1
|
Yu C, Chen B, Su H, Yang Y. Long non-coding RNA MIAT serves as a biomarker of fragility fracture and promotes fracture healing. J Orthop Surg Res 2024; 19:343. [PMID: 38849896 PMCID: PMC11162066 DOI: 10.1186/s13018-024-04824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Fragility fracture is common in the elderly. Osteoblast differentiation is essential for bone healing and regeneration. Expression pattern of long non-coding RNA MIAT during fracture healing was examined, and its role in osteoblast differentiation was investigated. METHODS 90 women with simple osteoporosis and 90 women with fragility fractures were included. Another 90 age-matched women were set as the control group. mRNA levels were tested using RT-qPCR. Cell viability was detected via CCK-8, and osteoblastic biomarkers, including ALP, OCN, Collagen I, and RUNX2 were tested via ELISA. The downstream miRNAs and genes targeted by MIAT were predicted by bioinformatics analysis, whose functions and pathways were annotated via GO and KEGG analysis. RESULTS Serum MIAT was upregulated in osteoporosis women with high accuracy of diagnostic efficacy. Serum MIAT was even elevated in the fragility fracture group, but decreased in a time manner after operation. MIAT knockdown promoted osteogenic proliferation and differentiation of MC3T3-E1, but the influences were reversed by miR-181a-5p inhibitor. A total of 137 overlapping target genes of miR-181a-5p were predicted based on the miRDB, TargetScan and microT datasets, which were mainly enriched for terms related to signaling pathways regulating pluripotency of stem cells, cellular senescence, and osteoclast differentiation. CONCLUSIONS LncRNA MIAT serves as a promising biomarker for osteoporosis, and promotes osteogenic differentiation via targeting miR-181a-5p.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, Liaocheng People's Hospital, No. 67, West Dongchang Road, Liaocheng, 252000, China
| | - Binbin Chen
- Department of Nephrology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Hui Su
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Yiqun Yang
- Department of Orthopedics, Liaocheng People's Hospital, No. 67, West Dongchang Road, Liaocheng, 252000, China.
| |
Collapse
|
2
|
Barbato A, Piscopo F, Salati M, Pollastro C, Evangelista L, Ferrante L, Limongello D, Brillante S, Iuliano A, Reggiani-Bonetti L, Salatiello M, Iaccarino A, Pisapia P, Malapelle U, Troncone G, Indrieri A, Dominici M, Franco B, Carotenuto P. A MiR181/Sirtuin1 regulatory circuit modulates drug response in biliary cancers. Clin Exp Med 2024; 24:74. [PMID: 38598008 PMCID: PMC11006774 DOI: 10.1007/s10238-024-01332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Despite recent advances, biliary tract cancer (BTC) remains one of the most lethal tumor worldwide due to late diagnosis, limited therapeutic strategies and resistance to conventional therapies. In recent years, high-throughput technologies have enabled extensive genome, and transcriptome sequencing unveiling, among others, the regulatory potential of microRNAs (miRNAs). Compelling evidence shown that miRNA are attractive therapeutic targets and promising candidates as biomarkers for various therapy-resistant tumors. The analysis of miRNA profile successfully identified miR-181c and -181d as significantly downregulated in BTC patients. Low miR-181c and -181d expression levels were correlated with worse prognosis and poor treatment efficacy. In fact, progression-free survival analysis indicated poor survival rates in miR-181c and -181d low expressing patients. The expression profile of miR-181c and -181d in BTC cell lines revealed that both miRNAs were dysregulated. Functional in vitro experiments in BTC cell lines showed that overexpression of miR-181c and -181d affected cell viability and increased sensitivity to chemotherapy compared to controls. In addition, by using bioinformatic tools we showed that the miR-181c/d functional role is determined by binding to their target SIRT1 (Sirtuin 1). Moreover, BTC patients expressing high levels of miR-181 and low SIRT1 shown an improved survival and treatment response. An integrative network analysis demonstrated that, miR-181/SIRT1 circuit had a regulatory effect on several important metabolic tumor-related processes. Our study demonstrated that miR-181c and -181d act as tumor suppressor miRNA in BTC, suggesting the potential use as therapeutic strategy in resistant cancers and as predictive biomarker in the precision medicine of BTC.
