1
|
Daubney ER, D'Urso S, Cuellar-Partida G, Rajbhandari D, Peach E, de Guzman E, McArthur C, Rhodes A, Meyer J, Finfer S, Myburgh J, Cohen J, Schirra HJ, Venkatesh B, Evans DM. A Genome-Wide Association Study of Serum Metabolite Profiles in Septic Shock Patients. Crit Care Explor 2024; 6:e1030. [PMID: 38239409 PMCID: PMC10796137 DOI: 10.1097/cce.0000000000001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVES We sought to assess whether genetic associations with metabolite concentrations in septic shock patients could be used to identify pathways of potential importance for understanding sepsis pathophysiology. DESIGN Retrospective multicenter cohort studies of septic shock patients. SETTING All participants who were admitted to 27 participating hospital sites in three countries (Australia, New Zealand, and the United Kingdom) were eligible for inclusion. PATIENTS Adult, critically ill, mechanically ventilated patients with septic shock (n = 230) who were a subset of the Adjunctive Corticosteroid Treatment in Critically Ill Patients with Septic Shock trial (ClinicalTrials.gov number: NCT01448109). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A genome-wide association study was conducted for a range of serum metabolite levels for participants. Genome-wide significant associations (p ≤ 5 × 10-8) were found for the two major ketone bodies (3-hydroxybutyrate [rs2456680] and acetoacetate [rs2213037] and creatinine (rs6851961). One of these single-nucleotide polymorphisms (SNPs) (rs2213037) was located in the alcohol dehydrogenase cluster of genes, which code for enzymes related to the metabolism of acetoacetate and, therefore, presents a plausible association for this metabolite. None of the three SNPs showed strong associations with risk of sepsis, 28- or 90-day mortality, or Acute Physiology and Chronic Health Evaluation score (a measure of sepsis severity). CONCLUSIONS We suggest that the genetic associations with metabolites may reflect a starvation response rather than processes involved in sepsis pathophysiology. However, our results require further investigation and replication in both healthy and diseased cohorts including those of different ancestry.
Collapse
Affiliation(s)
- Emily R Daubney
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Shannon D'Urso
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | | | - Elizabeth Peach
- Frazer Institute, University of Queensland, Brisbane, QLD, Australia
| | - Erika de Guzman
- Australian Translational Genomics Centre, Queensland University of Technology, Brisbane, QLD, Australia
| | - Colin McArthur
- Department of Critical Care Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Andrew Rhodes
- Department of Adult Critical Care, St George's University Hospitals NHS Foundation Trust and St George's University of London, London, United Kingdom
| | - Jason Meyer
- The George Institute for Global Health, Sydney, NSW, Australia
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Simon Finfer
- The George Institute for Global Health, Sydney, NSW, Australia
- School of Public Health, Imperial College London, London, United Kingdom
| | - John Myburgh
- The George Institute for Global Health, Sydney, NSW, Australia
- St George Hospital, Sydney, NSW, Australia
| | - Jeremy Cohen
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Intensive Care Unit, The Wesley Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Horst Joachim Schirra
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
- Griffith School of Environment and Science-Chemical Sciences, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Balasubramanian Venkatesh
- The George Institute for Global Health, Sydney, NSW, Australia
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Intensive Care Unit, The Wesley Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Faculty of Health, University of New South Wales, Sydney, NSW, Australia
| | - David M Evans
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, University of Queensland, Brisbane, QLD, Australia
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Tahir UA, Katz DH, Avila-Pachecho J, Bick AG, Pampana A, Robbins JM, Yu Z, Chen ZZ, Benson MD, Cruz DE, Ngo D, Deng S, Shi X, Zheng S, Eisman AS, Farrell L, Hall ME, Correa A, Tracy RP, Durda P, Taylor KD, Liu Y, Johnson WC, Guo X, Yao J, Chen YDI, Manichaikul AW, Ruberg FL, Blaner WS, Jain D, Bouchard C, Sarzynski MA, Rich SS, Rotter JI, Wang TJ, Wilson JG, Clish CB, Natarajan P, Gerszten RE. Whole Genome Association Study of the Plasma Metabolome Identifies Metabolites Linked to Cardiometabolic Disease in Black Individuals. Nat Commun 2022; 13:4923. [PMID: 35995766 PMCID: PMC9395431 DOI: 10.1038/s41467-022-32275-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Integrating genetic information with metabolomics has provided new insights into genes affecting human metabolism. However, gene-metabolite integration has been primarily studied in individuals of European Ancestry, limiting the opportunity to leverage genomic diversity for discovery. In addition, these analyses have principally involved known metabolites, with the majority of the profiled peaks left unannotated. Here, we perform a whole genome association study of 2,291 metabolite peaks (known and unknown features) in 2,466 Black individuals from the Jackson Heart Study. We identify 519 locus-metabolite associations for 427 metabolite peaks and validate our findings in two multi-ethnic cohorts. A significant proportion of these associations are in ancestry specific alleles including findings in APOE, TTR and CD36. We leverage tandem mass spectrometry to annotate unknown metabolites, providing new insight into hereditary diseases including transthyretin amyloidosis and sickle cell disease. Our integrative omics approach leverages genomic diversity to provide novel insights into diverse cardiometabolic diseases.
