1
|
Wang X, Dai Z, Lin X, Zou X, Wang R, Tasiheng Y, Yan Y, Ma M, Chen Y, Cheng H, Liu C, Yu X. Antigen/HLA-agnostic strategies for Characterizing Tumor-responsive T cell receptors in PDAC patients via single-cell sequencing and autologous organoid application. Cancer Lett 2024; 588:216741. [PMID: 38395378 DOI: 10.1016/j.canlet.2024.216741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Characterization of tumor-responsive T cell receptors (TCRs) is a critical step in personalized TCR-T cell therapy, and remains challenging for pancreatic ductal adenocarcinoma (PDAC). Here we report a proof-of-concept study to identify and validate antitumor TCRs in two representative PDAC patients using ultradeep single-cell TCR/RNA sequencing and autologous organoids, and reveal the phenotypic dynamics of TCR repertoire in different T cell expansions from the same patient. We first performed comparative sequencing on freshly harvested peripheral blood mononuclear cells (PBMCs) and uncultured tumor infiltrating lymphocytes (TILs), followed by reactivity tests of TIL-enriched TCRs with autologous organoids, in which two tumor-responsive TCRs were successfully characterized and the corresponding TILs were mostly tissue-resident memory-like T cells, and partially expressed both naïve and exhausted T cell markers. For the PDAC patient without high-quality TILs, PBMCs were cultured with neoantigen peptide (KRASG12D), organoids, or anti-CD3 antibody in presence, and experienced extensive clonal expansions within ten days. All derived PBMCs were sequenced in parallel (>82,000 cells), and TCRs enriched in both peptide- and organoid-experienced, but not anti-CD3-treated CD8 T cells, were assessed for their reactivity to antigen-presenting cells (APCs) and organoids, in which three neoantigen-reactive TCRs were identified as tumor-responsive, and the corresponding T cells were characterized by mixed transcriptional signatures including but not limited to typical exhausted T cell markers. Together, our study revealed that the combination of ultradeep single-cell sequencing and organoid techniques enabled rapid characterization of tumor-responsive TCRs for developing practical personalized TCR-T therapy in an antigen/human leukocyte antigen (HLA)-agnostic manner.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China; Cancer Institute, Shanghai Key Laboratory of Radiation Oncology, Cancer Research Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhengjie Dai
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ruijie Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yesboli Tasiheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yu Yan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mingjian Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Precise Diagnosis and Treatment of Pancreatic Cancer, Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Malviya M, Aretz Z, Molvi Z, Lee J, Pierre S, Wallisch P, Dao T, Scheinberg DA. Challenges and solutions for therapeutic TCR-based agents. Immunol Rev 2023; 320:58-82. [PMID: 37455333 PMCID: PMC11141734 DOI: 10.1111/imr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023]
Abstract
Recent development of methods to discover and engineer therapeutic T-cell receptors (TCRs) or antibody mimics of TCRs, and to understand their immunology and pharmacology, lag two decades behind therapeutic antibodies. Yet we have every expectation that TCR-based agents will be similarly important contributors to the treatment of a variety of medical conditions, especially cancers. TCR engineered cells, soluble TCRs and their derivatives, TCR-mimic antibodies, and TCR-based CAR T cells promise the possibility of highly specific drugs that can expand the scope of immunologic agents to recognize intracellular targets, including mutated proteins and undruggable transcription factors, not accessible by traditional antibodies. Hurdles exist regarding discovery, specificity, pharmacokinetics, and best modality of use that will need to be overcome before the full potential of TCR-based agents is achieved. HLA restriction may limit each agent to patient subpopulations and off-target reactivities remain important barriers to widespread development and use of these new agents. In this review we discuss the unique opportunities for these new classes of drugs, describe their unique antigenic targets, compare them to traditional antibody therapeutics and CAR T cells, and review the various obstacles that must be overcome before full application of these drugs can be realized.
