1
|
Ding J, Cheng X, Zeng C, Zhao Q, Xing C, Zhang C, Cao H, Guo X, Hu G, Zhuang Y. Aflatoxin B1 Promotes Pyroptosis in IPEC-J2 Cells by Disrupting Mitochondrial Dynamics through the AMPK/NLRP3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28093-28108. [PMID: 39630575 DOI: 10.1021/acs.jafc.4c05876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins in food and feed, seriously jeopardizing the intestinal health, while the effects of AFB1 on intestinal damage remain to be well understood. This study aims to evaluate the effect of AFB1 on intestinal injury by regulating AMP-activated protein kinase (AMPK)-mediated pyroptosis in vitro. The present study showed that AFB1 led to the formation of large number of bubble-like protrusions on the cell membrane, releasing lactate dehydrogenase (LDH) and interleukin-1β (IL-1β). Stimulation with AFB1 resulted in the activation of the NOD-like receptor protein 3 (NLRP3) pathway, as indicated by the increased expression of pyroptosis-associated factor mRNAs and proteins, which ultimately led to a significant upregulation of the pyroptosis rate. Meanwhile, AFB1 caused dysfunction of mitochondrial dynamics by activating the AMPK signaling pathway as mainly evidenced by upregulating dynamin-1-like protein 1 (Drp1) mRNA and protein expression. Moreover, inhibition of NLRP3 and AMPK pathways by MCC950 and compound C, respectively, significantly alleviated AFB1-induced damage in IPEC-J2 cells, evidenced by suppressed NLRP3-mediated pyroptosis, and ameliorated AMPK-mediated mitochondrial dynamics imbalance. In conclusion, these results demonstrated that AFB1 promoted pyroptosis of IPEC-J2 cells by interfering with mitochondrial dynamics by activating the AMPK/NRLP3 pathway.
Collapse
Affiliation(s)
- Jiayi Ding
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Chun Zeng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Qintao Zhao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| |
Collapse
|
2
|
Ge Q, Zhang T, Yu J, Lu X, Xiao S, Zhang T, Qing T, Xiao Z, Zeng L, Luo L. A new perspective on targeting pulmonary arterial hypertension: Programmed cell death pathways (Autophagy, Pyroptosis, Ferroptosis). Biomed Pharmacother 2024; 181:117706. [PMID: 39581144 DOI: 10.1016/j.biopha.2024.117706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiovascular disease characterized by elevated pulmonary vascular resistance, progressive increases in pulmonary artery pressures, ultimately leading to right-sided heart failure, and potentially mortality. Pulmonary vascular remodeling is pivotal in PAH onset and progression. While targeted drug therapies have notably ameliorated PAH prognosis, current medications primarily focus on vascular vasodilation, with limited ability to reverse pulmonary vascular remodeling fundamentally, resulting in suboptimal patient prognoses. Cellular death in pulmonary vasculature, once thought to be confined to apoptosis and necrosis, has evolved with the identification of pyroptosis, autophagy, and ferroptosis, revealing their association with vascular injury in PAH. These novel forms of regulated cellular death impact reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, leading to pulmonary vascular cell loss, exacerbating vascular injury, and mediating adverse remodeling, inflammation, immune anomalies, and current emerging mechanisms (such as endothelial-mesenchymal transition, abnormal energy metabolism, and epigenetic regulation) in the pathogenesis of PAH. This review comprehensively delineates the roles of autophagy, pyroptosis, and ferroptosis in PAH, elucidating recent advances in their involvement and regulation of vascular injury. It juxtaposes their distinct functions in PAH and discusses the interplay of these programmed cell deaths in pulmonary vascular injury, highlighting the benefits of combined targeted therapies in mitigating pulmonary arterial hypertension-induced vascular injury, providing novel insights into targeted treatments for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Qingliang Ge
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Tianqing Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Jiangbiao Yu
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Xuelin Lu
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Sijie Xiao
- Department of Ultrasound, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Ting Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Tao Qing
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Zhenni Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Li Luo
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde City, China.
| |
Collapse
|
3
|
Yan Q, Li P, Liu S, Sun Y, Chen C, Long J, Lin Y, Liang J, Wang H, Zhang L, Wang H, Wang H, Yang S, Lin M, Liu X, Yao J, Tian Z, Chen N, Yang Y, Ai Q. Dihydromyricetin treats pulmonary hypertension by modulating CKLF1/CCR5 axis-induced pulmonary vascular cell pyroptosis. Biomed Pharmacother 2024; 180:117614. [PMID: 39461017 DOI: 10.1016/j.biopha.2024.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive cardiopulmonary disease characterized by elevated pulmonary artery pressure and vascular remodeling, resulting in poor prognosis and increased mortality rates. Chemokine-like factor 1 (CKLF1) plays a significant role in inducing inflammation and cell proliferation, both of which are critical processes in the pathogenesis of various diseases. Dihydromyricetin (DMY) has garnered attention for its potent anti-inflammatory properties. This study evaluated the protective effects of DMY against PH, demonstrating that DMY treatment can mitigate pyroptosis in pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs) in vivo via the CKLF1/CCR5 axis. Results indicated significant improvements in hemodynamics, inflammatory responses, fibrosis, vascular remodeling, and right ventricular hypertrophy in PH rats following DMY treatment. Furthermore, the interaction between CKLF1 and CCR5 was investigated in CKLF1-/- rats after PH induction. DMY was found to downregulate CKLF1 expression and the inflammatory response in the lungs, with its therapeutic efficacy diminished following CKLF1 knockdown. This study underscores the therapeutic potential of DMY in the management of PH and lays a foundation for future research and clinical applications.
Collapse
MESH Headings
- Animals
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Receptors, CCR5/metabolism
- Flavonols/pharmacology
- Flavonols/therapeutic use
- Male
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pyroptosis/drug effects
- Rats, Sprague-Dawley
- Rats
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- MARVEL Domain-Containing Proteins/metabolism
- Vascular Remodeling/drug effects
- Signal Transduction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Disease Models, Animal
- Cells, Cultured
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Li
- Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hanlong Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ling Zhang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongbin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhifeng Tian
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
4
|
Tang F, Tian L, Zhu X, Yang S, Zeng H, Yang Y. METTL3-mediated m6A modification enhances lncRNA H19 stability to promote endothelial cell inflammation and pyroptosis to aggravate atherosclerosis. FASEB J 2024; 38:e70090. [PMID: 39432244 PMCID: PMC11580722 DOI: 10.1096/fj.202401337rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
This study explored the impact of N6-methyladenosine (m6A) modification on the regulation of long noncoding RNA (lncRNA) and atherosclerosis progression. An atherosclerosis cell model was established by treating human aortic endothelial cells (HAECs) with oxidized low-density lipoprotein. Additionally, an atherosclerotic animal model was developed using ApoE-/- C57BL/6 male mice fed a high-fat diet. Both models were employed to assess the expression changes of proteins associated with m6A modification. First, the effect of m6A modification writer protein methyltransferase-like 3 (METTL3) knockdown on changes in the level of pyroptosis in HAECs was investigated, and bioinformatic analysis confirmed that lncRNA H19 (H19) was the potential target of m6A modification. RNA-binding protein immunoprecipitation assays were subsequently performed to explore the interaction between H19 and the m6A writer protein METTL3, as well as the reader protein recombinant insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Finally, the effect of H19 expression on pyroptosis levels in HAECs was evaluated. In the aortas of atherosclerosis mice, overall m6A levels were significantly elevated compared with controls (p < .05), with METTL3 and METTL14 mRNA and protein levels notably increased (p < .05). Similarly, ox-LDL-treated HAECs showed a significant rise in m6A levels, along with increased METTL3 and METTL14 expression (p < .05). METTL3 knockdown in HAECs led to decreased pyroptosis, as evidenced by reduced lactate dehydrogenase release and lower levels of IL-1β, IL-18, and IL-6 (p < .05). Overexpression of H19 reversed these effects, indicating METTL3's role in promoting atherosclerosis by stabilizing H19 through m6A modification. H19 was the primary target lncRNA molecule of METTL3-mediated m6A modification in the pathogenesis of atherosclerosis. METTL3-mediated m6A modification regulated H19 expression, thereby aggravating atherosclerosis by activating pyroptosis.
