1
|
Giesler LP, Mychasiuk R, Shultz SR, McDonald SJ. BDNF: New Views of an Old Player in Traumatic Brain Injury. Neuroscientist 2024; 30:560-573. [PMID: 37067029 PMCID: PMC11423547 DOI: 10.1177/10738584231164918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Traumatic brain injury is a common health problem affecting millions of people each year. BDNF has been investigated in the context of traumatic brain injury due to its crucial role in maintaining brain homeostasis. Val66Met is a functional single-nucleotide polymorphism that results in a valine-to-methionine amino acid substitution at codon 66 in the BDNF prodomain, which ultimately reduces secretion of BDNF. Here, we review experimental animal models as well as clinical studies investigating the role of the Val66Met single-nucleotide polymorphism in traumatic brain injury outcomes, including cognitive function, motor function, neuropsychiatric symptoms, and nociception. We also review studies investigating the role of BDNF on traumatic brain injury pathophysiology as well as circulating BDNF as a biomarker of traumatic brain injury.
Collapse
Affiliation(s)
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
2
|
Liu TT, Chen SP, Wang SJ, Yen JC. Vagus nerve stimulation inhibits cortical spreading depression via glutamate-dependent TrkB activation mechanism in the nucleus tractus solitarius. Cephalalgia 2024; 44:3331024241230466. [PMID: 38329067 DOI: 10.1177/03331024241230466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
BACKGROUND Vagus nerve stimulation (VNS) was recently found to inhibit cortical spreading depression (CSD), the underlying mechanism of migraine aura, through activation of the nucleus tractus solitarius (NTS), locus coeruleus (LC) and dorsal raphe nucleus (DRN). The molecular mechanisms underlying the effect of VNS on CSD in these nuclei remain to be explored. We hypothesized that VNS may activate glutamate receptor-mediated tropomyosin kinase B (TrkB) signaling in the NTS, thereby facilitating the noradrenergic and serotonergic neurotransmission to inhibit CSD. METHODS To investigate the role of TrkB and glutamate receptors in non-invasive VNS efficacy on CSD, a validated KCl-evoked CSD rat model coupled with intra-NTS microinjection of selective antagonists, immunoblot and immunohistochemistry was employed. RESULTS VNS increased TrkB phosphorylation in the NTS. Inhibition of intra-NTS TrkB abrogated the suppressive effect of VNS on CSD and CSD-induced cortical neuroinflammation. TrkB was found colocalized with glutamate receptors in NTS neurons. Inhibition of glutamate receptors in the NTS abrogated VNS-induced TrkB activation. Moreover, the blockade of TrkB in the NTS attenuated VNS-induced activation of the LC and DRN. CONCLUSIONS VNS induces the activation of glutamate receptor-mediated TrkB signaling in the NTS, which might modulate serotonergic and norepinephrinergic innervation to the cerebral cortex to inhibit CSD and cortical inflammation.
Collapse
Affiliation(s)
- Tzu-Ting Liu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiin-Cherng Yen
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
Gonçalves FDT, Marques LM, Pessotto AV, Barbosa SP, Imamura M, Simis M, Fregni F, Battistella L. OPRM1 and BDNF polymorphisms associated with a compensatory neurophysiologic signature in knee osteoarthritis patients. Neurophysiol Clin 2023; 53:102917. [PMID: 37944291 DOI: 10.1016/j.neucli.2023.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE The present study investigated the relationship between three genetic polymorphisms of OPRM1 (rs1799971 - A118G and rs1799972 - C17T) and BDNF (rs6265 - C196T) and EEG-measured brain oscillations in Knee Osteoarthritis (KOA) patients. MATERIALS AND METHODS We performed a cross-sectional analysis of a cohort study (DEFINE cohort), KOA arm, with 66 patients, considering demographic (age, sex, and education), clinical (pain intensity and duration), OPRM1 (rs1799971 - A118G and rs1799972 - C17T) and BDNF (rs6265 - C196T) genotypes, and electrophysiological measures. Brain oscillations relative power from Delta, Theta, Alpha, Low Alpha, High Alpha, Beta, Low Beta and High Beta oscillations were measured during resting state EEG. Multivariate regression models were used to explore the main brain oscillation predictors of the three genetic polymorphisms. RESULTS Our findings demonstrate that Theta and Low Beta oscillations are associated with the variant allele of OPRM1-rs1799971 (A118G) on left frontal and left central regions, respectively, while Alpha brain oscillation is associated with variant genotypes (CT/TT) of BDNF-rs6265 on frontal (decrease of oscillation power) and left central (increase of oscillation power) regions. No significant model was found for OPRM1-rs1799972 (C17T) in addition to the inclusion of pain intensity as a significant predictor of this last model. CONCLUSION One potential interpretation for these findings is that polymorphisms of OPRM1 - that is involved with endogenous pain control - lead to increased compensatory oscillatory mechanisms, characterized by increased theta oscillations. Along the same line, polymorphisms of the BDNF lead to decreased alpha oscillations in the frontal area, likely also reflecting the disruption of resting states to also compensate for the increased injury associated with knee OA. It is possible that these polymorphisms require additional brain adaption to the knee OA related injury.