Collapse
Affiliation(s)
- Manish Malviya
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Zita Aretz
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Zaki Molvi
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Jayop Lee
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Stephanie Pierre
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Tri-Institutional Medical Scientist Program, 1300 York Avenue, New York, NY 10021
| | - Patrick Wallisch
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| |
Collapse
|
3
|
Osada T, Jiang X, Zhao Y, Chen M, Kreager BC, Wu H, Kim H, Ren J, Snyder J, Zhong P, Morse MA, Lyerly HK. The use of histotripsy as intratumoral immunotherapy beyond tissue ablation-the rationale for exploring the immune effects of histotripsy. Int J Hyperthermia 2023; 40:2263672. [PMID: 37806666 DOI: 10.1080/02656736.2023.2263672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Mechanical high-intensity focused ultrasound (M-HIFU), which includes histotripsy, is a non-ionizing, non-thermal ablation technology that can be delivered by noninvasive methods. Because acoustic cavitation is the primary mechanism of tissue disruption, histotripsy is distinct from the conventional HIFU techniques resulting in hyperthermia and thermal injury. Phase I human trials have shown the initial safety and efficacy of histotripsy in treating patients with malignant liver tumors. In addition to tissue ablation, a promising benefit of M-HIFU has been stimulating a local and systemic antitumor immune response in preclinical models and potentially in the Phase I trial. Preclinical studies combining systemic immune therapies appear promising, but clinical studies of combinations have been complicated by systemic toxicities. Consequently, combining M-HIFU with systemic immunotherapy has been demonstrated in preclinical models and may be testing in future clinical studies. An additional alternative is to combine intratumoral M-HIFU and immunotherapy using microcatheter-placed devices to deliver both M-HIFU and immunotherapy intratumorally. The promise of M-HIFU as a component of anti-cancer therapy is promising, but as forms of HIFU are tested in preclinical and clinical studies, investigators should report not only the parameters of the energy delivered but also details of the preclinical models to enable analysis of the immune responses. Ultimately, as clinical trials continue, clinical responses and immune analysis of patients undergoing M-HIFU including forms of histotripsy will provide opportunities to optimize clinical responses and to optimize application and scheduling of M-HIFU in the context of the multi-modality care of the cancer patient.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, College of Engineering, NC State University, Raleigh, NC, USA
| | | | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, College of Engineering, NC State University, Raleigh, NC, USA
| | - Benjamin C Kreager
- Department of Mechanical and Aerospace Engineering, College of Engineering, NC State University, Raleigh, NC, USA
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, College of Engineering, NC State University, Raleigh, NC, USA
| | - Howuk Kim
- Department of Mechanical Engineering, School of Engineering, Inha University, Incheon, Republic of South Korea
| | - Jun Ren
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Joshua Snyder
- Department of Surgery and Cell Biology, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Pei Zhong
- Thomas Lord Department of Mechanical Engineering and Material Science, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Michael A Morse
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - H Kim Lyerly
- Department of Surgery, Pathology, and Integrative Immunobiology, Duke University School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Ko B, Takebe N, Andrews O, Makena MR, Chen AP. Rethinking Oncologic Treatment Strategies with Interleukin-2. Cells 2023; 12:cells12091316. [PMID: 37174716 PMCID: PMC10177415 DOI: 10.3390/cells12091316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
High-dose recombinant human IL-2 (rhIL-2, aldesleukin) emerged as an important treatment option for selected patients with metastatic melanoma and metastatic renal cell carcinoma, producing durable and long-lasting antitumor responses in a small fraction of patients and heralding the potential of cancer immunotherapy. However, the adoption of high-dose rhIL-2 has been restricted by its severe treatment-related adverse event (TRAE) profile, which necessitates highly experienced clinical providers familiar with rhIL-2 administration and readily accessible critical care medicine support. Given the comparatively wide-ranging successes of immune checkpoint inhibitors and chimeric antigen receptor T cell therapies, there have been concerted efforts to significantly improve the efficacy and toxicities of IL-2-based immunotherapeutic approaches. In this review, we highlight novel drug development strategies, including biochemical modifications and engineered IL-2 variants, to expand the narrow therapeutic window of IL-2 by leveraging downstream activation of the IL-2 receptor to selectively expand anti-tumor CD8-positive T cells and natural killer cells. These modified IL-2 cytokines improve single-agent activity in solid tumor malignancies beyond the established United States Food and Drug Administration (FDA) indications of metastatic melanoma and renal cell carcinoma, and may also be safer in rational combinations with established treatment modalities, including anti-PD-(L)1 and anti-CTLA-4 immunotherapy, chemotherapies, and targeted therapy approaches.