Collapse
Affiliation(s)
- Anna Barbato
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiola Piscopo
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Carla Pollastro
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Lorenzo Evangelista
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Luigi Ferrante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Davide Limongello
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Simona Brillante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Antonella Iuliano
- Department of Mathematics, Computer Science and Economics (DIMIE), University of Basilicata, 85100, Potenza, Italy
| | - Luca Reggiani-Bonetti
- Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, 41125, Modena, Italy
| | - Maria Salatiello
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Alessia Indrieri
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, 80078, Naples, Italy
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
3
|
Duan Y, Jin C, Wu Y, Chen Y, Zhang M, Qian J, Shuai T, Li J, Chen H, Li D. CREB1 alleviates the apoptosis and potentiates the osteogenic differentiation of zoledronic acid-treated human periodontal ligament stem cells via up-regulating VEGF. Tissue Cell 2023; 85:102223. [PMID: 37776785 DOI: 10.1016/j.tice.2023.102223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Periodontitis represents a severe inflammatory illness in tooth supporting tissue. It has been supported that cAMP response element binding protein 1 (CREB1), a common transcription factor, extensively participates in osteogenic differentiation. Here, the current study was to look into the impacts of CREB1 on the process of periodontitis and its possible action mechanism. After human periodontal ligament stem cells (PDLSCs) were challenged with zoledronic acid (ZA), CREB1 expression was examined with RT-qPCR and western blotting. CCK-8 assay appraised cell activity. Following CREB1 elevation or/and vascular endothelial growth factor (VEGF) silencing in ZA-treated PDLSCs, CCK-8 and TUNEL assays separately estimated cell viability and apoptosis. Western blotting tested the expression of apoptosis- and osteogenic differentiation-associated proteins. ALP staining measured PDLSCs osteogenic ability and ARS staining estimated mineralized nodule formation. JASPAR predicted the potential binding of CREB1 with VEGF promoter, which was then testified by ChIP and luciferase reporter assays. RT-qPCR and western blotting tested VEGF expression. CREB1 expression was declined in ZA-exposed PDLSCs and CREB1 elevation exacerbated the viability and osteogenic differentiation while obstructed the apoptosis of PDLSCs. Additionally, CREB1 bond to VEGF promoter and transcriptionally activated VEGF expression. Further, VEGF absence partially stimulated the apoptosis while suppressed the osteogenic differentiation of CREB1-overexpressing PDLSCs treated by ZA. To be concluded, CREB1 might activate VEGF transcription to obstruct the apoptosis while contribute to the osteogenic differentiation of ZA-treated PDLSCs.
Collapse
Affiliation(s)
- Yao Duan
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Yuwei Wu
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Yan Chen
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Minjuan Zhang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Jun Qian
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Ting Shuai
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Jian Li
- Department of Stomatology, Xiang'An Hospital of Xiamen University, Xiamen 361100, PR China
| | - Huimin Chen
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China.
| | - Dan Li
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China.