Collapse
Affiliation(s)
- Fernanda de Toledo Gonçalves
- Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Laboratório de Imunohematologia e Hematologia Forense (LIM40), Hospital das, Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC da FMUSP), São Paulo, Brazil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Lucas Murrins Marques
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Anne Victório Pessotto
- Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho, Laboratório de Imunohematologia e Hematologia Forense (LIM40), Hospital das, Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC da FMUSP), São Paulo, Brazil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Sara Pinto Barbosa
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marta Imamura
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Marcel Simis
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation, Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Linamara Battistella
- Instituto de Medicina Física e Reabilitação, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação do da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| |
Collapse
|
4
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Autophagy may protect the brain against prolonged consequences of headache attacks: A narrative/hypothesis review. Headache 2023; 63:1154-1166. [PMID: 37638395 DOI: 10.1111/head.14625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/25/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE To assess the potential of autophagy in migraine pathogenesis. BACKGROUND The interplay between neurons and microglial cells is important in migraine pathogenesis. Migraine-related effects, such as cortical spreading depolarization and release of calcitonin gene-related peptide, may initiate adenosine triphosphate (ATP)-mediating pro-nociceptive signaling in the meninges causing headaches. Such signaling may be induced by the interaction of ATP with purinergic receptor P2X 7 (P2X7R) on microglial cells leading to a Ca2+ -mediated pH increase in lysosomes and release of autolysosome-like vehicles from microglial cells indicating autophagy impairment. METHODS A search in PubMed was conducted with the use of the terms "migraine," "autophagy," "microglia," and "degradation" in different combinations. RESULTS Impaired autophagy in microglia may activate secretory autophagy and release of specific proteins, including brain-derived neurotrophic factor (BDNF), which can be also released through the pores induced by P2X7R activation in microglial cells. BDNF may be likewise released from microglial cells upon ATP- and Ca2+ -mediated activation of another purinergic receptor, P2X4R. BDNF released from microglia might induce autophagy in neurons to clear cellular debris produced by oxidative stress, which is induced in the brain as the response to migraine-related energy deficit. Therefore, migraine-related signaling may impair degradative autophagy, stimulate secretory autophagy in microglia, and degradative autophagy in neurons. These effects are mediated by purinergic receptors P2X4R and P2X7R, BDNF, ATP, and Ca2+ . CONCLUSION Different effects of migraine-related events on degradative autophagy in microglia and neurons may prevent prolonged changes in the brain related to headache attacks.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Sudershan A, Younis M, Sudershan S, Kumar P. Migraine as an inflammatory disorder with microglial activation as a prime candidate. Neurol Res 2023; 45:200-215. [PMID: 36197286 DOI: 10.1080/01616412.2022.2129774] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
BACKGROUND The lower threshold of neuronal hyperexcitability has been correlated with migraines for decades but as technology has progressed, it has now become conceivable to learn more about the migraine disease. Apart from the "cortical spreading depression" and "activation of the trigeminovascular system", inflammation has been increasingly recognized as a possible pathogenic process that may have the possibility to regulate the disease severity. Microglial cells, the prime candidate of the innate immune cells of central nervous tissue, has been associated with numerous diseases; including cancer, neurodegenerative disorders, and inflammatory disorders. AIM In this review, we have attempted to link the dot of various microglial activation signaling pathways to enlighten the correlation between microglial involvement and the progression of migraine conditions. METHOD A structured survey of research articles and review of the literature was done in the electronic databases of Google Scholar, PubMed, Springer, and Elsevier until 31 December 2021. RESULT & CONCLUSION Of 1136 articles found initially and screening of 1047 records, 47 studies were included for the final review. This review concluded that inflammation and microglial overexpression as the prime candidate, plays an important role in the modulation of migraine and are responsible for the progression toward chronification. Therefore, this increases the possibility of preventing migraine development and chronification by blocking microglia overexpression.