Collapse
Affiliation(s)
- Brian Ko
- Division of Cancer Treatment & Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Naoko Takebe
- Division of Cancer Treatment & Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Omozusi Andrews
- Division of Cancer Treatment & Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Monish Ram Makena
- Division of Cancer Treatment & Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alice P Chen
- Division of Cancer Treatment & Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Li G, Bhattacharjee A, Salomonis N. Quantifying tumor specificity using Bayesian probabilistic modeling for drug target discovery and prioritization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.530994. [PMID: 36945433 PMCID: PMC10028977 DOI: 10.1101/2023.03.03.530994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
In diseases such as cancer, the design of new therapeutic strategies requires extensive, costly, and unfortunately sometimes deadly testing to reveal life threatening "off target" effects. A crucial first step in predicting toxicity are analyses of normal RNA and protein tissue expression, which are now possible using comprehensive molecular tissue atlases. However, no standardized approaches exist for target prioritization, which instead rely on ad-hoc thresholds and manual inspection. Such issues are compounded, given that genomic and proteomic data detection sensitivity and accuracy are often problematic. Thus, quantifiable probabilistic scores for tumor specificity that address these challenges could enable the creation of new predictive models for combinatorial drug design and correlative analyses. Here, we propose a Bayesian Tumor Specificity (BayesTS) score that can naturally account for multiple independent forms of molecular evidence derving from both RNA-Seq and protein expression while preserving the uncertainty of the inference. We applied BayesTS to 24,905 human protein-coding genes across 3,644 normal samples (GTEx and TCGA) spanning 63 tissues. These analyses demonstrate the ability of BayesTS to accurately incorporate protein, RNA and tissue distribution evidence, while effectively capturing the uncertainty of these inferences. This approach prioritized well-established drug targets, while deemphasizing those which were later found to induce toxicity. BayesTS allows for the adjustment of tissue importance weights for tissues of interest, such as reproductive and physiologically dispensable tissues (e.g., tonsil, appendix), enabling clinically translatable prioritizations. Our results show that BayesTS can facilitate novel drug target discovery and can be easily generalized to unconventional molecular targets, such as splicing neoantigens. We provide the code and inferred tumor specificity predictions as a database available online (https://github.com/frankligy/BayesTS). We envision that the widespread adoption of BayesTS will facilitate improved target prioritization for oncology drug development, ultimately leading to the discovery of more effective and safer drugs.
Collapse
Affiliation(s)
- Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267, USA
| | - Anukana Bhattacharjee
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267, USA
| |
Collapse
|
6
|
Mayani H. Cellular Therapies: Yesterday, Today, and Tomorrow. Stem Cells Dev 2023; 32:163-169. [PMID: 36727603 DOI: 10.1089/scd.2022.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cellular therapy (CT) can be defined as the transference into a person of healthy cells to correct defective functions. Yesterday (1950-2010), CT consisted mostly of hematopoietic transplants for the treatment of a variety of hematological disorders. Interestingly, during that period of time other cell types with therapeutic potential-including certain lymphoid populations and other nonhematopoietic cells-were discovered and characterized; thus, CT became a promising discipline for the treatment of a broader diversity of diseases. Today (2011-2023), CT has significantly grownup through preclinical studies and clinical trials, and it is currently progressing toward its consolidation as one of the pillars of medicine in the 21st century. Indeed, different types of stem cells (e.g., hematopoietic, mesenchymal, neural, and pluripotent), as well as different lymphoid and myeloid cell populations (e.g., TILs, CAR-Ts, CAR-NKs, and DUOC-01) are being used in clinical settings or are being tested in clinical trials. For the past decade, several CT modalities have been developed, and today, many of them are being used in the clinic. Tomorrow (2024-2040), already established CT modalities will surely be improved and applied more frequently, and novel therapies (that will include cell types such as iPSCs) will enter and expand within the clinical ground. It is noteworthy, however, that despite significant advancements and achievements, problems still need to be solved and obstacles need to be overcome. Technical, ethical, and economic issues persist and they need to be addressed. Undoubtedly, exciting times of challenges and opportunities are coming ahead in the CT arena.
Collapse
Affiliation(s)
- Hector Mayani
- Oncology Research Unit, Oncology Hospital, IMSS National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| |
Collapse
|
7
|
Boinapalli Y, Shankar Pandey R, Singh Chauhan A, Sudheesh MS. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research. Int J Pharm 2023; 632:122579. [PMID: 36603671 DOI: 10.1016/j.ijpharm.2022.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Cell uptake study is a routine experiment used as a surrogate to predict in vivo response in cancer nanomedicine research. Cell culture conditions should be designed in such a way that it emulates 'real' physiological conditions and avoid artefacts. It is critical to dissect the steps involved in cellular uptake to understand the physical, chemical, and biological factors responsible for particle internalization. The two-dimensional model (2D) of cell culture is overly simplistic to mimic the complexity of cancer tissues that exist in vivo. It cannot simulate the critical tissue-specific properties like cell-cell interaction and cell-extracellular matrix (ECM) interaction and its influences on the temporal and spatial distribution of nanoparticles (NPs). The three dimensional model organization of heterogenous cancer and normal cells with the ECM acts as a formidable barrier to NP penetration and cellular uptake. The three dimensional cell culture (3D) technology is a breakthrough in this direction that can mimic the barrier properties of the tumor microenvironment (TME). Herein, we discuss the physiological factors that should be considered to bridge the translational gap between in and vitro cell culture studies and in-vivo studies in cancer nanomedicine.