Collapse
Affiliation(s)
- Feng Tang
- Department of CardiologyThe Second People's Hospital of GuiyangGuiyangGuizhouChina
| | - Long‐hai Tian
- Department of CardiologyGuizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Xiao‐han Zhu
- Department of CardiologyThe Second People's Hospital of GuiyangGuiyangGuizhouChina
| | - Sen Yang
- Department of CardiologyThe Second People's Hospital of GuiyangGuiyangGuizhouChina
| | - Huan Zeng
- Department of CardiologyThe Second People's Hospital of GuiyangGuiyangGuizhouChina
| | - Yong‐yao Yang
- Department of CardiologyGuizhou Provincial People's HospitalGuiyangGuizhouChina
| |
Collapse
|
5
|
Zeng M, Liang G, Yuan F, Yan S, Liu J, He Z. Macrophages-derived high-mobility group box-1 protein induces endothelial progenitor cells pyroptosis. iScience 2024; 27:110996. [PMID: 39421592 PMCID: PMC11483297 DOI: 10.1016/j.isci.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Endothelial dysfunction is an important factor in the progress of sepsis. Endothelial progenitor cells (EPCs) are the precursor cells of endothelial cells and play a crucial role in the prognosis and treatment of sepsis. EPCs in the peripheral blood of patients with sepsis undergo pyroptosis, but the mechanism remains much of unknown. Serum high-mobility group box-1 (HMGB1) is significantly elevated in patients with sepsis, but whether it is related to EPCs pyroptosis is unknown. We used a cell model of sepsis in vitro to isolate EPCs for better observation. By detecting the pyroptosis-related indicators of EPCs and the level of release and acetylation of HMGB1 in inflammatory macrophages, it was found that HMGB1 released by inflammatory macrophages combined with receptor for advanced glycation end products (RAGE) is a key pathway to induce pyroptosis of EPCs.
Collapse
Affiliation(s)
- Menghao Zeng
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Changsha, Hunan, China
| | - Guibin Liang
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Changsha, Hunan, China
| | - Fangfang Yuan
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shanshan Yan
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jie Liu
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhihui He
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Engineering Research Center for Human Stem Cells, Changsha, Hunan, China
| |
Collapse
|
6
|
Ma Z, Niu H, Qi H, Li Y. Functional role of lncRNA MEG3 on pyroptosis through interacting with EZH2 and YTHDC1 in postoperative cognitive dysfunction. Brain Res Bull 2024; 217:111060. [PMID: 39236791 DOI: 10.1016/j.brainresbull.2024.111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND The molecular biology mechanisms underlying postoperative cognitive dysfunction (POCD) remain unclear, resulting in a lack of specific therapeutic targets and limited clinical treatment options. The NLRP3 pyroptotic pathway, induced by neuroinflammation, is known to promote the development of POCD. Research has shown that lncRNA MEG3 exacerbates cell pyroptosis in various neurological injuries, though the precise mechanism remains to be investigated. METHODS In vitro and in vivo models of POCD were established through treatment with sevoflurane. Gene and protein expression were investigated using qRT-PCR, Western blot analysis, ELISA, and histological staining. Additionally, cell viability and injury were assessed through CCK-8 and LDH assays. Hippocampal-dependent memory and cognitive abilities were evaluated using the Morris Water Maze (MWM) test. Furthermore, the interactions between MEG3 and EZH2/YTHDC1 were validated through RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP). RESULTS Our findings reveal that sevoflurane significantly reduced MEG3 and pyroptosis-related proteins in mice. The overexpression of MEG3 protected mice against sevoflurane-induced cognitive dysfunction and reversed sevoflurane-induced pyroptosis in hippocampal neurons. MEG3 induced the downregulation of NLRP3 expression and reduced mRNA stability through its interaction with EZH2/YTHDC1. CONCLUSION In conclusion, our study elucidates that MEG3 inhibits the NLRP3 inflammasome and hippocampal neuron pyroptosis through the recruitment of EZH2/YTHDC1. These findings shed light on the underlying mechanism of MEG3 in the regulation of POCD and suggest that MEG3 could serve as a potential therapeutic target for the treatment of POCD.
Collapse
Affiliation(s)
- Zijian Ma
- Department of Anesthesiology, South area of the Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067055, China
| | - Haifei Niu
- Department of Ultrasound, the Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, China
| | - Haiqi Qi
- Department of Anesthesiology, South area of the Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067055, China
| | - Yan Li
- Department of Anesthesiology, South area of the Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067055, China.
| |
Collapse
|
7
|
Guan X, Du H, Wang X, Zhu X, Ma C, Zhang L, He S, Bai J, Liu H, Yuan H, Wang S, Wan K, Yu H, Zhu D. CircSSR1 regulates pyroptosis of pulmonary artery smooth muscle cells through parental protein SSR1 mediating endoplasmic reticulum stress. Respir Res 2024; 25:355. [PMID: 39354535 PMCID: PMC11446074 DOI: 10.1186/s12931-024-02986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
INTRODUCTION Pyroptosis, inflammatory necrosis of cells, is a programmed cell death involved in the pathological process of diseases. Endoplasmic reticulum stress (ERS), as a protective stress response of cell, decreases the unfold protein concentration to inhibit the unfold protein agglutination. Whereas the relationship between endoplasmic reticulum stress and pyroptosis in pulmonary hypertension (PH) remain unknown. Previous evident indicated that circular RNA (circRNA) can participate in several biological process, including cell pyroptosis. However, the mechanism of circRNA regulate pyroptosis of pulmonary artery smooth muscle cells through endoplasmic reticulum stress still unclear. Here, we proved that circSSR1 was down-regulate expression during hypoxia in pulmonary artery smooth muscle cells, and over-expression of circSSR1 inhibit pyroptosis both in vitro and in vivo under hypoxic. Our experiments have indicated that circSSR1 could promote host gene SSR1 translation via m6A to activate ERS leading to pulmonary artery smooth muscle cell pyroptosis. In addition, our results showed that G3BP1 as upstream regulator mediate the expression of circSSR1 under hypoxia. These results highlight a new regulatory mechanism for pyroptosis and provide a potential therapy target for pulmonary hypertension. METHODS RNA-FISH and qRT-PCR were showed the location of circSSR1 and expression change. RNA pull-down and RIP verify the circSSR1 combine with YTHDF1. Western blotting, PI staining and LDH release were used to explore the role of circSSR1 in PASMCs pyroptosis. RESULTS CircSSR1 was markedly downregulated in hypoxic PASMCs. Knockdown CircSSR1 inhibited hypoxia induced PASMCs pyroptosis in vivo and in vitro. Mechanistically, circSSR1 combine with YTHDF1 to promote SSR1 protein translation rely on m6A, activating pyroptosis via endoplasmic reticulum stress. Furthermore, G3BP1 induce circSSR1 degradation under hypoxic. CONCLUSION Our findings clarify the role of circSSR1 up-regulated parental protein SSR1 expression mediate endoplasmic reticulum stress leading to pyroptosis in PASMCs, ultimately promoting the development of pulmonary hypertension.
Collapse
MESH Headings
- Endoplasmic Reticulum Stress/physiology
- Pyroptosis/physiology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Animals
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Male
- Cells, Cultured
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Membrane Proteins
Collapse
Affiliation(s)
- Xiaoyu Guan
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P. R. China
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Hongxia Du
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P. R. China
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Xiaoying Wang
- College of Pharmacy (Daqing), Harbin Medical University (Daqing), Daqing, 163319, P. R. China
| | - Xiangrui Zhu
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P. R. China
| | - Cui Ma
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P. R. China
| | - Lixin Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P. R. China
| | - Siyu He
- the First Affiliated Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, China
| | - June Bai
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P. R. China
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Huiyu Liu
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P. R. China
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Hao Yuan
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P. R. China
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Shanshan Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P. R. China
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Kuiyu Wan
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, P. R. China
| | - Hang Yu
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P. R. China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P. R. China.
- College of Pharmacy, Harbin Medical University, Harbin, 150081, P. R. China.
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, 150081, P. R. China.
- Central Laboratory of Harbin Medical University (Daqing), Xinyang Road, Gaoxin District, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
8
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
9
|
Chen B, Xia Y, Jiang Y, Sun Z, Zhang Y, Liu Y. Non-Coding RNA Networks in Pulmonary Arterial Hypertension. Pharmacology 2024:1-12. [PMID: 39342938 DOI: 10.1159/000541060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Pulmonary artery hypertension (PAH) is a severe cardiovascular disease marked by a persistent increase in pulmonary artery resistance and pressure, leading to right ventricular strain, hypertrophy, and eventually right heart failure and death. Despite numerous available targeted therapies, the clinical needs for treating PAH remain unmet. Current treatments primarily aim to dilate pulmonary vessels rather than reverse pulmonary vascular remodeling, failing to offer a fundamental solution for PAH. Therefore, developing new therapies for this condition is urgently required. SUMMARY Recent research has highlighted the crucial role of non-coding RNAs (ncRNAs) in the occurrence and development of PAH. NcRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and PIWI-interacting RNAs (piRNAs), are a class of transcripts that do not translate proteins but affect various diseases at different levels, including chromatin modification, transcription regulation, post-translational processes. KEY MESSAGE The current study delves into recent advancements in understanding how lncRNAs, circRNAs, miRNAs, and piRNAs contribute to the pathogenesis of PAH. This review addresses the existing research challenges and explores the potential of ncRNAs as both biomarkers and therapeutic targets, suggesting that ncRNAs may serve as valuable indicators and treatment options for the disease.