Collapse
Affiliation(s)
- Amrit Sudershan
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India
| | - Mohd Younis
- Department of Human Genetics and Molecular Biology, Bharathair University, Coimbatore, 641046, India
| | - Srishty Sudershan
- Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India.,Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| |
Collapse
|
6
|
Filippone A, Scuderi SA, Basilotta R, Lanza M, Casili G, Bova V, Paterniti I, Esposito E. BAY-117082-driven NLRP3 inflammasome inhibition resolves nitro-glycerine (NTG) neuronal damage in in vivo model of migraine. Biomed Pharmacother 2022; 156:113851. [DOI: 10.1016/j.biopha.2022.113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022] Open
|
7
|
Szarowicz CA, Steece-Collier K, Caulfield ME. New Frontiers in Neurodegeneration and Regeneration Associated with Brain-Derived Neurotrophic Factor and the rs6265 Single Nucleotide Polymorphism. Int J Mol Sci 2022; 23:ijms23148011. [PMID: 35887357 PMCID: PMC9319713 DOI: 10.3390/ijms23148011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022] Open
Abstract
Brain-derived neurotrophic factor is an extensively studied neurotrophin implicated in the pathology of multiple neurodegenerative and psychiatric disorders including, but not limited to, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, traumatic brain injury, major de-pressive disorder, and schizophrenia. Here we provide a brief summary of current knowledge on the role of BDNF and the common human single nucleotide polymorphism, rs6265, in driving the pathogenesis and rehabilitation in these disorders, as well as the status of BDNF-targeted therapies. A common trend has emerged correlating low BDNF levels, either detected within the central nervous system or peripherally, to disease states, suggesting that BDNF replacement therapies may hold clinical promise. In addition, we introduce evidence for a distinct role of the BDNF pro-peptide as a biologically active ligand and the need for continuing studies on its neurological function outside of that as a molecular chaperone. Finally, we highlight the latest research describing the role of rs6265 expression in mechanisms of neurodegeneration as well as paradoxical advances in the understanding of this genetic variant in neuroregeneration. All of this is discussed in the context of personalized medicine, acknowledging there is no “one size fits all” therapy for neurodegenerative or psychiatric disorders and that continued study of the multiple BDNF isoforms and genetic variants represents an avenue for discovery ripe with therapeutic potential.
Collapse
Affiliation(s)
- Carlye A. Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
| | - Margaret E. Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (C.A.S.); (K.S.-C.)
- Correspondence: ; Tel.: +1-616-234-0969; Fax: +1- 616-234-0991
| |
Collapse
|
8
|
Sudershan A, Mahajan K, Singh K, Dhar MK, Kumar P. The Complexities of Migraine: A Debate Among Migraine Researchers: A Review. Clin Neurol Neurosurg 2022; 214:107136. [DOI: 10.1016/j.clineuro.2022.107136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/29/2021] [Accepted: 01/16/2022] [Indexed: 12/21/2022]
|
9
|
Suchting R, Teixeira AL, Ahn B, Colpo GD, Park J, Ahn H. Changes in Brain-derived Neurotrophic Factor From Active and Sham Transcranial Direct Current Stimulation in Older Adults With Knee Osteoarthritis. Clin J Pain 2021; 37:898-903. [PMID: 34757341 PMCID: PMC8589111 DOI: 10.1097/ajp.0000000000000987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/01/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Previous work has shown effects of transcranial direct current stimulation (tDCS) on clinical pain measures, qualitative sensory testing measures, and peripheral inflammation. The present report extends this research to investigate the effect of tDCS on brain-derived neurotrophic factor (BDNF) levels. MATERIALS AND METHODS This secondary analysis examined a sample of 40 older adults (50 to 70 y old) with symptomatic knee osteoarthritis randomly assigned in a 1:1 fashion to active (n=20) or sham (n=20) tDCS for 20 minutes on 5 consecutive days. BDNF was measured before the first session and after the final treatment session. Generalized linear modeling evaluated BDNF plasma levels as a function of tDCS group, adjusted for baseline. Bayesian statistical inference was used to quantify the probability that effects of the treatment exist. RESULTS Generalized linear modeling indicated a 90.4% posterior probability that the sham condition had 49.9% higher BDNF at the end of treatment, controlling for baseline. Follow-up analyses within the active TDCS group supported an association between change in BDNF and change in clinical pain, and exploratory analyses found an effect of tDCS on irisin. DISCUSSION Results indicated that tDCS could be a potential nonpharmacological treatment to decrease BDNF levels, which may in turn decrease pain. This study adds to a growing literature suggesting that tDCS affects cortical excitability, and consequentially, the neural circuits implicated in pain modulation. In addition to a direct connection to analgesia, BDNF changes may reflect tDCS-induced changes in different cortical areas and/or neural circuits.
