1
|
Lv Q, Bu C, Xu H, Liang X, Ma L, Wang W, Ma Z, Cheng M, Tan S, Zheng N, Zhao X, Lu L, Zhang Y. Exploring spontaneous brain activity changes in high-altitude smokers: Insights from ALFF/fALFF analysis. Brain Cogn 2024; 181:106223. [PMID: 39383675 DOI: 10.1016/j.bandc.2024.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION This study aims to explore the impact of smoking on intrinsic brain activity among high-altitude (HA) populations. Smoking is associated with various neural alterations, but it remains unclear whether smokers in HA environments exhibit specific neural characteristics. METHODS We employed ALFF and fALFF methods across different frequency bands to investigate differences in brain functional activity between high-altitude smokers and non-smokers. 31 smokers and 31 non-smokers from HA regions participated, undergoing resting-state functional magnetic resonance imaging (rs-fMRI) scans. ALFF/fALFF values were compared between the two groups. Correlation analyses explored relationships between brain activity and clinical data. RESULTS Smokers showed increased ALFF values in the right superior frontal gyrus (R-SFG), right middle frontal gyrus (R-MFG), right anterior cingulate cortex (R-ACC), right inferior frontal gyrus (R-IFG), right superior/medial frontal gyrus (R-MSFG), and left SFG compared to non-smokers in HA. In sub-frequency bands (0.01-0.027 Hz and 0.027-0.073 Hz), smokers showed increased ALFF values in R-SFG, R-MFG, right middle cingulate cortex (R-MCC), R-MSFG, Right precentral gyrus and L-SFG while decreased fALFF values were noted in the right postcentral and precentral gyrus in the 0.01-0.027 Hz band. Negative correlations were found between ALFF values in the R-SFG and smoking years. CONCLUSION Our study reveals the neural characteristics of smokers in high-altitude environments, highlighting the potential impact of smoking on brain function. These results provide new insights into the neural mechanisms of high-altitude smoking addiction and may inform the development of relevant intervention measures.
Collapse
Affiliation(s)
- Qingqing Lv
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunxiao Bu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Xu
- Department of Magnetic Resonance Imaging, Qinghai Provincial People's Hospital, Xining, China
| | - Xijuan Liang
- Department of Magnetic Resonance Imaging, Qinghai Provincial People's Hospital, Xining, China
| | - Longyao Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Ma
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meiying Cheng
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shifang Tan
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Zheng
- Clinical & Technical Support, Philips Healthcare, China
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lin Lu
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Chou PL, Huang HS, Yao CA, Wang LM, Chieh JJ, Shyu BC, Liao SH, Chien CT. Potential Biomarkers of Dysmenorrhea Relief: A MEG Study of Hinoki Aromatherapy and Working Memory. Biomedicines 2024; 12:2189. [PMID: 39457502 PMCID: PMC11504012 DOI: 10.3390/biomedicines12102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: This study explored the potential of Hinoki aromatherapy to induce biomarkers of dysmenorrhea relief through working memory. Structural magnetic resonance imaging and magnetoencephalography (MEG) were used to examine their effects on neurophysiological responses to a visual working memory (VWM) test. Behavioral performance was measured to understand its effects on the overall working memory. Methods: Twenty-four healthy participants completed the VWM task during nonmenstruation and menstruation. Behavioral (accuracy and reaction time) and neurophysiological (event-related fields, source estimation, and permutation t-test on source data) measures were assessed without and with Hinoki aromatherapy. Results: A significant difference in the ratio of accuracy to reaction time was found without and with aromatherapy in participants with dysmenorrhea, suggesting that aromatherapy may improve working memory performance in this population. MEG analysis revealed high temporal resolution of evoked latency and intensity during the VWM task. Source localization of the activation aimed to identify brain areas involved in dysmenorrhea. Aromatherapy reduced signals in these areas, which may also contribute to reducing dysmenorrhea-related visual signals. Conclusions: Based on these findings, Hinoki aromatherapy may be a promising treatment option for alleviating dysmenorrhea and improving related symptoms by reducing activity in brain pain processing regions. These regions include the left entorhinal cortex, inferior temporal gyrus, primary visual cortex, retrosplenial cortex, and presubiculum. Furthermore, decreased activity in these areas with aromatherapy suggests that they could be used as biomarkers of dysmenorrhea relief.