Collapse
Affiliation(s)
- Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Daniel H Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | | | | | - Akhil Pampana
- Broad Institute of Harvard and MIT, Cambridge, MA, US
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Zhi Yu
- Broad Institute of Harvard and MIT, Cambridge, MA, US
| | - Zsu-Zsu Chen
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Mark D Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Daniel E Cruz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Debby Ngo
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Shuning Zheng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Aaron S Eisman
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Michael E Hall
- University of Mississippi Medical Center, Jackson, MS, US
| | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS, US
| | - Russell P Tracy
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, US
| | - Peter Durda
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, US
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, US
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, US
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, US
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, US
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, US
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, US
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, US
- Division of Biostatistics and Epidemiology, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, US
| | - Frederick L Ruberg
- Section of Cardiovascular Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, US
| | | | - Deepti Jain
- University of Washington, Seattle, Washington, US
| | - Claude Bouchard
- Human Genomic Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, US
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, SC, US
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, US
- Division of Biostatistics and Epidemiology, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, US
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, US
| | - Thomas J Wang
- Department of Medicine, UT Southwestern Medical Center, Dallas, TX, US
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, US
| | - Pradeep Natarajan
- Broad Institute of Harvard and MIT, Cambridge, MA, US
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, US.
- Broad Institute of Harvard and MIT, Cambridge, MA, US.
| |
Collapse
|
3
|
Ghini V, Abuja PM, Polasek O, Kozera L, Laiho P, Anton G, Zins M, Klovins J, Metspalu A, Wichmann HE, Gieger C, Luchinat C, Zatloukal K, Turano P. Impact of the pre-examination phase on multicenter metabolomic studies. N Biotechnol 2022; 68:37-47. [PMID: 35066155 DOI: 10.1016/j.nbt.2022.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/23/2023]
Abstract
The development of metabolomics in clinical applications has been limited by the lack of validation in large multicenter studies. Large population cohorts and their biobanks are a valuable resource for acquiring insights into molecular disease mechanisms. Nevertheless, most of their collections are not tailored for metabolomics and have been created without specific attention to the pre-analytical requirements for high-quality metabolome assessment. Thus, comparing samples obtained by different pre-analytical procedures remains a major challenge. Here, 1H NMR-based analyses are used to demonstrate how human serum and plasma samples collected with different operating procedures within several large European cohort studies from the Biobanking and Biomolecular Resources Infrastructure - Large Prospective Cohorts (BBMRI-LPC) consortium can be easily revealed by supervised multivariate statistical analyses at the initial stages of the process, to avoid biases in the downstream analysis. The inter-biobank differences are discussed in terms of deviations from the validated CEN/TS 16945:2016 / ISO 23118:2021 norms. It clearly emerges that biobanks must adhere to the evidence-based guidelines in order to support wider-scale application of metabolomics in biomedicine, and that NMR spectroscopy is informative in comparing the quality of different sample sources in multi cohort/center studies.
Collapse
Affiliation(s)
- Veronica Ghini
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Center of Magnetic Resonance (CERM), University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Peter M Abuja
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria
| | - Ozren Polasek
- Department for Large Population Studies, University of Split, Šoltanska 2, HR-21000, Split, Croatia; Gen-info Ltd, Ružmarinka ul. 17, 10000, Zagreb, Croatia
| | - Lukasz Kozera
- BBMRI-ERIC, Neue Stiftingtalstrasse 2/B/6, 8010, Graz, Austria
| | - Päivi Laiho
- Institute for Molecular Medicine Finland, National Institute for Health and Welfare, THL, University of Helsinki, 00290, Helsinki, Finland
| | - Gabriele Anton
- Molecular Epidemiology, Helmholtz-Zentrum München, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Marie Zins
- Population-based Epidemiological Cohorts Unit-UMS 11, Inserm, 16 Avenue Paul Vaillant Couturier, 94800, Villejuif, France
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Rātsupītes iela 1, Kurzemes rajons, Rīga, LV-1067, Latvia
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - H-Erich Wichmann
- Institute of Epidemiology, Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Center of Magnetic Resonance (CERM), University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, A-8010, Graz, Austria.
| | - Paola Turano
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Center of Magnetic Resonance (CERM), University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy; Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy.