Collapse
Affiliation(s)
- Robert Suchting
- UTHealth McGovern Medical School, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio L. Teixeira
- UTHealth McGovern Medical School, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Brian Ahn
- UTHealth McGovern Medical School, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriela D. Colpo
- UTHealth McGovern Medical School, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juyoung Park
- College of Social Work & Criminal Justice, Phyllis and Harvey Sandler School of Social Work, Florida Atlantic University, Boca Raton, FL, USA
| | - Hyochol Ahn
- College of Nursing, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
10
|
Romero J, Costa GMF, Rocha LPC, Siqueira S, Moreira PR, Almeida-Leite CM. Polymorphisms of Nav1.6 sodium channel, Brain-derived Neurotrophic Factor, Catechol-O-methyltransferase and Guanosine Triphosphate Cyclohydrolase 1 genes in trigeminal neuralgia. Clin Neurol Neurosurg 2021; 208:106880. [PMID: 34418703 DOI: 10.1016/j.clineuro.2021.106880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022]
Abstract
SUBJECTS Trigeminal neuralgia is a neuropathic pain characterized by episodes of severe shock-like pain within the distribution of one or more divisions of the trigeminal nerve. Pain can be influenced by ethnicity, environment, gender, psychological traits, and genetics. Molecules Nav1.6 sodium channel, Brain-derived Neurotrophic Factor, Catechol-O-methyltransferase and Guanosine Triphosphate Cyclohydrolase 1 have been involved in mechanisms that underlie pain and neurological conditions. OBJECTIVE The aim of this case-control study was to investigate the occurrence of genetic polymorphisms in Nav1.6 sodium channel (SCN8A/rs303810), Brain-derived Neurotrophic Factor (BDNF/rs6265/Val66Met), Catechol-O-methyltransferase (COMT/rs4680/Val158Met), and Guanosine Triphosphate Cyclohydrolase 1 (GCH1/rs8007267) genes in trigeminal neuralgia patients. METHODS Ninety-six subjects were divided into two groups: 48 with trigeminal neuralgia diagnosis and 48 controls. Pain was evaluated by visual analog scale and genomic DNA was obtained from oral swabs and analyzed by real-time polymerase chain reaction. RESULTS No association was observed among SCN8A, BDNF, COMT or GCH1 polymorphisms and the presence of trigeminal neuralgia. Genotype distribution and allele frequencies did not correlate to pain severity. CONCLUSIONS Although no association of evaluated polymorphisms and trigeminal neuralgia or pain was observed, our data contributes to the knowledge of genetic susceptibility to trigeminal neuralgia, which is very scarce. Further studies may focus on other polymorphisms and mutations, as well as on epigenetics and transcriptional regulation of these genes, in order to clarify or definitively exclude the role of Nav1.6, BDNF, COMT or GCH1 in trigeminal neuralgia susceptibility and pathophysiology.
Collapse
Affiliation(s)
- Jgaj Romero
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Grazielle Mara Ferreira Costa
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Luiz Paulo Carvalho Rocha
- Programa de Pós-Graduação em Biologia Celular, Instituto de Ciências Biológicas (ICB), UFMG, Belo Horizonte, MG, Brazil.
| | - Srdt Siqueira
- Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | - Camila Megale Almeida-Leite
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil; Departamento de Morfologia, ICB, UFMG, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Koute V, Michalopoulou A, Siokas V, Aloizou AM, Rikos D, Bogdanos DP, Kontopoulos E, Grivea IN, Syrogiannopoulos GA, Papadimitriou A, Hadjigeorgiou GM, Dardiotis E. Val66Met polymorphism is associated with decreased likelihood for pediatric headache and migraine. Neurol Res 2021; 43:715-723. [PMID: 34000980 DOI: 10.1080/01616412.2021.1922181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Migraine is a complex multifactorial disorder and its pathogenesis still remains unclear. Evidence suggests the involvement of the activated trigeminovascular pathway, in which BDNF seems to play an important role. Therefore, BDNF polymorphisms are promising candidate susceptibility factors.Aim: BDNF rs6265 functional polymorphism was analyzed in order to determine its possible association with pediatric headache and migraine risk.Methods: The research included 120 consecutive pediatric patients who were diagnosed with headache and 120 healthy controls. The diagnosis was in compliance with the International Classification of Headache Disorders. Blood samples were collected from all participants and genotyped for rs6265.Results: BDNF rs6265 was significantly associated with decreased headache risk, particularly in the dominant model [Odds Ratio, OR (95% confidence interval, C.I.): 0.47 (0.26-0.85), p = 0.011] and the log-additive model [OR (95% C.I.): 0.48 (0.28-0.82), p = 0.0053]. During the sensitivity analysis, the associations were also maintained among patients with migraine.Conclusions: This is the first study to reveal a significant association of this BDNF variant with headache risk. Additionally, Val66Met was also for the first time related to decreased childhood migraine risk.