Collapse
Affiliation(s)
- Pei-Li Chou
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100, Taiwan (C.-A.Y.)
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Han-Sheng Huang
- Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan; (H.-S.H.); (J.-J.C.)
| | - Chien-An Yao
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100, Taiwan (C.-A.Y.)
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Li-Min Wang
- Department of Physics, National Taiwan University, Taipei 106, Taiwan;
| | - Jen-Jie Chieh
- Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan; (H.-S.H.); (J.-J.C.)
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan;
| | - Shu-Hsien Liao
- Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan; (H.-S.H.); (J.-J.C.)
| | - Chiang-Ting Chien
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
3
|
Ge X, Wang L, Yan J, Pan L, Ye H, Zhu X, Feng Q, Chen B, Du Q, Yu W, Ding Z. Altered brain function in classical trigeminal neuralgia patients: ALFF, ReHo, and DC static- and dynamic-frequency study. Cereb Cortex 2024; 34:bhad455. [PMID: 38012118 DOI: 10.1093/cercor/bhad455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
The present study aimed to clarify the brain function of classical trigeminal neuralgia (CTN) by analyzing 77 CTN patients and age- and gender-matched 73 healthy controls (HCs) based on three frequency bands of the static and dynamic amplitude of low-frequency fluctuation, regional homogeneity, and degree centrality (sALFF, sReHo, sDC, dALFF, dReHo, and dDC). Compared to HCs, the number of altered brain regions was different in three frequency bands, and the classical frequency band was most followed by slow-4 in CTN patients. Cerrelellum_8_L (sReHo), Cerrelellum_8_R (sDC), Calcarine_R (sDC), and Caudate_R (sDC) were found only in classical frequency band, while Precuneus_L (sALFF) and Frontal_Inf_Tri_L (sReHo) were found only in slow-4 frequency band. Except for the above six brain regions, the others overlapped in the classical and slow-4 frequency bands. CTN seriously affects the mental health of patients, and some different brain regions are correlated with clinical parameters. The static and dynamic indicators of brain function were complementary in CTN patients, and the changing brain regions showed frequency specificity. Compared to slow-5 frequency band, slow-4 is more consistent with the classical frequency band, which could be valuable in exploring the pathophysiology of CTN.
Collapse
Affiliation(s)
- Xiuhong Ge
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Luoyu Wang
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Juncheng Yan
- Department of Rehabilitation, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Lei Pan
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Haiqi Ye
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Xiaofen Zhu
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Qi Feng
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Bing Chen
- Jing Hengyi School of Education, Hangzhou Normal University, No. 2318, Yuhang Tang Road, Yuhang District, Hangzhou City, Zhejiang Province 311121, China
| | - Quan Du
- Department of Neurosurgery, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People's Hospital, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, No. 261, Huansha Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| |
Collapse
|
4
|
Huang X, Gao Y, Fu T, Wang T, Ren J, Zhang D, Liu L, Deng S, Yin X, Wu X. Aberrant brain functional hubs and causal effective connectivity in menstrually-related and non-menstrually-related migraine without aura. Quant Imaging Med Surg 2024; 14:305-315. [PMID: 38223055 PMCID: PMC10783996 DOI: 10.21037/qims-23-838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/11/2023] [Indexed: 01/16/2024]
Abstract