| |
Collapse
|
4
|
Sönmez Flitman R, Khalili B, Kutalik Z, Rueedi R, Brümmer A, Bergmann S. Untargeted Metabolome- and Transcriptome-Wide Association Study Suggests Causal Genes Modulating Metabolite Concentrations in Urine. J Proteome Res 2021; 20:5103-5114. [PMID: 34699229 PMCID: PMC9286311 DOI: 10.1021/acs.jproteome.1c00585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Gene products can
affect the concentrations of small molecules
(aka “metabolites”), and conversely, some metabolites
can modulate the concentrations of gene transcripts. While many specific
instances of this interplay have been revealed, a global approach
to systematically uncover human gene-metabolite interactions is still
lacking. We performed a metabolome- and transcriptome-wide association
study to identify genes influencing the human metabolome using untargeted
metabolome features, extracted from 1H nuclear magnetic
resonance spectroscopy (NMR) of urine samples, and gene expression
levels, quantified from RNA-Seq of lymphoblastoid cell lines (LCL)
from 555 healthy individuals. We identified 20 study-wide significant
associations corresponding to 15 genes, of which 5 associations (with
2 genes) were confirmed with follow-up NMR data. Using metabomatching,
we identified the metabolites corresponding to metabolome features
associated with the genes, namely, N-acetylated compounds with ALMS1 and trimethylamine (TMA) with HPS1. Finally, Mendelian randomization analysis supported a potential
causal link between the expression of genes in both the ALMS1- and HPS1-loci and their associated metabolite
concentrations. In the case of HPS1, we additionally
observed that TMA concentration likely exhibits a reverse causal effect
on HPS1 expression levels, indicating a negative
feedback loop. Our study highlights how the integration of metabolomics,
gene expression, and genetic data can pinpoint causal genes modulating
metabolite concentrations.
Collapse
Affiliation(s)
- Reyhan Sönmez Flitman
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Bita Khalili
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Zoltan Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Anneke Brümmer
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
5
|
Suhre K, Zaghlool S. Connecting the epigenome, metabolome and proteome for a deeper understanding of disease. J Intern Med 2021; 290:527-548. [PMID: 33904619 DOI: 10.1111/joim.13306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
Epigenome-wide association studies (EWAS) identify genes that are dysregulated by the studied clinical endpoints, thereby indicating potential new diagnostic biomarkers, drug targets and therapy options. Combining EWAS with deep molecular phenotyping, such as approaches enabled by metabolomics and proteomics, allows further probing of the underlying disease-associated pathways. For instance, methylation of the TXNIP gene is associated robustly with prevalent type 2 diabetes and further with metabolites that are short-term markers of glycaemic control. These associations reflect TXNIP's function as a glucose uptake regulator by interaction with the major glucose transporter GLUT1 and suggest that TXNIP methylation can be used as a read-out for the organism's exposure to glucose stress. Another case is the association between DNA methylation of the AHRR and F2RL3 genes with smoking and a protein that is involved in the reprogramming of the bronchial epithelium. These examples show that associations between DNA methylation and intermediate molecular traits can open new windows into how the body copes with physiological challenges. This knowledge, if carefully interpreted, may indicate novel therapy options and, together with monitoring of the methylation state of specific methylation sites, may in the future allow the early diagnosis of impending disease. It is essential for medical practitioners to recognize the potential that this field holds in translating basic research findings to clinical practice. In this review, we present recent advances in the field of EWAS with metabolomics and proteomics and discuss both the potential and the challenges of translating epigenetic associations, with deep molecular phenotypes, to biomedical applications.
Collapse
Affiliation(s)
- K Suhre
- From the, Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar.,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, USA
| | - S Zaghlool
- From the, Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar.,Department of Biophysics and Physiology, Weill Cornell Medicine, New York, USA
| |
Collapse
|
6
|
Gil-de-la-Fuente A, Mamani-Huanca M, Stroe MC, Saugar S, Garcia-Alvarez A, Brakhage AA, Barbas C, Otero A. Aspergillus Metabolome Database for Mass Spectrometry Metabolomics. J Fungi (Basel) 2021; 7:jof7050387. [PMID: 34063531 PMCID: PMC8156648 DOI: 10.3390/jof7050387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 01/20/2023] Open
Abstract
The Aspergillus Metabolome Database is a free online resource to perform metabolite annotation in mass spectrometry studies devoted to the genus Aspergillus. The database was created by retrieving and curating information on 2811 compounds present in 601 different species and subspecies of the genus Aspergillus. A total of 1514 scientific journals where these metabolites are mentioned were added as meta-information linked to their respective compounds in the database. A web service to query the database based on m/z (mass/charge ratio) searches was added to CEU Mass Mediator; these queries can be performed over the Aspergillus database only, or they can also include a user-selectable set of other general metabolomic databases. This functionality is offered via web applications and via RESTful services. Furthermore, the complete content of the database has been made available in .csv files and as a MySQL database to facilitate its integration into third-party tools. To the best of our knowledge, this is the first database and the first service specifically devoted to Aspergillus metabolite annotation based on m/z searches.