Collapse
Affiliation(s)
- Bing Chen
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China,
| | - Yu Xia
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yanjiao Jiang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Zengxian Sun
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yanyan Zhang
- Department of Geriatrics, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yun Liu
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
- Department of Pharmacy, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
10
|
Long H, Yu Y, Ouyang J, Lu H, Zhao G. Insights into RNA N6-methyladenosine and programmed cell death in atherosclerosis. Mol Med 2024; 30:137. [PMID: 39227813 PMCID: PMC11373444 DOI: 10.1186/s10020-024-00901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
N6-methyladenosine (m6A) modification stands out among various RNA modifications as the predominant form within eukaryotic cells, influencing numerous cellular processes implicated in disease development. m6A modification has gained increasing attention in the development of atherosclerosis and has become a research hotspot in recent years. Programmed cell death (PCD), encompassing apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis, plays a pivotal role in atherosclerosis pathogenesis. In this review, we delve into the intricate interplay between m6A modification and diverse PCD pathways, shedding light on their complex association during the onset and progression of atherosclerosis. Clarifying the relationship between m6A and PCD in atherosclerosis is of great significance to provide novel strategies for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Haijiao Long
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yulu Yu
- Afliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, Guangdong, China
| | - Jie Ouyang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hongwei Lu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Guojun Zhao
- Afliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, Guangdong, China.
| |
Collapse
|
11
|
Xu GE, Zhao X, Li G, Gokulnath P, Wang L, Xiao J. The landscape of epigenetic regulation and therapeutic application of N 6-methyladenosine modifications in non-coding RNAs. Genes Dis 2024; 11:101045. [PMID: 38988321 PMCID: PMC11233902 DOI: 10.1016/j.gendis.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2024] Open
Abstract
RNA N6-methyladenosine (m6A) methylation is the most abundant and conserved RNA modification in eukaryotes. It participates in the regulation of RNA metabolism and various pathophysiological processes. Non-coding RNAs (ncRNAs) are defined as small or long transcripts which do not encode proteins and display numerous biological regulatory functions. Similar to mRNAs, m6A deposition is observed in ncRNAs. Studying RNA m6A modifications on ncRNAs is of great importance specifically to deepen our understanding of their biological roles and clinical implications. In this review, we summarized the recent research findings regarding the mutual regulation between RNA m6A modification and ncRNAs (with a specific focus on microRNAs, long non-coding RNAs, and circular RNAs) and their functions. We also discussed the challenges of m6A-containing ncRNAs and RNA m6A as therapeutic targets in human diseases and their future perspective in translational roles.
Collapse
Affiliation(s)
- Gui-E Xu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lijun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Sciences, Shanghai University, Nantong, Jiangsu 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Li W, Liu Y, Xu R, Zong Y, He L, Hu J, Li G. M 6A modification in cardiovascular disease: With a focus on programmed cell death. Genes Dis 2024; 11:101039. [PMID: 38988324 PMCID: PMC11233881 DOI: 10.1016/j.gendis.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2024] Open
Abstract
N6-methyladenosine (m6A) methylation is one of the most predominant internal RNA modifications in eukaryotes and has become a hot spot in the field of epigenetics in recent years. Cardiovascular diseases (CVDs) are a leading cause of death globally. Emerging evidence demonstrates that RNA modifications, such as the m6A modification, are associated with the development and progression of many diseases, including CVDs. An increasing body of studies has indicated that programmed cell death (PCD) plays a vital role in CVDs. However, the molecular mechanisms underlying m6A modification and PCD in CVDs remain poorly understood. Herein, elaborating on the highly complex connections between the m6A mechanisms and different PCD signaling pathways and clarifying the exact molecular mechanism of m6A modification mediating PCD have significant meaning in developing new strategies for the prevention and therapy of CVDs. There is great potential for clinical application.
Collapse
Affiliation(s)
- Wen Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ruiyan Xu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan Zong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lu He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guohua Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Pathophysiology, MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
13
|
Wang K, Wang Y, Li Y, Fang B, Li B, Cheng W, Wang K, Yang S. The potential of RNA methylation in the treatment of cardiovascular diseases. iScience 2024; 27:110524. [PMID: 39165846 PMCID: PMC11334793 DOI: 10.1016/j.isci.2024.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
RNA methylation has emerged as a dynamic regulatory mechanism that impacts gene expression and protein synthesis. Among the known RNA methylation modifications, N6-methyladenosine (m6A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), and N7-methylguanosine (m7G) have been studied extensively. In particular, m6A is the most abundant RNA modification and has attracted significant attention due to its potential effect on multiple biological processes. Recent studies have demonstrated that RNA methylation plays an important role in the development and progression of cardiovascular disease (CVD). To identify key pathogenic genes of CVD and potential therapeutic targets, we reviewed several common RNA methylation and summarized the research progress of RNA methylation in diverse CVDs, intending to inspire effective treatment strategies.
Collapse
Affiliation(s)
- Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YuQin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - YingHui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Cheng
- Department of Cardiovascular Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - SuMin Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
14
|
Scimone C, Donato L, Alibrandi S, Conti A, Bortolotti C, Germanò A, Alafaci C, Vinci SL, D'Angelo R, Sidoti A. Methylome analysis of endothelial cells suggests new insights on sporadic brain arteriovenous malformation. Heliyon 2024; 10:e35126. [PMID: 39170526 PMCID: PMC11336478 DOI: 10.1016/j.heliyon.2024.e35126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Arteriovenous malformation of the brain (bAVM) is a vascular phenotype related to brain defective angiogenesis. Involved vessels show impaired expression of vascular differentiation markers resulting in the arteriolar to venule direct shunt. In order to clarify aberrant gene expression occurring in bAVM, here we describe results obtained by methylome analysis performed on endothelial cells (ECs) isolated from bAVM specimens, compared to human cerebral microvascular ECs. Results were validated by quantitative methylation-specific PCR and quantitative realtime-PCR. Differential methylation events occur in genes already linked to bAVM onset, as RBPJ and KRAS. However, among differentially methylated genes, we identified EPHB1 and several other loci involved in EC adhesion as well as in EC/vascular smooth muscle cell (VSMC) crosstalk, suggesting that only endothelial dysfunction might not be sufficient to trigger the bAVM phenotype. Moreover, aberrant methylation pattern was reported for many lncRNA genes targeting transcription factors expressed during neurovascular development. Among these, the YBX1 that was recently shown to target the arteridin coding gene. Finally, in addition to the conventional CpG methylation, we further considered the role of impaired CHG methylation, mainly occurring in brain at embryo stage. We showed as differentially CHG methylated genes are clustered in pathways related to EC homeostasis, as well as to VSMC-EC crosstalk, suggesting as impairment of this interaction plays a prominent role in loss of vascular differentiation, in bAVM phenotype.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Alfredo Conti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Carlo Bortolotti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Via Altura 3, 40123, Bologna, Italy
| | - Antonino Germanò
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Concetta Alafaci
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., Via Michele Miraglia 20, Palermo, 90139, Italy
| |
Collapse
|
15
|
Wang L, Mu M, Guo Y, Huang J, Zhang R, Zhang M, Hu Y, Wang Y, Gao Z, Liu L, Wang W, Cheng Y, Zhu X, Liu J, Wang W, Ying S. PD-1/PD-L1 Provides Protective Role in Hypoxia-Induced Pulmonary Vascular Remodeling. Hypertension 2024; 81:1822-1836. [PMID: 38853755 DOI: 10.1161/hypertensionaha.123.22393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) is a T helper 17 cell response-driven disease, and PD-1 (programmed cell death 1)/PD-L1 (programmed cell death-ligand 1) inhibitor-associated pulmonary hypertension has been reported recently. This study is designed to explore whether the PD-1/PD-L1 pathway participates in HPH via regulating endothelial dysfunction and T helper 17 cell response. METHODS Lung tissue samples were obtained from eligible patients. Western blotting, immunohistochemistry, and immunofluorescence techniques were used to assess protein expression, while immunoprecipitation was utilized to detect ubiquitination. HPH models were established in C57BL/6 WT (wild-type) and PD-1-/- mice, followed by treatment with PD-L1 recombinant protein. Adeno-associated virus vector delivery was used to upregulate PD-L1 in the endothelial cells. Endothelial cell function was assessed through assays for cell angiogenesis and adhesion. RESULTS Expression of the PD-1/PD-L1 pathway was downregulated in patients with HPH and mouse models, with a notable decrease in PD-L1 expression in endothelial cells compared with the normoxia group. In comparison to WT mice, PD-1-/- mice exhibited a more severe HPH phenotype following exposure to hypoxia, However, administration of PD-L1 recombinant protein and overexpression of PD-L1 in lung endothelial cells mitigated HPH. In vitro, blockade of PD-L1 with a neutralizing antibody promoted endothelial cell angiogenesis, adhesion, and pyroptosis. Mechanistically, hypoxia downregulated PD-L1 protein expression through ubiquitination. Additionally, both in vivo and in vitro, PD-L1 inhibited T helper 17 cell response through the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in HPH. CONCLUSIONS PD-1/PD-L1 plays a role in ameliorating HPH development by inhibiting T helper 17 cell response through the PI3K/AKT/mTOR pathway and improving endothelial dysfunction, suggesting a novel therapeutic indication for PD-1/PD-L1-based immunomodulatory therapies in the treatment of HPH.