Background Menstrual migraine without aura (MRM) is common in female migraineurs and is closely related to cerebral functional abnormalities. However, whether the whole brain networks and directional functional connectivity of MRM patients are altered remains unclear. The purpose of this study was to detect the alterations of resting-state functional networks and directional functional connectivity between MRM and non-menstrual migraine without aura (NMM) patients using functional magnetic resonance imaging (fMRI) with degree centrality (DC) and Granger causality analysis (GCA) methods. Methods In this retrospective and cross-sectional study, 45 MRM and 40 NMM patients (matched in age, gender, and years of education) were recruited in the study between May 2018 and June 2022. All participants had undergone resting-state fMRI scanning at the Neurology and Pain Outpatient Department of Nanjing First Hospital. Their brain functions were analyzed in terms of DC and GCA, with the significant threshold at voxel level P<0.01 and cluster level P<0.05, Gaussian random field corrected. Correlation analysis was adopted to assess the relationships between the fMRI results and clinical features (P<0.05, Bonferroni corrected). Results Compared with those in the NMM group, MRM patients showed decreased DC in the right insula (T=-4.253). Using the right insula as the seed region, patients with MRM demonstrated enhanced effective connectivity from the right insula to the ipsilateral middle temporal gyrus (T=4.138) and contralateral superior temporal gyrus (T=3.523). Furthermore, the MRM group also showed decreased effective connectivity from several brain regions to the right insula, which included the right inferior occipital gyrus (T=-4.498), left middle frontal gyrus (T=-4.879), right precuneus (T=-4.644), and left inferior parietal gyrus (T=-4.113). The average Self-rating Anxiety Scale score of the MRM group was significantly higher than that of the NMM group [P=0.032, 95% confidence interval (CI): 0.363-7.761]. In the MRM group, disease duration was negatively correlated with the mean value of DC in right insula (r=-0.428, P=0.01). Conclusions The present research demonstrated that patients with MRM have disruption in insula resting-state functional networks. Disrupted networks contained regions associated with cognitive processes, emotional perception, and migraine attack in MRM patients. These results may improve our comprehension of the neuromechanism of menstrually-related migraine.
Collapse
Affiliation(s)
- Xiaobin Huang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yujia Gao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tong Fu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tongxing Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Ren
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lindong Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shuangqing Deng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Yu Z, Yang H, Liu LY, Chen L, Su MH, Yang L, Zhu MJ, Yang LL, Liang F, Yu S, Yang J. Altered cognitive control network mediates the association between long-term pain and anxiety symptoms in primary dysmenorrhea. Neuroreport 2024; 35:9-16. [PMID: 37994619 PMCID: PMC10702699 DOI: 10.1097/wnr.0000000000001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 11/24/2023]
Abstract
Neuroimaging studies have demonstrated the association of the cognitive control network (CCN) with the maintenance of chronic pain. However, whether and how dorsolateral prefrontal cortex (DLPFC), a key region within the CCN, is altered in menstrual pain is unclear. In this study, we aimed to investigate alterations in the DLPFC functional connectivity network in patients with primary dysmenorrhea (PDM). The study comprised 41 PDM patients and 39 matched healthy controls (HCs), all of whom underwent a resting-state functional MRI scan during the menstrual stage. All participants were instructed to complete the clinical assessment before the MRI scan. We used the DLPFC as the seed in resting-state functional connectivity (rsFC) analysis to investigate the difference between PDM patients and HCs. Compared to HCs, PDM patients showed increased right DLPFC rsFC at the bilateral lingual gyrus, dorsal anterior cingulate cortex (dACC), and middle cingulate cortex, and decreased left DLPFC rsFC at the right orbital frontal cortex. In addition, increased right DLPFC-bilateral dACC connectivity mediated the association between disease duration and the self-rating anxiety scale (SAS) scores in PDM patients. We confirmed that the DLPFC-dACC rsFC was associated with higher SAS scores, which could mediate the association between disease duration and anxiety symptoms in patients with PDM. Our findings provide central pathological evidence for an abnormal rsFC of the CCN in PDM patients, which may contribute to a better understanding of the neuropathophysiological mechanisms underlying PDM.