| |
Collapse
|
4
|
Bell-Hensley A, Das S, McAlinden A. The miR-181 family: Wide-ranging pathophysiological effects on cell fate and function. J Cell Physiol 2023; 238:698-713. [PMID: 36780342 PMCID: PMC10121854 DOI: 10.1002/jcp.30969] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators that can target and inhibit translation of multiple mRNAs within a given cell type. As such, a number of different pathways and networks may be modulated as a result. In fact, miRNAs are known to regulate many cellular processes including differentiation, proliferation, inflammation, and metabolism. This review focuses on the miR-181 family and provides information from the published literature on the role of miR-181 homologs in regulating a range of activities in different cell types and tissues. Of note, we have not included details on miR-181 expression and function in the context of cancer since this is a broad topic area requiring independent review. Instead, we have focused on describing the function and mechanism of miR-181 family members on differentiation toward a number of cell lineages in various non-neoplastic conditions (e.g., immune/hematopoietic cells, osteoblasts, osteoclasts, chondrocytes, adipocytes). We have also provided information on how modulation of miR-181 homologs can have positive effects on disease states such as cardiac abnormalities, pulmonary arterial hypertension, thrombosis, osteoarthritis, and vascular inflammation. In this context, we have used some examples of FDA-approved drugs that modulate miR-181 expression. We conclude by discussing some common mechanisms by which miR-181 homologs appear to regulate a number of different cellular processes and how targeting specific miR-181 family members may lead to attractive therapeutic approaches to treat a number of human disease or repair conditions, including those associated with the aging process.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, Missouri
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Audrey McAlinden
- Department of Orthopaedic Surgery Washington University School of Medicine, St Louis, Missouri
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, USA
- Shriners Hospital for Children – St Louis, Missouri
| |
Collapse
|
5
|
Long Z, Dou P, Cai W, Mao M, Wu R. MiR-181a-5p promotes osteogenesis by targeting BMP3. Aging (Albany NY) 2023; 15:734-747. [PMID: 36734882 PMCID: PMC9970307 DOI: 10.18632/aging.204505] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
High-throughput microRNA (miRNA) sequencing of osteoporosis was analyzed from the Gene Expression Omnibus (GEO) database to investigate specific microRNAs that control osteogenesis. MiR-181a-5p was differentially expressed among healthy subjects and those with osteoporosis. Inhibitors and mimics were transfected into cells to modulate miR-181a-5p levels to examine the role in MC3T3-E1 functions. Alkaline phosphatase (ALP) staining and Alizarin Red S (ARS) staining were used for morphological detection, and proteins of ALP and Runt-related transcription factor 2 (RUNX2), as osteogenesis markers, were detected. During the osteogenic differentiation of MC3T3-E1, the transcription level of miR-181a-5p was significantly increased. The inhibition of miR-181a-5p suppressed MC3T3-E1 osteogenic differentiation, whereas its overexpression functioned oppositely. Consistently, the miR-181a-5p antagomir aggravated osteoporosis in old mice. Additionally, we predicted potential target genes via TargetScan and miRDB and identified bone morphogenetic protein 3 (BMP3) as the target gene. Moreover, the reduced expression of miR-181a-5p was validated in our hospitalized osteoporotic patients. These findings have substantial implications for the strategies targeting miR-181a-5p to prevent osteoporosis and potential related fractures.
Collapse
Affiliation(s)
- Ze Long
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weiliang Cai
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Minzhi Mao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ren Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Henriques DG, Miranda RL, Dezonne RS, Wildemberg LE, Camacho AHDS, Chimelli L, Kasuki L, Lamback EB, Guterres A, Gadelha MR. miR-383-5p, miR-181a-5p, and miR-181b-5p as Predictors of Response to First-Generation Somatostatin Receptor Ligands in Acromegaly. Int J Mol Sci 2023; 24:ijms24032875. [PMID: 36769196 PMCID: PMC9918086 DOI: 10.3390/ijms24032875] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Acromegaly is a chronic systemic disease caused in the vast majority of cases by growth hormone (GH)-secreting adenoma, with surgery being the first-line treatment. When a cure is not attained with surgery, first-generation somatostatin receptor ligands (fg-SRLs) are the most common medication prescribed. Predictors of response to fg-SRLs have been studied; however, they cannot fully predict the response to fg-SRL. MicroRNAs are small RNAs, the main role of which is messenger RNA (mRNA) post-transcriptional regulation. This study aimed to identify the microRNAs involved in resistance to treatment with fg-SRLs in acromegaly. Ten patients with acromegaly undergoing treatment with fg-SRLs were selected to undergo miRNA sequencing: five controlled and five uncontrolled with treatment. Bioinformatic analysis was performed to detect differentially expressed miRNAs. Then, the same 10 samples were used for validation by qPCR and an additional 22 samples were analyzed, totaling 32 samples. e We found 59 differentially expressed miRNAs in the first analysis. miR-181a-5p and miR-181b-5p were downregulated, and miR-383-5p was upregulated in the uncontrolled group. Receiver operating characteristic (ROC) curve analysis of miR-383-5p showed an NPV of 84.3% and a PPV of 84.5%. In summary, miR-181a-5p, miR-181b-5p, and miR-383-5p are biomarkers of response to fg-SRLs, and they can be used individually or included in prediction models as tools to guide clinical decisions.