Collapse
Affiliation(s)
- Lei Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (L.W.)
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Mi Mu
- Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China (M.M.)
| | - Yu Guo
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Jing Huang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (J.H., Y.W.)
| | - Ruoyang Zhang
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing (R.Z.)
| | - Muzhi Zhang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yanhua Wang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (J.H., Y.W.)
| | - Zhenqiang Gao
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Lin Liu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Wang Wang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yuli Cheng
- Department of Microbiology, School of Basic Medical Sciences (Y.C., X.Z.), Capital Medical University, Beijing, China
| | - XinPing Zhu
- Department of Microbiology, School of Basic Medical Sciences (Y.C., X.Z.), Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Liu K, Li Y, Yin F, Wu X, Zhang X, Jiang D, Wang J, Zhang Z, Wang R, Chen C, Han Y. Elucidating thoracic aortic dissection pathogenesis: The interplay of m1A-related gene expressions and miR-16-5p/YTHDC1 Axis in NLRP3-dependent pyroptosis. Int J Biol Macromol 2024; 274:133293. [PMID: 38925173 DOI: 10.1016/j.ijbiomac.2024.133293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
The underlying molecular mechanisms of thoracic aortic dissection (TAD) remain incompletely understood. Recent insights into RNA methylation and microRNA-mediated gene regulation offer new avenues for exploring how these processes contribute to the pathophysiology of TAD, particularly through the modulation of pyroptosis and smooth muscle cell viability. This research aimed to elucidate the interplay of m1A-related gene expressions and miR-16-5p/YTHDC1 Axis in NLRP3-dependent pyroptosis, a mechanism implicated in the pathogenesis of TAD. We collected tissue samples from 28 human TAD patients and 8 healthy aortic group, as well as utilized a mouse model to replicate the disease. A combination of computational, in vitro, and in vivo methods was applied, including CIBERSORTx analysis, Pearson correlation, gene transfection using antagomiR-16-5p, siRNA, and several staining as well as cell culture techniques. Our analysis indicated two differentially expressed genes, ALKBH2 and YTHDC1. We found significant upregulation of has-miR-16-5p and downregulation of YTHDC1 at mRNA level in AD samples. Immune cell infiltration in TAD samples was examined using the CIBERSORTx database. We confirmed that YTHDC1 was a target of miR-16-5p, as evidenced by an inhibitory effect on luciferase activity. Inhibition of miR-16-5p enhanced SMC proliferation and promoted cell viability whilst downregulating NLRP3-pyroptosis. YTHDC1 expression was increased, and NLRP3-pyroptosis expressions were inhibited, suggesting miR-16-5p/YTHDC1 axis may involve the NLRP3-pyroptosis of the SMC. In vivo analyses confirmed the prevention of NLRP3-pyroptosis in middle layer of the thoracic aorta, implying that the miR-16-5p/YTHDC1 axis regulated SMC proliferation via NLRP3-pyroptosis signaling. Our findings underscored the anti-pyroptotic role of miR-16-5p/YTHDC1 axis in the pathogenesis of TAD, suggesting a potential therapeutic strategy via targeting YTHDC1 and suppressing miR-16-5p to inhibit NLRP3-dependent pyroptosis. Although further investigation is needed, these results relating to SMC proliferation are a significant step forward in understanding TAD.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiac Surgery, Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Yuemeng Li
- Department of Vascular Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Fanxing Yin
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Zhang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Deying Jiang
- Department of Vascular Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Jian Wang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Zhaoxuan Zhang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Ruihua Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Yanshuo Han
- Department of Vascular Surgery, Central Hospital of Dalian University of Technology, Dalian, China; School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China.
| |
Collapse
|
17
|
Tapia A, Liu X, Malhi NK, Yuan D, Chen M, Southerland KW, Luo Y, Chen ZB. Role of long noncoding RNAs in diabetes-associated peripheral arterial disease. Cardiovasc Diabetol 2024; 23:274. [PMID: 39049097 PMCID: PMC11271017 DOI: 10.1186/s12933-024-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.
Collapse
Affiliation(s)
- Alonso Tapia
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Muxi Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
18
|
Qin J, Zou L, Lu F, Liu F, Min Q, Zhu L. METTL3 promotes immature dental pulp stem cells-induced angiogenesis by regulating ETS1 mRNA stability in an m 6A-HuR-dependent manner. Odontology 2024:10.1007/s10266-024-00977-3. [PMID: 38969870 DOI: 10.1007/s10266-024-00977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Angiogenesis serves as the determinate element of pulp regeneration. Dental pulp stem cell (DPSC) implantation can promote the regeneration of dental pulp tissue. Herein, the role of m6A methyltransferase methyltransferase-like 3 (METTL3) in regulating DPSCs-induced angiogenesis during pulp regeneration therapy was investigated. Cell DPSC viability, HUVEC migration, and angiogenesis ability were analyzed by CCK-8 assay, wound healing, Transwell assay, and tube formation assay. The global and EST1 mRNA m6A levels were detected by m6A dot blot and Me-RIP. The interactions between E26 transformation-specific proto-oncogene 1(ETS1), human antigen R(HuR), and METTL3 were analyzed by RIP assay. The relationship between METTL3 and the m6A site of ETS1 was performed by dual-luciferase reporter assay. ETS1 mRNA stability was examined with actinomycin D. Herein, our results revealed that human immature DPSCs (hIDPSCs) showed stronger ability to induce angiogenesis than human mature DPSCs (hMDPSCs), which might be related to ETS1 upregulation. ETS1 knockdown inhibited DPSCs-induced angiogenesis. Our mechanistic experiments demonstrated that METTL3 increased ETS1 mRNA stability and expression level on DPSCs in an m6A-HuR-dependent manner. ETS1 upregulation abolished sh-METTL3's inhibition on DPSCs-induced angiogenesis. METTL3 upregulation promoted DPSCs-induced angiogenesis by enhancing ETS1 mRNA stability in an m6A-HuR-dependent manner. This study reveals a new mechanism by which m6A methylation regulates angiogenesis in DPSCs, providing new insights for stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Jian Qin
- Department of Endodontics, Changsha Stomatological Hospital, Hunan Province, Changsha, 410005, People's Republic of China
| | - Li Zou
- Department of Endodontics, Changsha Stomatological Hospital, Hunan Province, Changsha, 410005, People's Republic of China
| | - Fachao Lu
- Department of Endodontics, Changsha Stomatological Hospital, Hunan Province, Changsha, 410005, People's Republic of China
| | - Fang Liu
- Department of Endodontics, Changsha Stomatological Hospital, Hunan Province, Changsha, 410005, People's Republic of China
| | - Qian Min
- Department of Endodontics, Changsha Stomatological Hospital, Hunan Province, Changsha, 410005, People's Republic of China
| | - Lilei Zhu
- Department of Periodontology, Changsha Stomatological Hospital, Hunan Province, No.389, Youyi Road, Changsha, 410005, People's Republic of China.