Collapse
Affiliation(s)
- Zheng Yu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Han Yang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University
| | - Li-ying Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Lin Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Meng-hua Su
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Lu Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Man-jia Zhu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Li-li Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Fanrong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Siyi Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Jie Yang
- Traditional Chinese Medicine Department, Sichuan Jinxin Xi’nan Women’s and Children’s Hospital
| |
Collapse
|
6
|
Cheng Q, Ren A, Han J, Jin X, Pylypenko D, Yu D, Wang X. Assessment of functional and structural brain abnormalities with resting-state functional MRI in patients with vestibular neuronitis. Acta Radiol 2023; 64:3024-3031. [PMID: 37807650 DOI: 10.1177/02841851231203569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Vestibular neuritis (VN) is a disorder manifesting as acute, isolated, spontaneous vertigo. There are few comprehensive studies on the changes in related functional and structural brain regions. PURPOSE To evaluate alterations in spontaneous neural activity, functional connectivity (FC), and gray matter volume (GMV) in patients with VN. MATERIAL AND METHODS A total of 24 patients with VN and 22 age- and sex-matched healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI) and three-dimensional T1-weighted anatomical imaging. We calculated the amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality (DC) to discern local brain abnormalities. The most abnormal brain region was selected as the region of interest (ROI) for FC analysis based on ALFF and ReHo values after Bonferroni correction. Voxel-based morphometry (VBM) was used to assess differences in GMV. RESULTS Patients with VN, compared to healthy controls, showed increased ALFF (P < 0.001), ReHo values (P = 0.002, <0.001), and DC (P = 0.013) in the left lingual gyrus and right postcentral gyrus. FC analysis demonstrated enhanced connectivity between the left lingual gyrus and the left superior frontal gyrus, and decreased connectivity with the right insula gyrus, right and left supramarginal gyrus (P = 0.012, 0.004, <0.001, 0.014). In addition, GMV was reduced in the bilateral caudate (P = 0.022, 0.014). CONCLUSIONS Patients with VN exhibit abnormal spontaneous neural activity and changes in ALFF, ReHo, DC, GMV, and FC. Understanding these functional and structural brain abnormalities may elucidate the underlying mechanisms of VN.
Collapse
Affiliation(s)
- QiChao Cheng
- Qilu Hospital of Shandong University, JiNan, Shandong Province, PR China
| | - AnLi Ren
- Affiliated Hospital of Shandong University of traditional Chinese Medicine, JiNan, Shandong Province, PR China
| | - JingYang Han
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| | - XinJuan Jin
- Qilu Hospital of Shandong University, JiNan, Shandong Province, PR China
| | | | - DeXin Yu
- Qilu Hospital of Shandong University, JiNan, Shandong Province, PR China
| | - XiZhen Wang
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China
| |
Collapse
|
7
|
Rao Y, Liu W, Zhu Y, Lin Q, Kuang C, Huang H, Jiao B, Ma L, Lin J. Altered functional brain network patterns in patients with migraine without aura after transcutaneous auricular vagus nerve stimulation. Sci Rep 2023; 13:9604. [PMID: 37311825 DOI: 10.1038/s41598-023-36437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/03/2023] [Indexed: 06/15/2023] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) shows excellent effects on relieving clinical symptoms in migraine patients. Nevertheless, the neurological mechanisms of taVNS for migraineurs remain unclear. In recent years, voxel-wise degree centrality (DC) and functional connectivity (FC) methods were extensively utilized for exploring alterations in patterns of FC in the resting-state brain. In the present study, thirty-five migraine patients without aura and thirty-eight healthy controls (HCs) were recruited for magnetic resonance imaging scans. Firstly, this study used voxel-wise DC analysis to explore brain regions where abnormalities were present in migraine patients. Secondly, for elucidating neurological mechanisms underlying taVNS in migraine, seed-based resting-state functional connectivity analysis was employed to the taVNS treatment group. Finally, correlation analysis was performed to explore the relationship between alterations in neurological mechanisms and clinical symptoms. Our findings indicated that migraineurs have lower DC values in the inferior temporal gyrus (ITG) and paracentral lobule than in healthy controls (HCs). In addition, migraineurs have higher DC values in the cerebellar lobule VIII and the fusiform gyrus than HCs. Moreover, after taVNS treatment (post-taVNS), patients displayed increased FC between the ITG with the inferior parietal lobule (IPL), orbitofrontal gyrus, angular gyrus, and posterior cingulate gyrus than before taVNS treatment (pre-taVNS). Besides, the post-taVNS patients showed decreased FC between the cerebellar lobule VIII with the supplementary motor area and postcentral gyrus compared with the pre-taVNS patients. The changed FC of ITG-IPL was significantly related to changes in headache intensity. Our study suggested that migraine patients without aura have altered brain connectivity patterns in several hub regions involving multisensory integration, pain perception, and cognitive function. More importantly, taVNS modulated the default mode network and the vestibular cortical network related to the dysfunctions in migraineurs. This paper provides a new perspective on the potential neurological mechanisms and therapeutic targets of taVNS for treating migraine.