Collapse
Affiliation(s)
- Alberto Gil-de-la-Fuente
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (M.M.-H.); (C.B.); (A.O.)
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (S.S.); (A.G.-A.)
- Correspondence:
| | - Maricruz Mamani-Huanca
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (M.M.-H.); (C.B.); (A.O.)
| | - María C. Stroe
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Institute of Microbiology, Friedrich Schiller University Jena, 07745 Jena, Germany; (M.C.S.); (A.A.B.)
| | - Sergio Saugar
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (S.S.); (A.G.-A.)
| | - Alejandra Garcia-Alvarez
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (S.S.); (A.G.-A.)
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Institute of Microbiology, Friedrich Schiller University Jena, 07745 Jena, Germany; (M.C.S.); (A.A.B.)
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (M.M.-H.); (C.B.); (A.O.)
| | - Abraham Otero
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (M.M.-H.); (C.B.); (A.O.)
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (S.S.); (A.G.-A.)
| |
Collapse
|
7
|
Jendoubi T. Approaches to Integrating Metabolomics and Multi-Omics Data: A Primer. Metabolites 2021; 11:184. [PMID: 33801081 PMCID: PMC8003953 DOI: 10.3390/metabo11030184] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolomics deals with multiple and complex chemical reactions within living organisms and how these are influenced by external or internal perturbations. It lies at the heart of omics profiling technologies not only as the underlying biochemical layer that reflects information expressed by the genome, the transcriptome and the proteome, but also as the closest layer to the phenome. The combination of metabolomics data with the information available from genomics, transcriptomics, and proteomics offers unprecedented possibilities to enhance current understanding of biological functions, elucidate their underlying mechanisms and uncover hidden associations between omics variables. As a result, a vast array of computational tools have been developed to assist with integrative analysis of metabolomics data with different omics. Here, we review and propose five criteria-hypothesis, data types, strategies, study design and study focus- to classify statistical multi-omics data integration approaches into state-of-the-art classes under which all existing statistical methods fall. The purpose of this review is to look at various aspects that lead the choice of the statistical integrative analysis pipeline in terms of the different classes. We will draw particular attention to metabolomics and genomics data to assist those new to this field in the choice of the integrative analysis pipeline.
Collapse
Affiliation(s)
- Takoua Jendoubi
- Department of Statistical Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Schmidt JA, Fensom GK, Rinaldi S, Scalbert A, Gunter MJ, Holmes MV, Key TJ, Travis RC. NMR Metabolite Profiles in Male Meat-Eaters, Fish-Eaters, Vegetarians and Vegans, and Comparison with MS Metabolite Profiles. Metabolites 2021; 11:121. [PMID: 33672542 PMCID: PMC7923783 DOI: 10.3390/metabo11020121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/23/2022] Open
Abstract
Metabolomics may help to elucidate mechanisms underlying diet-disease relationships and identify novel risk factors for disease. To inform the design and interpretation of such research, evidence on diet-metabolite associations and cross-assay comparisons is needed. We aimed to compare nuclear magnetic resonance (NMR) metabolite profiles between meat-eaters, fish-eaters, vegetarians and vegans, and to compare NMR measurements to those from mass spectrometry (MS), clinical chemistry and capillary gas-liquid chromatography (GC). We quantified 207 serum NMR metabolite measures in 286 male participants of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Oxford cohort. Using univariate and multivariate analyses, we found that metabolite profiles varied by diet group, especially for vegans; the main differences compared to meat-eaters were lower levels of docosahexaenoic acid, total n-3 and saturated fatty acids, cholesterol and triglycerides in very-low-density lipoproteins, various lipid factions in high-density lipoprotein, sphingomyelins, tyrosine and creatinine, and higher levels of linoleic acid, total n-6, polyunsaturated fatty acids and alanine. Levels in fish-eaters and vegetarians differed by metabolite measure. Concentrations of 13 metabolites measured using both NMR and MS, clinical chemistry or GC were mostly similar. In summary, vegans' metabolite profiles were markedly different to those of men consuming animal products. The studied metabolomics platforms are complementary, with limited overlap between metabolite classes.
Collapse
Affiliation(s)
- Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (G.K.F.); (T.J.K.); (R.C.T.)
| | - Georgina K. Fensom
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (G.K.F.); (T.J.K.); (R.C.T.)
- Department of International Development, University of Oxford, Oxford OX1 3TB, UK
| | - Sabina Rinaldi
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, 69372 Lyon, France; (S.R.); (A.S.); (M.J.G.)
| | - Augustin Scalbert
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, 69372 Lyon, France; (S.R.); (A.S.); (M.J.G.)
| | - Marc J. Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, 69372 Lyon, France; (S.R.); (A.S.); (M.J.G.)
| | - Michael V. Holmes
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK;
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (G.K.F.); (T.J.K.); (R.C.T.)