| |
Collapse
|
19
|
Yang S, Kim SH, Yang E, Kang M, Joo JY. Molecular insights into regulatory RNAs in the cellular machinery. Exp Mol Med 2024; 56:1235-1249. [PMID: 38871819 PMCID: PMC11263585 DOI: 10.1038/s12276-024-01239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
It is apparent that various functional units within the cellular machinery are derived from RNAs. The evolution of sequencing techniques has resulted in significant insights into approaches for transcriptome studies. Organisms utilize RNA to govern cellular systems, and a heterogeneous class of RNAs is involved in regulatory functions. In particular, regulatory RNAs are increasingly recognized to participate in intricately functioning machinery across almost all levels of biological systems. These systems include those mediating chromatin arrangement, transcription, suborganelle stabilization, and posttranscriptional modifications. Any class of RNA exhibiting regulatory activity can be termed a class of regulatory RNA and is typically represented by noncoding RNAs, which constitute a substantial portion of the genome. These RNAs function based on the principle of structural changes through cis and/or trans regulation to facilitate mutual RNA‒RNA, RNA‒DNA, and RNA‒protein interactions. It has not been clearly elucidated whether regulatory RNAs identified through deep sequencing actually function in the anticipated mechanisms. This review addresses the dominant properties of regulatory RNAs at various layers of the cellular machinery and covers regulatory activities, structural dynamics, modifications, associated molecules, and further challenges related to therapeutics and deep learning.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eunjeong Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
20
|
Han J, Wang C, Yang H, Luo J, Zhang X, Zhang XA. Novel Insights into the Links between N6-Methyladenosine and Regulated Cell Death in Musculoskeletal Diseases. Biomolecules 2024; 14:514. [PMID: 38785921 PMCID: PMC11117795 DOI: 10.3390/biom14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Musculoskeletal diseases (MSDs), including osteoarthritis (OA), osteosarcoma (OS), multiple myeloma (MM), intervertebral disc degeneration (IDD), osteoporosis (OP), and rheumatoid arthritis (RA), present noteworthy obstacles associated with pain, disability, and impaired quality of life on a global scale. In recent years, it has become increasingly apparent that N6-methyladenosine (m6A) is a key regulator in the expression of genes in a multitude of biological processes. m6A is composed of 0.1-0.4% adenylate residues, especially at the beginning of 3'-UTR near the translation stop codon. The m6A regulator can be classified into three types, namely the "writer", "reader", and "eraser". Studies have shown that the epigenetic modulation of m6A influences mRNA processing, nuclear export, translation, and splicing. Regulated cell death (RCD) is the autonomous and orderly death of cells under genetic control to maintain the stability of the internal environment. Moreover, distorted RCDs are widely used to influence the course of various diseases and receiving increasing attention from researchers. In the past few years, increasing evidence has indicated that m6A can regulate gene expression and thus influence different RCD processes, which has a central role in the etiology and evolution of MSDs. The RCDs currently confirmed to be associated with m6A are autophagy-dependent cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, immunogenic cell death, NETotic cell death and oxeiptosis. The m6A-RCD axis can regulate the inflammatory response in chondrocytes and the invasive and migratory of MM cells to bone remodeling capacity, thereby influencing the development of MSDs. This review gives a complete overview of the regulatory functions on the m6A-RCD axis across muscle, bone, and cartilage. In addition, we also discuss recent advances in the control of RCD by m6A-targeted factors and explore the clinical application prospects of therapies targeting the m6A-RCD in MSD prevention and treatment. These may provide new ideas and directions for understanding the pathophysiological mechanism of MSDs and the clinical prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Cuijing Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Haolin Yang
- College of Pharmacy, Jilin University, Changchun 132000, China;
| | - Jiayi Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang 110100, China;
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| |
Collapse
|
21
|
Zhou S, Liu J, Wan A, Zhang Y, Qi X. Epigenetic regulation of diverse cell death modalities in cancer: a focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis. J Hematol Oncol 2024; 17:22. [PMID: 38654314 PMCID: PMC11040947 DOI: 10.1186/s13045-024-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Tumor is a local tissue hyperplasia resulted from cancerous transformation of normal cells under the action of various physical, chemical and biological factors. The exploration of tumorigenesis mechanism is crucial for early prevention and treatment of tumors. Epigenetic modification is a common and important modification in cells, including DNA methylation, histone modification, non-coding RNA modification and m6A modification. The normal mode of cell death is programmed by cell death-related genes; however, recent researches have revealed some new modes of cell death, including pyroptosis, ferroptosis, cuproptosis and disulfidptosis. Epigenetic regulation of various cell deaths is mainly involved in the regulation of key cell death proteins and affects cell death by up-regulating or down-regulating the expression levels of key proteins. This study aims to investigate the mechanism of epigenetic modifications regulating pyroptosis, ferroptosis, cuproptosis and disulfidptosis of tumor cells, explore possible triggering factors in tumor development from a microscopic point of view, and provide potential targets for tumor therapy and new perspective for the development of antitumor drugs or combination therapies.
Collapse
Affiliation(s)
- Shimeng Zhou
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Junlan Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China.
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China.
| |
Collapse
|
22
|
Zhang ZW, Tang MQ, Liu W, Song Y, Gao MJ, Ni P, Zhang DD, Mo QG, Zhao BQ. Dapagliflozin prevents kidney podocytes pyroptosis via miR-155-5p/HO-1/NLRP3 axis modulation. Int Immunopharmacol 2024; 131:111785. [PMID: 38479158 DOI: 10.1016/j.intimp.2024.111785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Diabetic nephropathy (DN) is a significant clinical microvascular complication associated with diabetes mellitus (DM), and end-stage diabetes giving rise to kidney failure is developing into the major etiological factor of chronic kidney failure. Dapagliflozin is reported to limit podocyte damage in DM, which has proven to protect against renal failure. Mounting evidence has demonstrated that pyroptosis is associated with DM progression. Nevertheless, whether pyroptosis causes DN and the underlying molecular pathways remain obscure. In this study, we aimed to explore the antipyroptotic attributes of dapagliflozin and elucidate the underlying mechanisms of kidney damage in diabetes. In vivo, experiments were conducted in streptozotocin (STZ)-induced type 2 diabetic mice, which were administered dapagliflozin via gavage for 6 weeks. Subsequently, the specific organizational characteristics and expression of pyroptosis-related genes were evaluated. Intragastric dapagliflozin administration markedly reduced renal tissue injury. Meanwhile, dapagliflozin also attenuated the expression level of pyroptosis associated genes, including ASC, cleaved Caspase-1, GSDMD N-termini, NLRP3, IL-18, and IL-1β in renal tissue of dapagliflozin-treated animals. Similar antipyroptotic effects were observed in palmitic acid (PA)-treated mouse podocytes. We also found that heme oxygenase 1 (HO-1) enhanced the protection of mouse podocyte clone 5 cells (MPC5). Moreover, miR-155-5p inhibition increased pyroptosis in PA-treated MPC5 cells, suggesting that miR-155-5p acts as an endogenous stimulator that increases HO-1 expression and reduces pyroptosis. Hence, our findings imply that dapagliflozin inhibits podocyte pyroptosis via the miR-155-5p/HO-1/NLRP3 axis in DM. Furthermore, dapagliflozin substitution may be regarded as an effective strategy for preventing pyroptosis in the kidney, including a therapeutic option for treating pyroptosis-related DN.
Collapse
Affiliation(s)
- Zhen-Wang Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Ming-Qiu Tang
- Schools of Pharmacy, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Wu Liu
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Yi Song
- Schools of Pharmacy, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Man-Jun Gao
- Schools of Pharmacy, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning 437000, PR China
| | - Dan-Dan Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437000, PR China.
| | - Qi-Gui Mo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437000, PR China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437000, PR China.
| |
Collapse
|
23
|
Nie Y, Song C, Huang H, Mao S, Ding K, Tang H. Chromatin modifiers in human disease: from functional roles to regulatory mechanisms. MOLECULAR BIOMEDICINE 2024; 5:12. [PMID: 38584203 PMCID: PMC10999406 DOI: 10.1186/s43556-024-00175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/21/2024] [Indexed: 04/09/2024] Open
Abstract
The field of transcriptional regulation has revealed the vital role of chromatin modifiers in human diseases from the beginning of functional exploration to the process of participating in many types of disease regulatory mechanisms. Chromatin modifiers are a class of enzymes that can catalyze the chemical conversion of pyrimidine residues or amino acid residues, including histone modifiers, DNA methyltransferases, and chromatin remodeling complexes. Chromatin modifiers assist in the formation of transcriptional regulatory circuits between transcription factors, enhancers, and promoters by regulating chromatin accessibility and the ability of transcription factors to acquire DNA. This is achieved by recruiting associated proteins and RNA polymerases. They modify the physical contact between cis-regulatory factor elements, transcription factors, and chromatin DNA to influence transcriptional regulatory processes. Then, abnormal chromatin perturbations can impair the homeostasis of organs, tissues, and cells, leading to diseases. The review offers a comprehensive elucidation on the function and regulatory mechanism of chromatin modifiers, thereby highlighting their indispensability in the development of diseases. Furthermore, this underscores the potential of chromatin modifiers as biomarkers, which may enable early disease diagnosis. With the aid of this paper, a deeper understanding of the role of chromatin modifiers in the pathogenesis of diseases can be gained, which could help in devising effective diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China.