Collapse
Affiliation(s)
- Yuyang Rao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Wenting Liu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Yunpeng Zhu
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Qiwen Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Changyi Kuang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Huiyuan Huang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Bingqing Jiao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China
| | - Lijun Ma
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China.
| | - Jiabao Lin
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, No.232, Huandong Road, University Town, Guangzhou, 510006, China.
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
8
|
Gu L, Shu H, Wang Y. Functional brain alterations in migraine patients: an activation likelihood estimation study. Neurol Res 2023:1-8. [PMID: 37019685 DOI: 10.1080/01616412.2023.2199377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
BACKGROUND Previous functional magnetic resonance imaging (fMRI) studies reported inconsistent results for comparison in brain activation between migraine patients and healthy controls (HC). Thus, activation likelihood estimation (ALE) method, a powerful voxel-based technique, was used to explore the concordant functional brain changes in migraine patients. METHODS Studies published before October 2022 were searched in the following databases (PubMed, Web of Science and Google Scholar). RESULTS Migraine without aura (MWoA) patients showed reduced amplitude of low-frequency fluctuations (ALFF) in right lingual gyrus, the left posterior cingulate and the right precuneus (PCUN), compared to HC. Migraine patients showed increased ALFF in the right claustrum, the left caudate, the left insula and the right parahippocampal gyrus, compared to HC. MWoA patients showed reduced regional homogeneity (ReHo) in the right culmen, compared to HC. In addition, migraine patients showed increased ReHo in the bilateral thalamus, compared to HC. MWoA patients showed reduced whole-brain functional connectivity (FC) in the left middle occipital gyrus and the right superior parietal lobule, compared to HC. In addition, migraine patients showed increased whole-brain FC in the left middle temporal gyrus (MTG), the right inferior frontal gyrus, the right superior temporal gyrus (STG) and the left inferior temporal gyrus, compared to HC. CONCLUSIONS ALE analysis identified consistent functional changes in widespread regions, especially in cingulate gyrus, basal ganglia region and frontal cortex in migraine. These regions involve in pain processing, cognitive dysfunction and emotional problems. These results may provide important clues for clarifying the pathophysiology of migraine.
Collapse
Affiliation(s)
- Lihua Gu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Shu
- Department of Neurology, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanjuan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Zhang X, Wang W, Bai X, Mei Y, Tang H, Yuan Z, Zhang X, Li Z, Zhang P, Hu Z, Zhang Y, Yu X, Sui B, Wang Y. Alterations in regional homogeneity and multiple frequency amplitudes of low-frequency fluctuation in patients with new daily persistent headache: a resting-state functional magnetic resonance imaging study. J Headache Pain 2023; 24:14. [PMID: 36814220 PMCID: PMC9946707 DOI: 10.1186/s10194-023-01543-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND New daily persistent headache (NPDH) is a rare primary headache that is highly disabling. The pathophysiology of NDPH is still unclear, and we aimed to reveal the underlying mechanism of NDPH through functional magnetic resonance imaging (fMRI) analysis. METHODS In this cross-sectional study, thirty patients with NDPH and 30 healthy controls (HCs) were recruited. The blood oxygen level-dependent (BOLD) sequences of all participants were obtained using the GE 3.0 T system. We performed ReHo, ALFF (conventional band: 0.01-0.08 Hz, slow-5: 0.01-0.027 Hz, slow-4: 0.027-0.073 Hz) and seed-based to the whole brain functional connectivity (FC) analysis in the NDPH and HC groups. The sex difference analysis of ReHo, ALFF, and FC values was conducted in the NDPH group. We also conducted Pearson's correlation analysis between ReHo, ALFF, FC values and clinical characteristics (pain intensity, disease duration, HIT-6, GAD-7, PHQ-9, and PSQI scores). RESULTS Both increased ReHo (PFWE-corr = 0.012) and ALFF values (0.01-0.08 Hz, PFWE-corr = 0.009; 0.027-0.073 Hz, PFWE-corr =0.044) of the left middle occipital gyrus (MOG_L) were found in the NDPH group compared to the HC group. There was no significant difference in FC maps between the two groups. Compared to the HC group, no difference was found in ReHo (p = 0.284), ALFF (p = 0.246), and FC (p = 0.118) z scores of the MOG_L in the NDPH group. There was also no sex difference in ReHo (p = 0.288), ALFF (p = 0.859), or FC z score (p = 0.118) of the MOG_L in patients with NDPH. There was no correlation between ReHo, ALFF, FC z scores and clinical characteristics after Bonferroni correction (p < 0.05/18). CONCLUSIONS Patients with NDPH may have abnormal activation of the visual system. Abnormal visual activation may occur mainly in higher frequency band of the classical band. No sex differences in brain activity were found in patients with NDPH.