Collapse
Affiliation(s)
- Vasiliki Koute
- Department of Pediatrics, University of Thessaly, University Hospital of Larissa, Larissa,Greece
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Dimitrios Rikos
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis Larissa, Greece
| | | | - Ioanna N Grivea
- Department of Pediatrics, University of Thessaly, University Hospital of Larissa, Larissa,Greece
| | | | - Alexandros Papadimitriou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.,Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
12
|
Zinchuk MS, Avedisova AS, Voinova NI, Kustov GV, Pashnin EV, Gulyaeva NV, Guekht AB. [Pain perception and nonsuicidal self-injurious behavior]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 120:144-152. [PMID: 33459555 DOI: 10.17116/jnevro2020120121144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This review focuses on studies of pain threshold and tolerance in individuals with nonsuicidal self-injurious (NSSI) behavior. The data on methods of pain sensitivity studies are presented, with issues in animal modeling of NSSI discussed separately. The results of neuroimaging studies on pain sensitivity in individuals with NSSI are described, along with contribution of genetic factors, psychological variables, and disturbances in opioid and hypothalamic-pituitary-adrenal systems. A critical methodological analysis of the studies on pain sensitivity in individuals with NSSI was performed.
Collapse
Affiliation(s)
- M S Zinchuk
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - A S Avedisova
- Scientific and Practical Psychoneurological Center, Moscow, Russia.,Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - N I Voinova
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - G V Kustov
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - E V Pashnin
- Scientific and Practical Psychoneurological Center, Moscow, Russia
| | - N V Gulyaeva
- Scientific and Practical Psychoneurological Center, Moscow, Russia.,Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - A B Guekht
- Scientific and Practical Psychoneurological Center, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
13
|
Headache in Children: Selected Factors of Vascular Changes Involved in Underlying Processes of Idiopathic Headaches. CHILDREN-BASEL 2020; 7:children7100167. [PMID: 33020432 PMCID: PMC7600888 DOI: 10.3390/children7100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Headaches are common complaints in children. The International Classification of Headache Disorders, 3rd edition (beta version), defines more than 280 types of headaches. Primary headaches refer to independent conditions that cause pain and include migraine, tension-type headaches (TTH), and trigeminal autonomic cephalalgias (TACs). Several agents are involved in the pathogenesis of headaches. The factors associated with predisposition to atherosclerosis seem to be particularly important from the clinical point of view. The influence of obesity on the incidence of headaches has been well established. Moreover, idiopathic headaches, especially migraine, are thought to be one of the first signs of disorders in lipid metabolism and atherosclerosis. The risk of migraine increases with increasing obesity in children. Another factor that seems to be involved in both obesity and headaches is the adiponectin level. Recent data also suggest new potential risk factors for atherosclerosis and platelet aggregation such as brain-derived neurotrophic factor (BDNF), sCD40L (soluble CD40 ligand), serpin E1/PAI I (endothelial plasminogen activator inhibitor), and vascular endothelial growth factor (VEGF). However, their role is controversial because the results of clinical studies are often inconsistent. This review presents the current knowledge on the potential markers of atherosclerosis and platelet aggregation, which may be associated with primary headaches.
Collapse
|
14
|
Zhao Y, Zhu R, Xiao T, Liu X. Genetic variants in migraine: a field synopsis and systematic re-analysis of meta-analyses. J Headache Pain 2020; 21:13. [PMID: 32046629 PMCID: PMC7011260 DOI: 10.1186/s10194-020-01087-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Numerous genetic variants from meta-analyses of observational studies and GWAS were reported to be associated with migraine susceptibility. However, due to the random errors in meta-analyses, the noteworthiness of the results showing statistically significant remains doubtful. Thus, we performed this field synopsis and re-analysis study to evaluate the noteworthiness using a Bayesian approach in hope of finding true associations. METHODS Relevant meta-analyses from observational studies and GWAS examining correlation between all genetic variants and migraine risk were included in our study by a PubMed search. Identification of noteworthy associations were analyzed by false-positive rate probability (FPRP) and Bayesian false discovery probability (BFDP). Using noteworthy variants, GO enrichment analysis were conducted through DAVID online tool. Then, the PPI network and hub genes were performed using STRING database and CytoHubba software. RESULTS As for 8 significant genetic variants from observational studies, none of which showed noteworthy at prior probability of 0.001. Out of 47 significant genetic variants in GWAS, 36 were noteworthy at prior probability of 0.000001 via FPRP or BFDP. We further found the pathways "positive regulation of cytosolic calcium ion concentration" and "inositol phosphate-mediated signaling" and hub genes including MEF2D, TSPAN2, PHACTR1, TRPM8 and PRDM16 related to migraine susceptibility. CONCLUSION Herein, we have identified several noteworthy variants for migraine susceptibility in this field synopsis. We hope these data would help identify novel genetic biomarkers and potential therapeutic target for migraine.