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
24
|
Wang Q, He Z, Zhu J, Hu M, Yang L, Yang H. Polyphyllin B inhibited STAT3/NCOA4 pathway and restored gut microbiota to ameliorate lung tissue injury in cigarette smoke-induced mice. BMC Biotechnol 2024; 24:13. [PMID: 38459479 PMCID: PMC10921762 DOI: 10.1186/s12896-024-00837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Smoking was a major risk factor for chronic obstructive pulmonary disease (COPD). This study plan to explore the mechanism of Polyphyllin B in lung injury induced by cigarette smoke (CSE) in COPD. METHODS Network pharmacology and molecular docking were applied to analyze the potential binding targets for Polyphyllin B and COPD. Commercial unfiltered CSE and LPS were used to construct BEAS-2B cell injury in vitro and COPD mouse models in vivo, respectively, which were treated with Polyphyllin B or fecal microbiota transplantation (FMT). CCK8, LDH and calcein-AM were used to detect the cell proliferation, LDH level and labile iron pool. Lung histopathology, Fe3+ deposition and mitochondrial morphology were observed by hematoxylin-eosin, Prussian blue staining and transmission electron microscope, respectively. ELISA was used to measure inflammation and oxidative stress levels in cells and lung tissues. Immunohistochemistry and immunofluorescence were applied to analyze the 4-HNE, LC3 and Ferritin expression. RT-qPCR was used to detect the expression of FcRn, pIgR, STAT3 and NCOA4. Western blot was used to detect the expression of Ferritin, p-STAT3/STAT3, NCOA4, GPX4, TLR2, TLR4 and P65 proteins. 16S rRNA gene sequencing was applied to detect the gut microbiota. RESULTS Polyphyllin B had a good binding affinity with STAT3 protein, which as a target gene in COPD. Polyphyllin B inhibited CS-induced oxidative stress, inflammation, mitochondrial damage, and ferritinophagy in COPD mice. 16S rRNA sequencing and FMT confirmed that Akkermansia and Escherichia_Shigella might be the potential microbiota for Polyphyllin B and FMT to improve CSE and LPS-induced COPD, which were exhausted by the antibiotics in C + L and C + L + P mice. CSE and LPS induced the decrease of cell viability and the ferritin and LC3 expression, and the increase of NCOA4 and p-STAT3 expression in BEAS-2B cells, which were inhibited by Polyphyllin B. Polyphyllin B promoted ferritin and LC3II/I expression, and inhibited p-STAT3 and NCOA4 expression in CSE + LPS-induced BEAS-2B cells. CONCLUSION Polyphyllin B improved gut microbiota disorder and inhibited STAT3/NCOA4 pathway to ameliorate lung tissue injury in CSE and LPS-induced mice.
Collapse
Affiliation(s)
- Qing Wang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Zhiyi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinqi Zhu
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Mengyun Hu
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Liu Yang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Hongzhong Yang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China.
| |
Collapse
|
25
|
Ranasinghe ADCU, Tennakoon TMPB, Schwarz MA. Emerging Epigenetic Targets and Their Molecular Impact on Vascular Remodeling in Pulmonary Hypertension. Cells 2024; 13:244. [PMID: 38334636 PMCID: PMC10854593 DOI: 10.3390/cells13030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Pulmonary Hypertension (PH) is a terminal disease characterized by severe pulmonary vascular remodeling. Unfortunately, targeted therapy to prevent disease progression is limited. Here, the vascular cell populations that contribute to the molecular and morphological changes of PH in conjunction with current animal models for studying vascular remodeling in PH will be examined. The status quo of epigenetic targeting for treating vascular remodeling in different PH subtypes will be dissected, while parallel epigenetic threads between pulmonary hypertension and pathogenic cancer provide insight into future therapeutic PH opportunities.
Collapse
Affiliation(s)
| | | | - Margaret A. Schwarz
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, South Bend, IN 46617, USA
| |
Collapse
|
26
|
Xu C, Song C, Wang W, Liu B, Li G, Fu T, Hao B, Li N, Geng Q. Comprehensive analysis of m6A modification in lipopolysaccharide-induced acute lung injury in mice. Mol Med 2024; 30:14. [PMID: 38254010 PMCID: PMC10804706 DOI: 10.1186/s10020-024-00782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND N6-Methyladenosine (m6A) methylation is the most prevalent post-transcriptional modification in mRNA, and plays significant roles in various diseases. Nevertheless, the precise functions of m6A modification in the formation of ALI remain unclear. In this study we explore the transcriptome distribution of m6A methylation and its probable roles of in ALI. METHODS Lipopolysaccharide (LPS) was utilized to establish an ALI mouse model. Real-time qPCR, Western blotting and m6A dot blot were utilized to assess m6A methylation level and the expression of m6A methylation enzymes. MeRIP-Seq and RNA-seq were utilized to explore differential m6A modifications and differentially expressed genes in ALI mice. The hub genes and enriched pathways were assessed by Real-time qPCR and Western blotting. RESULTS Our findings showed that overall m6A methylation level was increased in ALI mice lung tissues, accompanied by lower levels of METTL3 and FTO. Notably, the protein expression of these methylases were different in various cells. There were 772 differently expressed m6A peaks in ALI as compared to the control group, with 316 being hypermethylated and 456 being hypomethylated. GO and KEGG analyses demonstrated these differentially methylated genes were associated with the calcium signaling pathway and cAMP signaling pathway. Furthermore, we identified 50 genes with distinct m6A peaks and mRNA expressions by combined analysis of MeRIP-Seq and RNA-Seq. KEGG analysis also demonstrated that these overlapped genes were closely associated with the calcium signaling pathway, cGMP-PKG signaling pathway, etc. Besides, Western blotting results demonstrated that the protein expression of Fibronectin leucine-rich transmembrane protein 3 (Flrt3) as well as the calcium signaling pathway and cGMP-PKG signaling pathway, increased significantly after ALI. CONCLUSIONS m6A modification was paramount in the pathogenesis of ALI, and provided a foundation for the further investigation in the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
27
|
Zhao W, Xu Y, Zhu J, Zhang C, Zhou W, Wang S. M6A plays a potential role in carotid atherosclerosis by modulating immune cell modification and regulating aging-related genes. Sci Rep 2024; 14:60. [PMID: 38168909 PMCID: PMC10761844 DOI: 10.1038/s41598-023-50557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
RNA N6-methyladenosine (m6A) regulators play essential roles in diverse biological processes, including immune responses. Mounting evidence suggests that their dysregulation is intricately linked to numerous diseases. However, the role of m6A-associated genes in carotid atherosclerosis and their relationship with aging and immune cells remain unclear. Analyze the expression profiles of m6A-related genes in carotid atherosclerosis-related datasets. Based on the expression patterns of m6A-related genes, perform consistent clustering analysis of carotid atherosclerosis samples and investigate associated immune cell infiltration patterns and aging characteristics. Develop an m6A prediction model specific to carotid atherosclerosis and analyze the relationships between immune cells infiltration and aging features. The m6A methylation modification level exhibited a substantial decrease in early-stage carotid atherosclerosis samples compared to late-stage carotid atherosclerosis samples. Subsequently, two distinct m6A subtypes were defined through consensus clustering analysis, with the lower m6A modification level group showing associations with heightened immune cell infiltration and increased expression of aging-related genes. A model composed of five m6A-related genes was formulated, and the results indicated that this model possesses effective predictive and therapeutic capabilities for carotid atherosclerosis. Furthermore, the downregulation of YTHDC1 expression resulted in elevated expression of inflammatory factors and a decrease in the expression of the aging-related gene RGN. Single-cell data analysis suggests that the reduced expression of YTHDC1 may decrease the degradation of inflammation-related factors in macrophages, leading to a highly inflammatory state in the carotid artery wall. Furthermore, the sustained release of inflammatory factors may increase the expression of the aging-related gene RGN in vascular smooth muscle cells, further exacerbating the progression of atherosclerosis. A reduced level of m6A methylation modification could enhance inflammation and expedite cellular aging, thereby contributing to the development of carotid atherosclerosis.
Collapse
Affiliation(s)
- Wenpeng Zhao
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Yingqi Xu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Jiabao Zhu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Chaoxuan Zhang
- Queen Mary College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China.
| | - Shizhi Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
28
|
Malhi NK, Southerland KW, Lai L, Chen ZB. Epigenetic Regulation of Angiogenesis in Peripheral Artery Disease. Methodist Debakey Cardiovasc J 2023; 19:47-57. [PMID: 38028966 PMCID: PMC10655766 DOI: 10.14797/mdcvj.1294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Peripheral arterial disease (PAD) represents a global health concern with a rising prevalence attributed to factors such as obesity, diabetes, aging, and smoking. Among patients with PAD, chronic limb-threatening ischemia (CLTI) is the most severe manifestation, associated with substantial morbidity and mortality. While revascularization remains the primary therapy for CLTI, not all patients are candidates for such interventions, highlighting the need for alternative approaches. Impaired angiogenesis, the growth of new blood vessels, is a central feature of PAD, and despite decades of research, effective clinical treatments remain elusive. Epigenetics, the study of heritable changes in gene expression, has gained prominence in understanding PAD pathogenesis. Here, we explore the role of epigenetic regulation in angiogenesis within the context of PAD, with a focus on long non-coding RNAs and fibroblast-endothelial cell transdifferentiation. Additionally, we discuss the interplay between metabolic control and epigenetic regulation, providing insights into potential novel therapeutic avenues for improving PAD treatments. This review aims to offer a concise update on the application of epigenetics in angiogenesis and PAD research, inspiring further investigations in this promising field.