Collapse
Affiliation(s)
- Yamini Boinapalli
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495009, India
| | - Abhay Singh Chauhan
- Department of Biopharmaceutical Sciences, School of Pharmacy, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India.
| |
Collapse
|
8
|
Li B. Why do tumor-infiltrating lymphocytes have variable efficacy in the treatment of solid tumors? Front Immunol 2022; 13:973881. [PMID: 36341370 PMCID: PMC9635507 DOI: 10.3389/fimmu.2022.973881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/14/2022] [Indexed: 07/30/2023] Open
Abstract
Lymphocytes in tumor tissue are called tumor-infiltrating lymphocytes (TILs), and they play a key role in the control and treatment of tumor diseases. Since the discovery in 1987 that cultured TILs can kill tumor cells more than 100 times more effectively than T-cells cultured from peripheral blood in melanoma, it has been confirmed that cultured TILs can successfully cure clinical patients with melanoma. Since 1989, after we investigated TIL isolation performance from solid tumors, we modified some procedures to increase efficacy, and thus successfully established new TIL isolation and culture methods in 1994. Moreover, our laboratory and clinicians using our cultured TILs have published more than 30 papers. To improve the efficacy of TILs, we have been carrying out studies of TIL efficacy to treat solid tumor diseases for approximately 30 years. The three main questions of TIL study have been "How do TILs remain silent in solid tumor tissue?", "How do TILs attack homologous and heterologous antigens from tumor cells of solid tumors?", and "How do TILs infiltrate solid tumor tissue from a distance into tumor sites to kill tumor cells?". Research on these three issues has increasingly answered these questions. In this review I summarize the main issues surrounding TILs in treating solid tumors. This review aims to study the killing function of TILs from solid tumor tissues, thereby ultimately introducing the optimal strategy for patients suffering from solid tumors through personalized immunotherapy in the near future.
Collapse
Affiliation(s)
- Biaoru Li
- Georgia Cancer Center and Department of Pediatrics, Medical College at Georgia (GA), Augusta, GA, United States
| |
Collapse
|
9
|
Correction to: A Journey in Science: Immersion in the search for effective cancer immunotherapies. Mol Med 2021; 27:140. [PMID: 34727884 PMCID: PMC8565007 DOI: 10.1186/s10020-021-00405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Three-Dimensional Culture Models to Study Innate Anti-Tumor Immune Response: Advantages and Disadvantages. Cancers (Basel) 2021; 13:cancers13143417. [PMID: 34298630 PMCID: PMC8303518 DOI: 10.3390/cancers13143417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Several approaches have shown that the immune response against tumors strongly affects patients' clinical outcome. Thus, the study of anti-tumor immunity is critical to understand and potentiate the mechanisms underlying the elimination of tumor cells. Natural killer (NK) cells are members of innate immunity and represent powerful anti-tumor effectors, able to eliminate tumor cells without a previous sensitization. Thus, the study of their involvement in anti-tumor responses is critical for clinical translation. This analysis has been performed in vitro, co-incubating NK with tumor cells and quantifying the cytotoxic activity of NK cells. In vivo confirmation has been applied to overcome the limits of in vitro testing, however, the innate immunity of mice and humans is different, leading to discrepancies. Different activating receptors on NK cells and counter-ligands on tumor cells are involved in the antitumor response, and innate immunity is strictly dependent on the specific microenvironment where it takes place. Thus, three-dimensional (3D) culture systems, where NK and tumor cells can interact in a tissue-like architecture, have been created. For example, tumor cell spheroids and primary organoids derived from several tumor types, have been used so far to analyze innate immune response, replacing animal models. Herein, we briefly introduce NK cells and analyze and discuss in detail the properties of 3D tumor culture systems and their use for the study of tumor cell interactions with NK cells.
Collapse
|