Collapse
Affiliation(s)
- Xueyan Zhang
- grid.412633.10000 0004 1799 0733Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Wei Wang
- grid.24696.3f0000 0004 0369 153XHeadache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Bai
- grid.411617.40000 0004 0642 1244Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, China ,grid.411617.40000 0004 0642 1244Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, China
| | - Yanliang Mei
- grid.24696.3f0000 0004 0369 153XHeadache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hefei Tang
- grid.24696.3f0000 0004 0369 153XHeadache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ziyu Yuan
- grid.24696.3f0000 0004 0369 153XHeadache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue Zhang
- grid.411617.40000 0004 0642 1244Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, China ,grid.411617.40000 0004 0642 1244Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, China
| | - Zhiye Li
- grid.411617.40000 0004 0642 1244Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, China ,grid.411617.40000 0004 0642 1244Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing Neurosurgical Institute, Beijing, China
| | - Peng Zhang
- grid.24696.3f0000 0004 0369 153XHeadache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Yaqing Zhang
- grid.24696.3f0000 0004 0369 153XHeadache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueying Yu
- grid.24696.3f0000 0004 0369 153XHeadache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Su Q, Li J, Chu X, Zhao R. Preoperative pain hypersensitivity is associated with axial pain after posterior cervical spinal surgeries in degenerative cervical myelopathy patients: a preliminary resting-state fMRI study. Insights Imaging 2023; 14:16. [PMID: 36690763 PMCID: PMC9871135 DOI: 10.1186/s13244-022-01332-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/11/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To test whether preoperative pain sensitivity is associated with the postoperative axial pain (PAP) in degenerative cervical myelopathy (DCM) and to explore its underlying brain mechanism. METHODS Clinical data and resting-state fMRI data of 62 DCM patients along with 60 age/gender matched healthy participants were collected and analysed. Voxel-wise amplitude of low frequency fluctuation (ALFF) was computed and compared between DCM patients and healthy controls. Correlation analyses were performed to reveal the association between the clinical metrics and brain alterations. Clinical data and ALFF were also compared between DCM patients with PAP and without PAP. RESULTS (1) Relative to healthy participants, DCM patients exhibited significantly lower preoperative pain threshold which is associated with the PAP intensity; (2) Relative to patients without PAP, PAP patients exhibited increased ALFF in mid-cingulate cortex (MCC) and lower preoperative pain threshold; (3) Further, multivariate pattern analysis revealed that MCC ALFF provide additional value for PAP vs. non-PAP classification. CONCLUSION In conclusion, our findings suggest that preoperative pain hypersensitivity may be associated with postoperative axial pain in degenerative cervical myelopathy patients. This finding may inspire new therapeutic ideas for patients with preoperative axial pain.