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (G.K.F.); (T.J.K.); (R.C.T.)
| |
Collapse
|
9
|
Linke V, Overmyer KA, Miller IJ, Brademan DR, Hutchins PD, Trujillo EA, Reddy TR, Russell JD, Cushing EM, Schueler KL, Stapleton DS, Rabaglia ME, Keller MP, Gatti DM, Keele GR, Pham D, Broman KW, Churchill GA, Attie AD, Coon JJ. A large-scale genome-lipid association map guides lipid identification. Nat Metab 2020; 2:1149-1162. [PMID: 32958938 PMCID: PMC7572687 DOI: 10.1038/s42255-020-00278-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Despite the crucial roles of lipids in metabolism, we are still at the early stages of comprehensively annotating lipid species and their genetic basis. Mass spectrometry-based discovery lipidomics offers the potential to globally survey lipids and their relative abundances in various biological samples. To discover the genetics of lipid features obtained through high-resolution liquid chromatography-tandem mass spectrometry, we analysed liver and plasma from 384 diversity outbred mice, and quantified 3,283 molecular features. These features were mapped to 5,622 lipid quantitative trait loci and compiled into a public web resource termed LipidGenie. The data are cross-referenced to the human genome and offer a bridge between genetic associations in humans and mice. Harnessing this resource, we used genome-lipid association data as an additional aid to identify a number of lipids, for example gangliosides through their association with B4galnt1, and found evidence for a group of sex-specific phosphatidylcholines through their shared locus. Finally, LipidGenie's ability to query either mass or gene-centric terms suggests acyl-chain-specific functions for proteins of the ABHD family.
Collapse
Affiliation(s)
- Vanessa Linke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ian J Miller
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Dain R Brademan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul D Hutchins
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Edna A Trujillo
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Thiru R Reddy
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Emily M Cushing
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Donald S Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mary E Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Duy Pham
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Karl W Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Köttgen A, Raffler J, Sekula P, Kastenmüller G. Genome-Wide Association Studies of Metabolite Concentrations (mGWAS): Relevance for Nephrology. Semin Nephrol 2019; 38:151-174. [PMID: 29602398 DOI: 10.1016/j.semnephrol.2018.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolites are small molecules that are intermediates or products of metabolism, many of which are freely filtered by the kidneys. In addition, the kidneys have a central role in metabolite anabolism and catabolism, as well as in active metabolite reabsorption and/or secretion during tubular passage. This review article illustrates how the coupling of genomics and metabolomics in genome-wide association analyses of metabolites can be used to illuminate mechanisms underlying human metabolism, with a special focus on insights relevant to nephrology. First, genetic susceptibility loci for reduced kidney function and chronic kidney disease (CKD) were reviewed systematically for their associations with metabolite concentrations in metabolomics studies of blood and urine. Second, kidney function and CKD-associated metabolites reported from observational studies were interrogated for metabolite-associated genetic variants to generate and discuss complementary insights. Finally, insights originating from the simultaneous study of both blood and urine or by modeling intermetabolite relationships are summarized. We also discuss methodologic questions related to the study of metabolite concentrations in urine as well as among CKD patients. In summary, genome-wide association analyses of metabolites using metabolite concentrations quantified from blood and/or urine are a promising avenue of research to illuminate physiological and pathophysiological functions of the kidney.
Collapse
Affiliation(s)
- Anna Köttgen
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| | - Johannes Raffler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
11
|
Rueedi R, Mallol R, Raffler J, Lamparter D, Friedrich N, Vollenweider P, Waeber G, Kastenmüller G, Kutalik Z, Bergmann S. Metabomatching: Using genetic association to identify metabolites in proton NMR spectroscopy. PLoS Comput Biol 2017; 13:e1005839. [PMID: 29194434 PMCID: PMC5711027 DOI: 10.1371/journal.pcbi.1005839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023] Open
Abstract
A metabolome-wide genome-wide association study (mGWAS) aims to discover the effects of genetic variants on metabolome phenotypes. Most mGWASes use as phenotypes concentrations of limited sets of metabolites that can be identified and quantified from spectral information. In contrast, in an untargeted mGWAS both identification and quantification are forgone and, instead, all measured metabolome features are tested for association with genetic variants. While the untargeted approach does not discard data that may have eluded identification, the interpretation of associated features remains a challenge. To address this issue, we developed metabomatching to identify the metabolites underlying significant associations observed in untargeted mGWASes on proton NMR metabolome data. Metabomatching capitalizes on genetic spiking, the concept that because metabolome features associated with a genetic variant tend to correspond to the peaks of the NMR spectrum of the underlying metabolite, genetic association can allow for identification. Applied to the untargeted mGWASes in the SHIP and CoLaus cohorts and using 180 reference NMR spectra of the urine metabolome database, metabomatching successfully identified the underlying metabolite in 14 of 19, and 8 of 9 associations, respectively. The accuracy and efficiency of our method make it a strong contender for facilitating or complementing metabolomics analyses in large cohorts, where the availability of genetic, or other data, enables our approach, but targeted quantification is limited.