Collapse
Affiliation(s)
- Daniel G. Henriques
- Endocrine Unit and Neuroendocrinology Research Center, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Renan Lyra Miranda
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Rômulo Sperduto Dezonne
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Luiz Eduardo Wildemberg
- Endocrine Unit and Neuroendocrinology Research Center, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Aline Helen da Silva Camacho
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Leila Chimelli
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Leandro Kasuki
- Endocrine Unit and Neuroendocrinology Research Center, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Endocrinology Division, Hospital Federal de Bonsucesso, Rio de Janeiro 21041-020, Brazil
| | - Elisa B. Lamback
- Endocrine Unit and Neuroendocrinology Research Center, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Alexandro Guterres
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
| | - Monica R. Gadelha
- Endocrine Unit and Neuroendocrinology Research Center, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil
- Correspondence:
| |
Collapse
|
7
|
Schäfer A, Evers L, Meier L, Schlomann U, Bopp MHA, Dreizner GL, Lassmann O, Ben Bacha A, Benescu AC, Pojskic M, Preußer C, von Strandmann EP, Carl B, Nimsky C, Bartsch JW. The Metalloprotease-Disintegrin ADAM8 Alters the Tumor Suppressor miR-181a-5p Expression Profile in Glioblastoma Thereby Contributing to Its Aggressiveness. Front Oncol 2022; 12:826273. [PMID: 35371977 PMCID: PMC8964949 DOI: 10.3389/fonc.2022.826273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (GBM) as the most common and aggressive brain tumor is characterized by genetic heterogeneity, invasiveness, radio-/chemoresistance, and occurrence of GBM stem-like cells. The metalloprotease-disintegrin ADAM8 is highly expressed in GBM tumor and immune cells and correlates with poor survival. In GBM, ADAM8 affects intracellular kinase signaling and increases expression levels of osteopontin/SPP1 and matrix metalloproteinase 9 (MMP9) by an unknown mechanism. Here we explored whether microRNA (miRNA) expression levels could be regulators of MMP9 expression in GBM cells expressing ADAM8. Initially, we identified several miRNAs as dysregulated in ADAM8-deficient U87 GBM cells. Among these, the tumor suppressor miR-181a-5p was significantly upregulated in ADAM8 knockout clones. By inhibiting kinase signaling, we found that ADAM8 downregulates expression of miR-181a-5p via activation of signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling suggesting an ADAM8-dependent silencing of miR-181a-5p. In turn, mimic miR-181a-5p transfection caused decreased cell proliferation and lower MMP9 expression in GBM cells. Furthermore, miR-181a-5p was detected in GBM cell-derived extracellular vesicles (EVs) as well as patient serum-derived EVs. We identified miR-181a-5p downregulating MMP9 expression via targeting the MAPK pathway. Analysis of patient tissue samples (n=22) revealed that in GBM, miR-181a-5p is strongly downregulated compared to ADAM8 and MMP9 mRNA expression, even in localized tumor areas. Taken together, we provide evidence for a functional axis involving ADAM8/miR-181a-5p/MAPK/MMP9 in GBM tumor cells.
Collapse
Affiliation(s)
- Agnes Schäfer
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Lara Evers
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Lara Meier
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Uwe Schlomann
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Miriam H A Bopp
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Gian-Luca Dreizner
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Olivia Lassmann
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Aaron Ben Bacha
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | | | - Mirza Pojskic
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Christian Preußer
- Core Facility Extracellular Vesicles, Philipps University of Marburg - Medical Faculty, Marburg, Germany
| | - Elke Pogge von Strandmann
- Core Facility Extracellular Vesicles, Philipps University of Marburg - Medical Faculty, Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Marburg, Germany
| |
Collapse
|
8
|
Differential expression profiles and function prediction of tRNA-derived fragments in fibrous dysplasia. Arch Oral Biol 2022; 135:105347. [DOI: 10.1016/j.archoralbio.2022.105347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/05/2021] [Accepted: 01/05/2022] [Indexed: 01/01/2023]
|