- Tasha M Santiago-Rodriguez
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA Department of Biology, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Gino Fornaciari
- Department of Translational Research on New Technologies in Medicine and Surgery, Division of Paleopathology, University of Pisa, Pisa 56126, Italy Center for Anthropological, Paleopathological and Historical Studies of the Sardinian and Mediterranean Populations, Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| | - Stefania Luciani
- Laboratory of Molecular Archaeo-Anthropology/ancient DNA, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| | - Scot E Dowd
- Molecular Research LP (MR DNA), Shallowater, TX 79363, USA
| | - Gary A Toranzos
- Department of Biology, University of Puerto Rico, San Juan 00932, Puerto Rico
| | - Isolina Marota
- Laboratory of Molecular Archaeo-Anthropology/ancient DNA, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| | - Raul J Cano
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA Department of Biology, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
8
|
Schneeberger PHH, Becker SL, Pothier JF, Duffy B, N'Goran EK, Beuret C, Frey JE, Utzinger J. Metagenomic diagnostics for the simultaneous detection of multiple pathogens in human stool specimens from Côte d'Ivoire: a proof-of-concept study. INFECTION GENETICS AND EVOLUTION 2015; 40:389-397. [PMID: 26391184 DOI: 10.1016/j.meegid.2015.08.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND The intestinal microbiome is a complex community and its role in influencing human health is poorly understood. While conventional microbiology commonly attributes digestive disorders to a single microorganism, a metagenomic approach can detect multiple pathogens simultaneously and might elucidate the role of microbial communities in the pathogenesis of intestinal diseases. We present a proof-of-concept that a shotgun metagenomic approach provides useful information on the diverse composition of intestinal pathogens and antimicrobial resistance profiles in human stool samples. METHODS In October 2012, we obtained stool specimens from patients with persistent diarrhea in south Côte d'Ivoire. Four stool samples were purposefully selected and subjected to microscopy, multiplex polymerase chain reaction (PCR), and a metagenomic approach. For the latter, we employed the National Center for Biotechnology Information nucleotide database and screened for 36 pathogenic organisms (bacteria, helminths, intestinal protozoa, and viruses) that may cause digestive disorders. We further characterized the bacterial population and the prevailing resistance patterns by comparing our metagenomic datasets with a genome-specific marker database and with a comprehensive antibiotic resistance database. RESULTS In the four patients, the metagenomic approach identified between eight and 11 pathogen classes that potentially cause digestive disorders. For bacterial pathogens, the diagnostic agreement between multiplex PCR and metagenomics was high; yet, metagenomics diagnosed several bacteria not detected by multiplex PCR. In contrast, some of the helminth and intestinal protozoa infections detected by microscopy were missed by metagenomics. The antimicrobial resistance analysis revealed the presence of genes conferring resistance to several commonly used antibiotics. CONCLUSIONS A metagenomic approach provides detailed information on the presence and diversity of pathogenic organisms in human stool samples. Metagenomic studies allow for in-depth molecular characterization such as the antimicrobial resistance status, which may be useful to develop setting-specific treatment algorithms. While metagenomic approaches remain challenging, the benefits of gaining new insights into intestinal microbial communities call for a broader application in epidemiologic studies. TRIAL REGISTRATION ISRCTN86951400.
Collapse
Affiliation(s)
- Pierre H H Schneeberger
- Department of Diagnostics and Risk Assessment Plant Protection, Agroscope, Institute for Plant Production Sciences IPS, Wädenswil, Switzerland; Department of Virology, Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland; Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Sören L Becker
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Institute of Medical Microbiology and Hygiene, Saarland University, Homburg/Saar, Germany.
| | - Joël F Pothier
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland.
| | - Brion Duffy
- Institute of Natural Resource Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland.
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.
| | - Christian Beuret
- Department of Virology, Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.
| | - Jürg E Frey
- Department of Diagnostics and Risk Assessment Plant Protection, Agroscope, Institute for Plant Production Sciences IPS, Wädenswil, Switzerland.
| | - Jürg Utzinger
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Muniesa M, Jofre J. Identifying and analyzing bacteriophages in human fecal samples: what could we discover? Future Microbiol 2015; 9:879-86. [PMID: 25156377 DOI: 10.2217/fmb.14.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The human gut is a complex ecosystem, densely populated with microbes including enormous amounts of phages. Metagenomic studies indicate a great diversity of bacteriophages, and because of the variety of gut bacterial species, the human or animal gut is probably a perfect ecological niche for phages that can infect and propagate in their bacterial communities. In addition, some phages have the capacity to mobilize genes, as demonstrated by the enormous fraction of phage particles in feces that contain bacterial DNA. All these facts indicate that, through predation and horizontal gene transfer, bacteriophages play a key role in shaping the size, structure and function of intestinal microbiomes, although our understanding of their effects on gut bacterial populations is only just beginning.
Collapse
Affiliation(s)
- Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, Barcelona, Spain
| | | |
Collapse
|
10
|
Gillan DC, Roosa S, Kunath B, Billon G, Wattiez R. The long-term adaptation of bacterial communities in metal-contaminated sediments: a metaproteogenomic study. Environ Microbiol 2014; 17:1991-2005. [DOI: 10.1111/1462-2920.12627] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/05/2014] [Indexed: 11/29/2022]
Affiliation(s)
- David C. Gillan
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| | - Stéphanie Roosa
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| | - Benoit Kunath
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| | - Gabriel Billon
- Géosystèmes Lab; UFR de Chimie; Lille-1 University, Sciences and Technologies; Villeneuve d'Ascq 59655 France
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| |
Collapse
|
11
|
Roosa S, Wattiez R, Prygiel E, Lesven L, Billon G, Gillan DC. Bacterial metal resistance genes and metal bioavailability in contaminated sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 189:143-51. [PMID: 24662000 DOI: 10.1016/j.envpol.2014.02.031] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 05/17/2023]
Abstract
In bacteria a metal may be defined as bioavailable if it crosses the cytoplasmic membrane to reach the cytoplasm. Once inside the cell, specific metal resistance systems may be triggered. In this research, specific metal resistance genes were used to estimate metal bioavailability in sediment microbial communities. Gene levels were measured by quantitative PCR and correlated to metals in sediments using five different protocols to estimate dissolved, particle-adsorbed and occluded metals. The best correlations were obtained with czcA (a Cd/Zn/Co efflux pump) and Cd/Zn adsorbed or occluded in particles. Only adsorbed Co was correlated to czcA levels. We concluded that the measurement of czcA gene levels by quantitative PCR is a promising tool which may complement the classical approaches used to estimate Cd/Zn/Co bioavailability in sediment compartments.
Collapse
Affiliation(s)
- Stéphanie Roosa
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 place du Parc, Avenue du Champ de Mars 6, B-7000 Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 place du Parc, Avenue du Champ de Mars 6, B-7000 Mons, Belgium
| | - Emilie Prygiel
- Géosystèmes Lab, UFR de Chimie, Lille-1 University, Sciences and Technologies, 59655 Villeneuve d'Ascq, France
| | - Ludovic Lesven
- Géosystèmes Lab, UFR de Chimie, Lille-1 University, Sciences and Technologies, 59655 Villeneuve d'Ascq, France
| | - Gabriel Billon
- Géosystèmes Lab, UFR de Chimie, Lille-1 University, Sciences and Technologies, 59655 Villeneuve d'Ascq, France
| | - David C Gillan
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 place du Parc, Avenue du Champ de Mars 6, B-7000 Mons, Belgium.
| |
Collapse
|