Collapse
Affiliation(s)
- Qian Su
- grid.411918.40000 0004 1798 6427Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for China, Tianjin, 300060 China
| | - Jie Li
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300203 China ,grid.33763.320000 0004 1761 2484Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211 China
| | - Xu Chu
- grid.43169.390000 0001 0599 1243Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Rui Zhao
- grid.412645.00000 0004 1757 9434Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, 300052 China
| |
Collapse
|
11
|
Decreased ALFF and Functional Connectivity of the Thalamus in Vestibular Migraine Patients. Brain Sci 2023; 13:brainsci13020183. [PMID: 36831726 PMCID: PMC9954115 DOI: 10.3390/brainsci13020183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The thalamus has been reported to be associated with pain modulation and processing. However, the functional changes that occur in the thalamus of vestibular migraine (VM) patients remain unknown. METHODS In total, 28 VM patients and 28 healthy controls who were matched for age and sex underwent resting-state functional magnetic resonance imaging. They also responded to standardized questionnaires aimed at assessing the clinical features associated with migraine and vertigo. Differences in the amplitude of low-frequency fluctuation (ALFF) were analyzed and brain regions with altered ALFF in the two groups were used for further analysis of whole-brain functional connectivity (FC). The relationship between clusters and clinical features was investigated by correlation analyses. RESULTS The ALFF in the thalamus was significantly decreased in the VM group versus the control group. In the VM group, the ALFF in the left thalamus negatively correlated with VM episode frequency. Furthermore, the left thalamus showed significantly weaker FC than both regions of the medial prefrontal cortex, both regions of the anterior cingulum cortex, the left superior/middle temporal gyrus, and the left temporal pole in the VM group. CONCLUSIONS The thalamus plays an important role in VM patients and it is suggested that connectivity abnormalities of the thalamocortical region contribute to abnormal pain information processing and modulation, transmission, and multisensory integration in patients with VM.
Collapse
|
12
|
Wang H, Huang Y, Li M, Yang H, An J, Leng X, Xu D, Qiu S. Regional brain dysfunction in insomnia after ischemic stroke: A resting-state fMRI study. Front Neurol 2022; 13:1025174. [PMID: 36504641 PMCID: PMC9733724 DOI: 10.3389/fneur.2022.1025174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Objective This study aimed to explore the abnormality of local brain function in patients with post-stroke insomnia (PSI) based on fMRI and explore the possible neuropathological mechanisms of insomnia in patients with PSI in combination with the Pittsburgh sleep quality index (PSQI) score and provide an objective evaluation index for the follow-up study of acupuncture treatment of PSI. Methods A total of 27 patients with insomnia after stroke were enrolled, and the PSQI was used to evaluate their sleep status. Twenty-seven healthy participants who underwent physical examinations during the same period were selected as controls. Resting-state brain function images and structural images of the two groups of participants were collected, and the abnormal changes in the regional brain function in patients with PSI were analyzed using three methods: regional homogeneity (ReHo), the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF), and a correlation analysis with the PSQI scale score. Results Compared with the HCs, the ReHo values of the PSI group in the bilateral lingual gyrus, right cuneus, right precentral and postcentral gyri were significantly lower, and the ReHo values of the left supramarginal gyrus were significantly higher. In the PSI group, the ALFF values in the bilateral lingual gyrus were significantly decreased, whereas those in the bilateral middle temporal gyrus, right inferior temporal gyrus, right inferior frontal gyrus, right limbic lobe, right precuneus, left posterior cingulate gyrus, and left middle occipital gyrus were significantly increased. Compared with HCs, the fALFF values of the bilateral lingual gyrus, bilateral inferior occipital gyrus, and bilateral cuneus in the PSI group were significantly higher. The ReHo value of the left supramarginal gyrus in the PSI group was significantly negatively correlated with the total PSQI score. Conclusion Patients with PSI have abnormal local activities in multiple brain regions, including the visual processing-related cortex, sensorimotor cortex, and some default-mode network (DMN) regions. Over-arousal of the DMN and over-sensitivity of the audiovisual stimuli in patients with PSI may be the main mechanisms of insomnia and can lead to a decline in cognitive function and abnormalities in emotion regulation simultaneously.