Collapse
Affiliation(s)
- Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Roger Mallol
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Johannes Raffler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - David Lamparter
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site, Greifswald, Germany
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Gérard Waeber
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
12
|
Pan G, Ameur A, Enroth S, Bysani M, Nord H, Cavalli M, Essand M, Gyllensten U, Wadelius C. PATZ1 down-regulates FADS1 by binding to rs174557 and is opposed by SP1/SREBP1c. Nucleic Acids Res 2017; 45:2408-2422. [PMID: 27932482 PMCID: PMC5389558 DOI: 10.1093/nar/gkw1186] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/24/2016] [Indexed: 11/14/2022] Open
Abstract
The FADS1 and FADS2 genes in the FADS cluster encode the rate-limiting enzymes in the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs). Genetic variation in this region has been associated with a large number of diseases and traits many of them correlated to differences in metabolism of PUFAs. However, the causative variants leading to these associations have not been identified. Here we find that the multiallelic rs174557 located in an AluYe5 element in intron 1 of FADS1 is functional and lies within a PATZ1 binding site. The derived allele of rs174557, which is the common variant in most populations, diminishes binding of PATZ1, a transcription factor conferring allele-specific downregulation of FADS1. The PATZ1 binding site overlaps with a SP1 site. The competitive binding between the suppressive PATZ1 and the activating complex of SP1 and SREBP1c determines the enhancer activity of this region, which regulates expression of FADS1.
Collapse
Affiliation(s)
- Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Stefan Enroth
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Madhusudhan Bysani
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Helena Nord
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Magnus Essand
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Ulf Gyllensten
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| |
Collapse
|
13
|
Scerri TS, Quaglieri A, Cai C, Zernant J, Matsunami N, Baird L, Scheppke L, Bonelli R, Yannuzzi LA, Friedlander M, Egan CA, Fruttiger M, Leppert M, Allikmets R, Bahlo M. Genome-wide analyses identify common variants associated with macular telangiectasia type 2. Nat Genet 2017; 49:559-567. [DOI: 10.1038/ng.3799] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
|
14
|
Yet I, Menni C, Shin SY, Mangino M, Soranzo N, Adamski J, Suhre K, Spector TD, Kastenmüller G, Bell JT. Genetic Influences on Metabolite Levels: A Comparison across Metabolomic Platforms. PLoS One 2016; 11:e0153672. [PMID: 27073872 PMCID: PMC4830611 DOI: 10.1371/journal.pone.0153672] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/01/2016] [Indexed: 12/11/2022] Open
Abstract
Metabolomic profiling is a powerful approach to characterize human metabolism and help understand common disease risk. Although multiple high-throughput technologies have been developed to assay the human metabolome, no technique is capable of capturing the entire human metabolism. Large-scale metabolomics data are being generated in multiple cohorts, but the datasets are typically profiled using different metabolomics platforms. Here, we compared analyses across two of the most frequently used metabolomic platforms, Biocrates and Metabolon, with the aim of assessing how complimentary metabolite profiles are across platforms. We profiled serum samples from 1,001 twins using both targeted (Biocrates, n = 160 metabolites) and non-targeted (Metabolon, n = 488 metabolites) mass spectrometry platforms. We compared metabolite distributions and performed genome-wide association analyses to identify shared genetic influences on metabolites across platforms. Comparison of 43 metabolites named for the same compound on both platforms indicated strong positive correlations, with few exceptions. Genome-wide association scans with high-throughput metabolic profiles were performed for each dataset and identified genetic variants at 7 loci associated with 16 unique metabolites on both platforms. The 16 metabolites showed consistent genetic associations and appear to be robustly measured across platforms. These included both metabolites named for the same compound across platforms as well as unique metabolites, of which 2 (nonanoylcarnitine (C9) [Biocrates]/Unknown metabolite X-13431 [Metabolon] and PC aa C28:1 [Biocrates]/1-stearoylglycerol [Metabolon]) are likely to represent the same or related biochemical entities. The results demonstrate the complementary nature of both platforms, and can be informative for future studies of comparative and integrative metabolomics analyses in samples profiled on different platforms.