Collapse
Affiliation(s)
| | | | - Li Lai
- Houston Methodist Research Institute, Houston, Texas, US
| | | |
Collapse
|
29
|
Zou H, Chen M, Wang X, Yu J, Li X, Xie Y, Liu J, Liu M, Xu L, Zhang Q, Tian X, Zhang F, Guo B. C/EBPβ isoform-specific regulation of podocyte pyroptosis in lupus nephritis-induced renal injury. J Pathol 2023; 261:269-285. [PMID: 37602503 DOI: 10.1002/path.6174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023]
Abstract
As an essential factor in the prognosis of systemic lupus erythematosus (SLE), lupus nephritis (LN) can accelerate the rate at which patients with SLE can transition to chronic kidney disease or even end-stage renal disease. Podocytes now appear to be a possible direct target in LN in addition to being prone to collateral damage from glomerular capillary lesions induces by immune complexes and inflammatory processes. The NLRP3 inflammasome is regulated by CCAAT/enhancer-binding protein β (C/EBPβ), which is involved in the pathogenesis of SLE. However, the role and mechanism of C/EBPβ in LN remain unclear. In this investigation, glomerular podocytes treated with LN serum and MRL/lpr mice were employed as in vivo and in vitro models of LN, respectively. In vivo, the expression of C/EBPβ isoforms was detected in kidney specimens of humans and mice with LN. Then we assessed the effect of C/EBPβ inhibition on renal structure and function by injecting RNAi adeno-associated virus of C/EBPβ shRNA into MRL/lpr mice. In vitro, glomerular podocytes were treated with LN serum and C/EBPβ siRNA to explore the role of C/EBPβ in the activation of the AIM2 inflammasome and podocyte injury. C/EBPβ-LAP and C/EBPβ-LIP were significantly overexpressed in kidney tissue samples from LN patients and mice, and C/EBPβ inhibition significantly alleviated renal function damage and ameliorated renal structural deficiencies. Inflammatory pathways downstream from the AIM2 inflammasome could be suppressed by C/EBPβ knockdown. Furthermore, the upregulation of C/EBPβ-LAP could activate the AIM2 inflammasome and podocyte pyroptosis by binding to the promoters of AIM2 and CASPASE1 to enhance their expression, and the knockdown of AIM2 or (and) caspase-1 reversed the effects of C/EBPβ-LAP overexpression. Interestingly, C/EBPβ-LIP overexpression could transcriptionally inhibit IRAG and promote Ca2+ release-mediated activation of the AIM2 inflammasome. This finding suggests that C/EBPβ is not only involved in the regulation of the expression of key proteins of the AIM2 inflammasome but also affects the polymerization of key proteins of the AIM2 inflammasome through the regulation of Ca2+ release. In conclusion, this study provides a new idea for studying the regulatory mechanism of C/EBPβ and provides a theoretical basis for the early diagnosis and treatment of LN in the future. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- School of Nursing, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Min Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Xiuhong Wang
- School of Nursing, Guizhou Medical University, Guiyang, PR China
| | - Jie Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Xiaoying Li
- Department of Nephrology, The First People's Hospital of Guiyang, Guiyang, PR China
| | - Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Jun Liu
- Department of Rheumatology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Miao Liu
- Department of Urinary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Qiong Zhang
- School of Nursing, Guizhou Medical University, Guiyang, PR China
| | - Xiaoxue Tian
- School of Nursing, Guizhou Medical University, Guiyang, PR China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, PR China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| |
Collapse
|
30
|
Wang L, Xie T, Zhou X, Yang G, Guo Z, Huang Y, Lamont SJ, Lan X. LncIRF1 promotes chicken resistance to ALV-J infection. 3 Biotech 2023; 13:367. [PMID: 37846216 PMCID: PMC10576694 DOI: 10.1007/s13205-023-03773-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
The pathogenesis of avian leukosis virus subgroup J (ALV-J) is complex and our understanding of it is limited. Based on our previous research, we explored the relationship between ALV-J infection and regulatory factor 1&7 (IRF1 and IRF7), interferon beta (IFNβ), and the newly identified long noncoding RNA IRF1 (LncIRF1). LncIRF1 is 1603 nt and exists in the cytoplasm and nucleus. After the occurrence of ALV-J infection, the expression levels of LncIRF1, IRF1, IRF7, and IFNβ varied in different chicken tissues. In DF1 cell lines of chicken embryo fibroblast cells (DF1 cells) the expression levels of LncIRF1, IRF7, IRF1, and IFNβ increased when ALV-J infection. Similarly, after LncIRF1 overexpression and the ALV-J challenge, the expression levels of IRF1, IRF7, and IFNβ increased, while increased LncIRF1 inhibited the proliferation of DF1 cells. Interference with LncIRF1 did not affect IRF1, IRF7, and IFNβ. However, expression levels of IRF1, IRF7, and IFNβ decreased due to LncIRF1 interference after the ALV-J challenge. An assay of the RNA-binding domain abundant in apicomplexans indicated that most of the proteins bound to LncIRF1 are related to cell proliferation and viral replication and these proteins also interact with IRF1, IRF7, and IFNβ. We suggest that LncIRF1 plays an important immunomodulatory role in the anti-ALV-J response. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03773-y.
Collapse
Affiliation(s)
- Lecheng Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Tao Xie
- College of Animal Science and Technology, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Xinyi Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Guang Yang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Zehui Guo
- College of Animal Science and Technology, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, 806 Stange Road, 2255 Kildee Hall, Ames, IA 50011 USA
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
31
|
Hao S, Huang H, Ma RY, Zeng X, Duan CY. Multifaceted functions of Drp1 in hypoxia/ischemia-induced mitochondrial quality imbalance: from regulatory mechanism to targeted therapeutic strategy. Mil Med Res 2023; 10:46. [PMID: 37833768 PMCID: PMC10571487 DOI: 10.1186/s40779-023-00482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings. Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia. Dynamin-related protein 1 (Drp1) regulates mitochondrial quality and cellular functions via its oligomeric changes and multiple modifications, which plays a role in mediating the induction of multiple organ damage during hypoxic-ischemic injury. However, there is active controversy and gaps in knowledge regarding the modification, protein interaction, and functions of Drp1, which both hinder and promote development of Drp1 as a novel therapeutic target. Here, we summarize recent findings on the oligomeric changes, modification types, and protein interactions of Drp1 in various hypoxic-ischemic diseases, as well as the Drp1-mediated regulation of mitochondrial quality and cell functions following ischemia and hypoxia. Additionally, potential clinical translation prospects for targeting Drp1 are discussed. This review provides new ideas and targets for proactive interventions on multiple organ damage induced by various hypoxic-ischemic diseases.
Collapse
Affiliation(s)
- Shuai Hao
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002 China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Rui-Yan Ma
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037 China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400010 China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| |
Collapse
|
32
|
Xiong X, Xiong H, Peng J, Liu Y, Zong Y. METTL3 Regulates the m 6A Modification of NEK7 to Inhibit the Formation of Osteoarthritis. Cartilage 2023:19476035231200336. [PMID: 37724835 DOI: 10.1177/19476035231200336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a common degenerative joint disease. The occurrence of OA slowly destroys the soft tissue structure of the patient's joint. Severe cases could lead to disability. Current studies had shown that inhibition of chondrocytes pyroptosis could slow down the progression of OA. Our work aimed to explore the specific mechanisms and ways of regulating this process. DESIGN In this work, the level of N6-methyladenosine (m6A) in clinical tissues was detected by ribonucleic acid (RNA) m6A dot blot. qRT-PCR (quantitative real-time polymerase chain reaction) was used to detect the messenger RNA (mRNA) expression level of m6A modified enzyme in clinical tissues. MTT (3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromid) and flow cytometry were used to detect the effect of sh-METTL3 (methyltransferase like 3) and NIMA-related kinase 7 (NEK7) transfection on chondrocytes pyroptosis in OA. Western blot was used to detect the protein expression levels of pyroptosis-related proteins. ELISA (enzyme-linked immunosorbent assay) was used to measure the protein concentration of inflammatory cytokines. The SRAMP online database was used to predict the m6A site of NEK7. HE staining was used to assess the progression of OA in mice. RESULTS The level of m6A in clinical samples of OA patients was higher, and METTL3 was significantly higher expressed in clinical samples of OA patients. We provided evidence that low expression of METTL3 inhibited chondrocytes pyroptosis. In addition, Rescue experiments and in vivo experiments had shown that METTL3 in combination with NEK7 inhibited the progression of OA by promoting chondrocytes pyroptosis. CONCLUSIONS METTL3 regulates m6A modification of NEK7 and inhibits OA progression.