Collapse
Affiliation(s)
- Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Tongling Xiao
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, No. 155 North Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
15
|
The Relationship between Infant Colic and Migraine as well as Tension-Type Headache: A Meta-Analysis. Pain Res Manag 2019; 2019:8307982. [PMID: 31316683 PMCID: PMC6604354 DOI: 10.1155/2019/8307982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Abstract
Background Infant colic is a common benign disease during early infancy. Migraine and tension-type headache (TTH) are the most common primary headache forms among pediatric population. Several studies have investigated the incidence of infant colic in patients with migraine and TTH. The meta-analysis was to assess the relationship between infant colic and migraine as well as TTH. Methods PubMed, Web of Science, and Cochrane Library were searched until August 16, 2018, for potential studies. Data were extracted by two independent authors and analyzed using RevMan 5.2 software. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to determine the association between infant colic and migraine as well as TTH, respectively. Results A total of 148 studies were found, and 7 studies were finally included. A higher incidence of colic during infancy was revealed in migraine patients than controls (P=0.05, OR: 2.51, 95% CI: 1.32-4.77) and TTH subjects (P=0.02, OR: 0.33, 95% CI: 0.13-0.86), respectively. And no significances were found between TTHs with controls (P=0.51, OR: 1.17, 95% CI: 0.73-1.89). Conclusion This meta-analysis indicated that migraine was associated with increased incidence of infantile colic history, but TTH incidence was not relevant with the incidence of infantile colic history.
Collapse
|
16
|
Shu HC, Hu J, Jiang XB, Deng HQ, Zhang KH. BDNF gene polymorphism and serum level correlate with liver function in patients with hepatitis B-induced cirrhosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2368-2380. [PMID: 31934064 PMCID: PMC6949635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
We investigate the correlation of serum brain-derived neurotrophic factor (BDNF) level and its gene polymorphism with liver function classification in patients with hepatitis B virus (HBV) induced liver cirrhosis. A total of 182 patients with HBV induced liver cirrhosis were collected as a case group, and 186 healthy subjects in the same period were used as the control group. ELISA measured serum BDNF levels. Polymerase chain reaction-restriction fragment length polymorphism was used to detect rs6265 (A/G) and rs10835210 (A/C) in the BDNF gene. The serum BDNF level was significantly lower in the case group than in the control group. With the elevation of Child-Pugh classification in patients with HBV induced liver cirrhosis, the decrease trend of serum BDNF level was even lower. The difference in frequency distribution between the case group and the control group was statistically significant regarding GG, GA, and AA genotypes, as well as G and A alleles in rs6265 (all P < 0.05). The frequency distribution of genotypes and alleles of rs6265 was statistically different in HBV induced liver cirrhosis patients with different liver function grades (P < 0.05). In patients with HBV induced liver cirrhosis, the AA genotype of BDNF gene rs6265 had the lowest level of serum BDNF. Our study suggests that serum BDNF plays an important role in the grading and early diagnosis of liver function in patients with HBV-induced liver cirrhosis, and AA genotype at rs6265 of BDNF gene is a negative factor for liver cirrhosis. Moreover, the polymorphism of this locus could affect the serum BDNF level.
Collapse
Affiliation(s)
- Hong-Chun Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & HepatologyNanchang 330006, Jiangxi Province, PR China
- Department of Gastroenterology, Shangrao People’s HospitalShangrao 320834, Jiangxi Province, PR China
| | - Jia Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & HepatologyNanchang 330006, Jiangxi Province, PR China
| | - Xiao-Bo Jiang
- Department of Gastroenterology, Shangrao People’s HospitalShangrao 320834, Jiangxi Province, PR China
| | - Hui-Qiu Deng
- Department of Gastroenterology, Shangrao People’s HospitalShangrao 320834, Jiangxi Province, PR China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & HepatologyNanchang 330006, Jiangxi Province, PR China
| |
Collapse
|
17
|
Zeng Z, Li Y, Lu S, Huang W, Di W. Efficacy of CoQ10 as supplementation for migraine: A meta-analysis. Acta Neurol Scand 2019; 139:284-293. [PMID: 30428123 DOI: 10.1111/ane.13051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/10/2018] [Accepted: 10/27/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Migraine ranks among the most frequent neurological disorders globally. Co-enzyme Q10 (CoQ10) is a nutritional agent that might play a preventative role in migraine. This meta-analysis aimed to investigate the effects of CoQ10 as a supplemental agent in migraine. SUBJECTS AND METHODS Web of Science, PubMed, and Cochrane Library were searched for potential articles that assessed the effects of CoQ10 on migraine. Data were extracted by two independent reviewers and analyzed with Revman 5.2 software (The Nordic Cochrane Centre, Copenhagen, Denmark). RESULTS We included five studies with 346 patients (120 pediatric and 226 adult subjects) in the meta-analysis. CoQ10 was comparable with placebo with respect to migraine attacks/month (P = 0.08) and migraine severity/day (P = 0.08). However, CoQ10 was more effective than placebo in reducing migraine days/month (P < 0.00001) and migraine duration (P = 0.009). CONCLUSION This is the first study to demonstrate the effects of CoQ10 supplementation on migraine. The results support the use of CoQ10 as a potent therapeutic agent with respect to migraine duration and migraine days/month. Nonetheless, more studies are needed to support the conclusions.