Collapse
Affiliation(s)
- Idil Yet
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - So-Youn Shin
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Medical Research Council (MRC) Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Nicole Soranzo
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jerzy Adamski
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Gabi Kastenmüller
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail: (GK); (JTB)
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- * E-mail: (GK); (JTB)
| |
Collapse
|
15
|
Suhre K, Raffler J, Kastenmüller G. Biochemical insights from population studies with genetics and metabolomics. Arch Biochem Biophys 2015; 589:168-76. [PMID: 26432701 DOI: 10.1016/j.abb.2015.09.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
Genome-wide association studies with concentrations of hundreds of small molecules in samples collected from thousands of individuals (mGWAS) access otherwise inaccessible natural genetic experiments and their influence on the metabolic capacities of the human body. By sampling the natural metabolic and genetic variability that is present in the general population, mGWAS identified over 150 associations between genetic variants and variation in the metabolic composition of human body fluids. Many of these genetic variants were found to be located in enzyme or transporter coding genes, whose functions match the biochemical nature of the associated metabolites. Associations identified by mGWAS can reveal novel biochemical knowledge, such as the function of uncharacterized genes, the biochemical identity of small molecules, and the structure of entire biochemical pathways. Here we review findings of recent mGWAS and discuss concrete examples of how their results can be interpreted in a biochemical context. We describe online resources that are available for mining mGWAS results. In this context, we present two concepts that also find more general applications in the field of metabolomics: strengthening of associations by looking at ratios between metabolite pairs and reconstruction of metabolic pathways by Gaussian graphical modeling.
Collapse
Affiliation(s)
- Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College - Qatar, Doha, Qatar; Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Johannes Raffler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
16
|
Genome-Wide Association Study with Targeted and Non-targeted NMR Metabolomics Identifies 15 Novel Loci of Urinary Human Metabolic Individuality. PLoS Genet 2015; 11:e1005487. [PMID: 26352407 PMCID: PMC4564198 DOI: 10.1371/journal.pgen.1005487] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/06/2015] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies with metabolic traits (mGWAS) uncovered many genetic variants that influence human metabolism. These genetically influenced metabotypes (GIMs) contribute to our metabolic individuality, our capacity to respond to environmental challenges, and our susceptibility to specific diseases. While metabolic homeostasis in blood is a well investigated topic in large mGWAS with over 150 known loci, metabolic detoxification through urinary excretion has only been addressed by few small mGWAS with only 11 associated loci so far. Here we report the largest mGWAS to date, combining targeted and non-targeted 1H NMR analysis of urine samples from 3,861 participants of the SHIP-0 cohort and 1,691 subjects of the KORA F4 cohort. We identified and replicated 22 loci with significant associations with urinary traits, 15 of which are new (HIBCH, CPS1, AGXT, XYLB, TKT, ETNPPL, SLC6A19, DMGDH, SLC36A2, GLDC, SLC6A13, ACSM3, SLC5A11, PNMT, SLC13A3). Two-thirds of the urinary loci also have a metabolite association in blood. For all but one of the 6 loci where significant associations target the same metabolite in blood and urine, the genetic effects have the same direction in both fluids. In contrast, for the SLC5A11 locus, we found increased levels of myo-inositol in urine whereas mGWAS in blood reported decreased levels for the same genetic variant. This might indicate less effective re-absorption of myo-inositol in the kidneys of carriers. In summary, our study more than doubles the number of known loci that influence urinary phenotypes. It thus allows novel insights into the relationship between blood homeostasis and its regulation through excretion. The newly discovered loci also include variants previously linked to chronic kidney disease (CPS1, SLC6A13), pulmonary hypertension (CPS1), and ischemic stroke (XYLB). By establishing connections from gene to disease via metabolic traits our results provide novel hypotheses about molecular mechanisms involved in the etiology of diseases. Human metabolism is influenced by genetic and environmental factors defining a person’s metabolic individuality. This individuality is linked to personal differences in the ability to react on metabolic challenges and in the susceptibility to specific diseases. By investigating how common variants in genetic regions (loci) affect individual blood metabolite levels, the substantial contribution of genetic inheritance to metabolic individuality has been demonstrated previously. Meanwhile, more than 150 loci influencing metabolic homeostasis in blood are known. Here we shift the focus to genetic variants that modulate urinary metabolite excretion, for which only 11 loci were reported so far. In the largest genetic study on urinary metabolites to date, we identified 15 additional loci. Most of the 26 loci also affect blood metabolite levels. This shows that the metabolic individuality seen in blood is also reflected in urine, which is expected when urine is regarded as “diluted blood”. Nonetheless, we also found loci that appear to primarily influence metabolite excretion. For instance, we identified genetic variants near a gene of a transporter that change the capability for renal re-absorption of the transporter’s substrate. Thus, our findings could help to elucidate molecular mechanisms influencing kidney function and the body’s detoxification capabilities.