Collapse
Affiliation(s)
- Xiaochuan Xiong
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Xiong
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Peng
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjie Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zong
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Zhao SS, Liu J, Wu QC, Zhou XL. Role of histone lactylation interference RNA m 6A modification and immune microenvironment homeostasis in pulmonary arterial hypertension. Front Cell Dev Biol 2023; 11:1268646. [PMID: 37771377 PMCID: PMC10522917 DOI: 10.3389/fcell.2023.1268646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease resulting from progressive increases in pulmonary vascular resistance and pulmonary vascular remodeling, ultimately leading to right ventricular failure and even death. Hypoxia, inflammation, immune reactions, and epigenetic modifications all play significant contributory roles in the mechanism of PAH. Increasingly, epigenetic changes and their modifying factors involved in reprogramming through regulation of methylation or the immune microenvironment have been identified. Among them, histone lactylation is a new post-translational modification (PTM), which provides a novel visual angle on the functional mechanism of lactate and provides a promising diagnosis and treatment method for PAH. This review detailed introduces the function of lactate as an important molecule in PAH, and the effects of lactylation on N6-methyladenosine (m6A) and immune cells. It provides a new perspective to further explore the development of lactate regulation of pulmonary hypertension through histone lactylation modification.
Collapse
Affiliation(s)
- Shuai-shuai Zhao
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Qi-cai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xue-liang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Jiang Y, Song S, Liu J, Zhang L, Guo X, Lu J, Li L, Yang C, Fu Q, Zeng B. Epigenetic regulation of programmed cell death in hypoxia-induced pulmonary arterial hypertension. Front Immunol 2023; 14:1206452. [PMID: 37753070 PMCID: PMC10518698 DOI: 10.3389/fimmu.2023.1206452] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/28/2023] [Indexed: 09/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe progressive disease that may cause early right ventricular failure and eventual cardiac failure. The pathogenesis of PAH involves endothelial dysfunction, aberrant proliferation of pulmonary artery smooth muscle cells (PASMCs), and vascular fibrosis. Hypoxia has been shown to induce elevated secretion of vascular endothelial growth factor (VEGF), leading to the development of hypoxic PAH. However, the molecular mechanisms underlying hypoxic PAH remain incompletely understood. Programmed cell death (PCD) is a natural cell death and regulated by certain genes. Emerging evidence suggests that apoptotic resistance contributes to the development of PAH. Moreover, several novel types of PCD, such as autophagy, pyroptosis, and ferroptosis, have been reported to be involved in the development of PAH. Additionally, multiple diverse epigenetic mechanisms including RNA methylation, DNA methylation, histone modification, and the non-coding RNA molecule-mediated processes have been strongly linked to the development of PAH. These epigenetic modifications affect the expression of genes, which produce important changes in cellular biological processes, including PCD. Consequently, a better understanding of the PCD processes and epigenetic modification involved in PAH will provide novel, specific therapeutic strategies for diagnosis and treatment. In this review, we aim to discuss recent advances in epigenetic mechanisms and elucidate the role of epigenetic modifications in regulating PCD in hypoxia-induced PAH.
Collapse
Affiliation(s)
- Yuan Jiang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jingxin Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Liyuan Zhang
- Shanghai Baoxing Biological Equipment Engineering Co., Ltd, Shanghai, China
| | - Xiaofei Guo
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Lie Li
- Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Qiang Fu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
35
|
Warwick T, Brandes RP, Leisegang MS. Computational Methods to Study DNA:DNA:RNA Triplex Formation by lncRNAs. Noncoding RNA 2023; 9:ncrna9010010. [PMID: 36827543 PMCID: PMC9965544 DOI: 10.3390/ncrna9010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) impact cell function via numerous mechanisms. In the nucleus, interactions between lncRNAs and DNA and the consequent formation of non-canonical nucleic acid structures seems to be particularly relevant. Along with interactions between single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA), such as R-loops, ssRNA can also interact with double-stranded DNA (dsDNA) to form DNA:DNA:RNA triplexes. A major challenge in the study of DNA:DNA:RNA triplexes is the identification of the precise RNA component interacting with specific regions of the dsDNA. As this is a crucial step towards understanding lncRNA function, there exist several computational methods designed to predict these sequences. This review summarises the recent progress in the prediction of triplex formation and highlights important DNA:DNA:RNA triplexes. In particular, different prediction tools (Triplexator, LongTarget, TRIPLEXES, Triplex Domain Finder, TriplexFFP, TriplexAligner and Fasim-LongTarget) will be discussed and their use exemplified by selected lncRNAs, whose DNA:DNA:RNA triplex forming potential was validated experimentally. Collectively, these tools revealed that DNA:DNA:RNA triplexes are likely to be numerous and make important contributions to gene expression regulation.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
| | - Matthias S. Leisegang
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-6996; Fax: +49-69-6301-7668
| |
Collapse
|
36
|
Hui L, Ziyue Z, Chao L, Bin Y, Aoyu L, Haijing W. Epigenetic Regulations in Autoimmunity and Cancer: from Basic Science to Translational Medicine. Eur J Immunol 2023; 53:e2048980. [PMID: 36647268 DOI: 10.1002/eji.202048980] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Epigenetics, as a discipline that aims to explain the differential expression of phenotypes arising from the same gene sequence and the heritability of epigenetic expression, has received much attention in medicine. Epigenetic mechanisms are constantly being discovered, including DNA methylation, histone modifications, noncoding RNAs and m6A. The immune system mainly achieves an immune response through the differentiation and functional expression of immune cells, in which epigenetic modification will have an important impact. Because of immune infiltration in the tumor microenvironment, immunotherapy has become a research hotspot in tumor therapy. Epigenetics plays an important role in autoimmune diseases and cancers through immunology. An increasing number of drugs targeting epigenetic mechanisms, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and drug combinations, are being evaluated in clinical trials for the treatment of various cancers (including leukemia and osteosarcoma) and autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis). This review summarizes the progress of epigenetic regulation for cancers and autoimmune diseases to date, shedding light on potential therapeutic strategies.
Collapse
Affiliation(s)
- Li Hui
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Zhao Ziyue
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Liu Chao
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yu Bin
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Li Aoyu
- Department of Orthopedics, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Wu Haijing
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, Second Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
37
|
Ilieva M, Uchida S. Potential Involvement of LncRNAs in Cardiometabolic Diseases. Genes (Basel) 2023; 14:213. [PMID: 36672953 PMCID: PMC9858747 DOI: 10.3390/genes14010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Characterized by cardiovascular disease and diabetes, cardiometabolic diseases are a major cause of mortality around the world. As such, there is an urgent need to understand the pathogenesis of cardiometabolic diseases. Increasing evidence suggests that most of the mammalian genome are transcribed as RNA, but only a few percent of them encode for proteins. All of the RNAs that do not encode for proteins are collectively called non-protein-coding RNAs (ncRNAs). Among these ncRNAs, long ncRNAs (lncRNAs) are considered as missing keys to understand the pathogeneses of various diseases, including cardiometabolic diseases. Given the increased interest in lncRNAs, in this study, we will summarize the latest trend in the lncRNA research from the perspective of cardiometabolism and disease by focusing on the major risk factors of cardiometabolic diseases: obesity, cholesterol, diabetes, and hypertension. Because genetic inheritance is unavoidable in cardiometabolic diseases, we paid special attention to the genetic factors of lncRNAs that may influence cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark or
| |
Collapse
|
38
|
Chen J, Ye M, Bai J, Hu C, Lu F, Gu D, Yu P, Tang Q. Novel insights into the interplay between m6A modification and programmed cell death in cancer. Int J Biol Sci 2023; 19:1748-1763. [PMID: 37063421 PMCID: PMC10092764 DOI: 10.7150/ijbs.81000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
N6-methyladenosine (m6A) methylation, the most prevalent and abundant RNA modification in eukaryotes, has recently become a hot research topic. Several studies have indicated that m6A modification is dysregulated during the progression of multiple diseases, especially in cancer development. Programmed cell death (PCD) is an active and orderly method of cell death in the development of organisms, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. As the study of PCD has become increasingly profound, accumulating evidence has revealed the mutual regulation of m6A modification and PCD, and their interaction can further influence the sensitivity of cancer treatment. In this review, we summarize the recent advances in m6A modification and PCD in terms of their interplay and potential mechanisms, as well as cancer therapeutic resistance. Our study provides promising insights and future directions for the examination and treatment of cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiyun Tang
- ✉ Corresponding author: Qiyun Tang, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China.
| |
Collapse
|