Collapse
Affiliation(s)
- ZhiYong Zeng
- Department of Pediatrics; The Second People’s Hospital of Longgang District; Shenzhen China
| | - YunPeng Li
- Department of Neurosurgery; The People’s Hospital of Ningdu Country; Ganzhou China
| | - ShunYu Lu
- Department of Pharmacy; The Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker’s Hospital; Liuzhou China
| | - WanSu Huang
- Department of Criminal Science and Technology; Guangxi Police College; Nanning China
| | - Wei Di
- Department of Neurology; Shaanxi Provincial People’s Hospital, Third Affiliated Hospital of Medical College, Xi’an Jiaotong University; Xi’an China
| |
Collapse
|
18
|
Qin X, Liu Y, Feng Y, Jiang J. Retracted Article: Ginsenoside Rf alleviates dysmenorrhea and inflammation through the BDNF-TrkB-CREB pathway in a rat model of endometriosis. Food Funct 2019; 10:244-249. [DOI: 10.1039/c8fo01839a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The investigation of the effects and the underlying mechanisms of ginsenoside Rf in a surgically induced rat endometriosis model was performed.
Collapse
Affiliation(s)
- Xuying Qin
- Department of Obstetrics and Gynecology
- Shandong University QiLu Hospital
- Jinan 250012
- China
- Department of Obstetrics and Gynecology
| | - Yan Liu
- Department of Obstetrics and Gynecology
- Liaocheng people's Hospital
- Liaocheng 252000
- China
| | - Yanchong Feng
- Department of Obstetrics and Gynecology
- Heping Hospital affiliated to Changzhi Medical College
- Changzhi
- China
| | - Jie Jiang
- Department of Obstetrics and Gynecology
- Shandong University QiLu Hospital
- Jinan 250012
- China
| |
Collapse
|
19
|
Low I, Kuo PC, Tsai CL, Liu YH, Lin MW, Chao HT, Chen YS, Hsieh JC, Chen LF. Interactions of BDNF Val66Met Polymorphism and Menstrual Pain on Brain Complexity. Front Neurosci 2018; 12:826. [PMID: 30524221 PMCID: PMC6256283 DOI: 10.3389/fnins.2018.00826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022] Open
Abstract
The irregularity and uncertainty of neurophysiologic signals across different time scales can be regarded as neural complexity, which is related to the adaptability of the nervous system and the information processing between neurons. We recently reported general loss of brain complexity, as measured by multiscale sample entropy (MSE), at pain-related regions in females with primary dysmenorrhea (PDM). However, it is unclear whether this loss of brain complexity is associated with inter-subject genetic variations. Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin in the brain and is crucial to neural plasticity. The BDNF Val66Met single-nucleotide polymorphism (SNP) is associated with mood, stress, and pain conditions. Therefore, we aimed to examine the interactions of BDNF Val66Met polymorphism and long-term menstrual pain experience on brain complexity. We genotyped BDNF Val66Met SNP in 80 PDM females (20 Val/Val, 31 Val/Met, 29 Met/Met) and 76 healthy female controls (25 Val/Val, 36 Val/Met, 15 Met/Met). MSE analysis was applied to neural source activity estimated from resting-state magnetoencephalography (MEG) signals during pain-free state. We found that brain complexity alterations were associated with the interactions of BDNF Val66Met polymorphism and menstrual pain experience. In healthy female controls, Met carriers (Val/Met and Met/Met) demonstrated lower brain complexity than Val/Val homozygotes in extensive brain regions, suggesting a possible protective role of Val/Val homozygosity in brain complexity. However, after experiencing long-term menstrual pain, the complexity differences between different genotypes in healthy controls were greatly diminished in PDM females, especially in the limbic system, including the hippocampus and amygdala. Our results suggest that pain experience preponderantly affects the effect of BDNF Val66Met polymorphism on brain complexity. The results of the present study also highlight the potential utilization of resting-state brain complexity for the development of new therapeutic strategies in patients with chronic pain.