Collapse
|
17
|
Kastenmüller G, Raffler J, Gieger C, Suhre K. Genetics of human metabolism: an update. Hum Mol Genet 2015; 24:R93-R101. [PMID: 26160913 PMCID: PMC4572003 DOI: 10.1093/hmg/ddv263] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023] Open
Abstract
Genome-wide association studies with metabolomics (mGWAS) identify genetically influenced metabotypes (GIMs), their ensemble defining the heritable part of every human's metabolic individuality. Knowledge of genetic variation in metabolism has many applications of biomedical and pharmaceutical interests, including the functional understanding of genetic associations with clinical end points, design of strategies to correct dysregulations in metabolic disorders and the identification of genetic effect modifiers of metabolic disease biomarkers. Furthermore, it has been shown that GIMs provide testable hypotheses for functional genomics and metabolomics and for the identification of novel gene functions and metabolite identities. mGWAS with growing sample sizes and increasingly complex metabolic trait panels are being conducted, allowing for more comprehensive and systems-based downstream analyses. The generated large datasets of genetic associations can now be mined by the biomedical research community and provide valuable resources for hypothesis-driven studies. In this review, we provide a brief summary of the key aspects of mGWAS, followed by an update of recently published mGWAS. We then discuss new approaches of integrating and exploring mGWAS results and finish by presenting selected applications of GIMs in recent studies.
Collapse
Affiliation(s)
- Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, German Center for Diabetes Research, Neuherberg, Germany and
| | - Johannes Raffler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany and Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Suhre
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, Department of Physiology and Biophysics, Weill Cornell Medical College-Qatar, Doha, Qatar
| |
Collapse
|
18
|
Jupin M, Michiels PJ, Girard FC, Wijmenga SS. Magnetic susceptibility to measure total protein concentration from NMR metabolite spectra: Demonstration on blood plasma. Magn Reson Med 2014; 73:459-68. [PMID: 24639074 DOI: 10.1002/mrm.25178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/12/2014] [Accepted: 01/22/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE Accurate metabolite and protein quantification in blood plasma and other body fluids from one single NMR measurement, allowing for improved quantitative metabolic profiling and better assessment of metabolite-protein interactions. THEORY AND METHODS The total protein concentration is derived from the common chemical-shift changes-caused by protein-induced bulk magnetic susceptibility (BMS)-measured on well-accessible and exchange-free metabolite resonances. These BMS shifts are simply obtained by external referencing with respect to 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt in a coaxial insert. RESULTS Based on blood-plasma data from five volunteers, the estimated accuracy of the BMS method is ≤ 5% with respect and comparable to the 3.8% error of the standard colorimetric, Biuret, method. Valine, alanine, glucose, leucine, and lactate display no exchange-induced shift changes. Their well-accessible signals act as reliable probes for pure protein-induced BMS. The slopes and intercepts of their chemical-shift change versus protein concentration were derived from metabolite mixtures with (fatted) human and bovine albumin acting as blood-plasma mimics. CONCLUSION The BMS method, demonstrated on blood plasma, can also be used on other samples containing sufficient protein (> 10 g/L). Also, it allows measurement of the presence and sign of exchange-induced chemical-shift changes.
Collapse
Affiliation(s)
- Marc Jupin
- Biophysical Chemistry, Institute for Materials and Molecules, Radboud University, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
19
|
Inouye M, Abraham G. Look, no hands! Spectral biomarkers from genetic association studies. Genome Med 2013; 5:14. [PMID: 23510086 PMCID: PMC3706812 DOI: 10.1186/gm418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent advances in our understanding of the genomics of the human metabolome have shed light on the pathways involved in metabolic and cardiovascular disease. Such studies crucially depend on the interpretation of complex molecular spectra. A recent study by Suhre and colleagues provides a way to identify potentially clinically relevant biomarkers without a priori information, such as reference spectra, thus aiding the discovery of additional spectral features and corresponding genomic loci associated with metabolism and disease.
Collapse
Affiliation(s)
- Michael Inouye
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gad Abraham
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
Abstract
The metabolome is sensitive to genetic and environmental factors contributing to complex diseases such as type 1 diabetes (T1D). Metabolomics is the study of biochemical and physiological processes involving metabolites. It is therefore one of the key platforms for the discovery and study of pathophysiological phenomena leading to T1D and the development of T1D-associated complications. Although the application of metabolomics in T1D research is still rare, metabolomic research has already advanced across the full spectrum, from disease progression to the development of diabetic complications. Metabolomic studies in T1D have contributed to an improved etiopathogenic understanding and demonstrated their potential in the clinic. For example, metabolomic data from recent T1D studies suggest that a specific metabolic profile, or metabotype, precedes islet autoimmunity and the development of overt T1D. These early metabolic changes are attributed to many biochemical pathways, thus suggesting a systemic change in metabolism which may be inborn. Based on this evidence, the role of the metabolome in the progression to T1D is therefore to facilitate specific biochemical processes associated with T1D, and to contribute to the development of a vulnerable state in which disease is more likely to be triggered. This may have important implications for the understanding of T1D pathophysiology and early disease detection and prevention.
Collapse
Affiliation(s)
- Matej Oresic
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, FIN-02044 VTT, Finland.
| |
Collapse
|