Collapse
Affiliation(s)
- Intan Low
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Chih Kuo
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Cheng-Lin Tsai
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Hsiang Liu
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Wei Lin
- Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Tai Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yong-Sheng Chen
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Jen-Chuen Hsieh
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
20
|
Tsai SJ. Critical Issues in BDNF Val66Met Genetic Studies of Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:156. [PMID: 29867348 PMCID: PMC5962780 DOI: 10.3389/fnmol.2018.00156] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neurotrophins have been implicated in the pathophysiology of many neuropsychiatric diseases. Brain-derived neurotrophic factor (BDNF) is the most abundant and widely distributed neurotrophin in the brain. Its Val66Met polymorphism (refSNP Cluster Report: rs6265) is a common and functional single-nucleotide polymorphism (SNP) affecting the activity-dependent release of BDNF. BDNF Val66Met transgenic mice have been generated, which may provide further insight into the functional impact of this polymorphism in the brain. Considering the important role of BDNF in brain function, more than 1,100 genetic studies have investigated this polymorphism in the past 15 years. Although these studies have reported some encouraging positive findings initially, most of the findings cannot be replicated in following studies. These inconsistencies in BDNF Val66Met genetic studies may be attributed to many factors such as age, sex, environmental factors, ethnicity, genetic model used for analysis, and gene–gene interaction, which are discussed in this review. We also discuss the results of recent studies that have reported the novel functions of this polymorphism. Because many BDNF polymorphisms and non-genetic factors have been implicated in the complex traits of neuropsychiatric diseases, the conventional genetic association-based method is limited to address these complex interactions. Future studies should apply data mining and machine learning techniques to determine the genetic role of BDNF in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
21
|
Kamins J, Charles A. Posttraumatic Headache: Basic Mechanisms and Therapeutic Targets. Headache 2018; 58:811-826. [DOI: 10.1111/head.13312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Joshua Kamins
- UCLA Goldberg Migraine Program; David Geffen School of Medicine at UCLA; Los Angeles CA USA
- Tisch Brainsport Program; David Geffen School of Medicine at UCLA; Los Angeles CA USA
| | - Andrew Charles
- UCLA Goldberg Migraine Program; David Geffen School of Medicine at UCLA; Los Angeles CA USA
| |
Collapse
|
22
|
Terrazzino S, Cargnin S, Viana M, Sances G, Tassorelli C. Brain-Derived Neurotrophic Factor Val66Met Gene Polymorphism Impacts on Migraine Susceptibility: A Meta-analysis of Case-Control Studies. Front Neurol 2017; 8:159. [PMID: 28507530 PMCID: PMC5410590 DOI: 10.3389/fneur.2017.00159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/04/2017] [Indexed: 01/03/2023] Open
Abstract
Inconclusive results have been reported in studies investigating the association between the brain-derived neurotrophic factor (BDNF) rs6265 polymorphism and migraine. In the present study, we conducted a systematic review and meta-analysis on the published data in order to quantitatively estimate the relationship between rs6265 and migraine susceptibility. A comprehensive search was performed through PubMed, Web of Knowledge, and Cochrane databases up to October 2016. The pooled odds ratio (OR) with the corresponding 95% confidence interval (CI) was calculated to estimate the strength of the association with rs6265 under an additive, dominant, or recessive model of inheritance. A total of five studies including 1,442 cases and 1,880 controls were identified for the meta-analysis. The pooled data showed an increased risk of migraine for the allelic (OR: 1.17, 95% CI: 1.03–1.34, p = 0.014) or the dominant model of rs6265 (OR: 1.22, 95% CI: 1.05–1.41, p = 0.011). Statistical significance of rs6265 was lost when one single study was excluded from the analysis (dominant OR: 1.17, 95% CI: 1.00–1.38, p = 0.054; allelic OR: 1.14, 95% CI: 0.99–1.31, p = 0.067), suggesting lack of robustness of pooled estimates. When stratified by migraine type, a similar trend of association was detected with both MA and MO, but a statistically significant association of rs6265 was reached only with the MA subtype in the dominant model (OR: 1.22, 95% CI: 1.00–1.47, p = 0.047). The present meta-analysis supports that BDNF rs6265 may act as a genetic susceptibility factor for migraine. Nevertheless, large-scale studies are required to confirm our findings and to assess potential modifiers of the relationship between rs6265 and migraine.
Collapse
Affiliation(s)
- Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Michele Viana
- Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Grazia Sances
- Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|