Collapse
Affiliation(s)
- Hongzhuo Wang
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yunxuan Huang
- Rehabilitation and Nursing Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingrui Li
- Department of Magnetic Resonance Imaging, Zhanjiang First Hospital of Traditional Chinese Medicine, Zhanjiang, China
| | - Han Yang
- Rehabilitation and Nursing Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie An
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xi Leng
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Danghan Xu
- Rehabilitation and Nursing Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China,*Correspondence: Shijun Qiu
| |
Collapse
|
13
|
Chen ZH, Cui YL, Sun JT, Li YT, Zhang C, Zhang YM, Li ZY, Shang YX, Ni MH, Hu B, Yan LF, Wang W. The brain structure and function abnormalities of migraineurs: A systematic review and neuroimaging meta-analysis. Front Neurol 2022; 13:1022793. [PMID: 36419535 PMCID: PMC9676357 DOI: 10.3389/fneur.2022.1022793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/18/2022] [Indexed: 07/20/2023] Open
Abstract
Objectives To quantitatively summarize the specific changes in brain structure and function in migraine patients. Methods A literature screening of migraine was conducted from inception to Sept 1, 2022, in PubMed, Web of Science, Cochrane Library, and Medline databases using the keyword combination of "migraine and MRI." Activation likelihood estimation (ALE) was performed to assess the differentiation of functional connectivity (FC), regional homogeneity (ReHo), and gray matter volume (GMV) of migraine patients. Results Eleven voxel-based morphometry (VBM) studies and 25 resting-state fMRI (rs-fMRI) studies (16 FC and 9 ReHo studies) were included in this study. ALE analysis revealed the ReHo increase in the brainstem and left thalamus, with no decreased area. Neither increased nor decreased regions were detected in FC and GMV of migraine patients. Conclusions The left thalamus and brainstem were the significantly activated regions of migraine. It is a meaningful insights into the pathophysiology of migraine. The consistent alterated brain areas of morphometrical and functional in migraine patients were far from reached based on current studies.
Collapse
Affiliation(s)
- Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
- Department of Radiology, Gansu Hospital of Chinese Armed Police Force, Lanzhou, China
| | - Yu-Ling Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
- Department of Radiology, The First Affiliated Hospital, Xi'an Jiatong University, Xi'an, China
| | - Jing-Ting Sun
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
- Department of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang City, China
| | - Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Chi Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Yang-Ming Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Ze-Yang Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Min-Hua Ni
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
- Department of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang City, China
| |
Collapse
|
14
|
Zhang L, Yu W, Xu M, Cui F, Song W, Yan M, Cao Z, Zhang Z. The hypothalamus may mediate migraine and ictal photophobia: evidence from Granger causality analysis. Neurol Sci 2022; 43:6021-6030. [DOI: 10.1007/s10072-022-06245-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023]
|
15
|
Liu D, Zhou X, Tan Y, Yu H, Cao Y, Tian L, Yang L, Wang S, Liu S, Chen J, Liu J, Wang C, Yu H, Zhang J. Altered brain functional activity and connectivity in bone metastasis pain of lung cancer patients: A preliminary resting-state fMRI study. Front Neurol 2022; 13:936012. [PMID: 36212659 PMCID: PMC9532555 DOI: 10.3389/fneur.2022.936012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis pain (BMP) is one of the most prevalent symptoms among cancer survivors. The present study aims to explore the brain functional activity and connectivity patterns in BMP of lung cancer patients preliminarily. Thirty BMP patients and 33 healthy controls (HCs) matched for age and sex were recruited from inpatients and communities, respectively. All participants underwent fMRI data acquisition and pain assessment. Low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were applied to evaluate brain functional activity. Then, functional connectivity (FC) was calculated for the ALFF- and ReHo-identified seed brain regions. A two-sample t-test or Manny–Whitney U-test was applied to compare demographic and neuropsychological data as well as the neuroimaging indices according to the data distribution. A correlation analysis was conducted to explore the potential relationships between neuroimaging indices and pain intensity. Receiver operating characteristic curve analysis was applied to assess the classification performance of neuroimaging indices in discriminating individual subjects between the BMP patients and HCs. No significant intergroup differences in demographic and neuropsychological data were noted. BMP patients showed reduced ALFF and ReHo largely in the prefrontal cortex and increased ReHo in the bilateral thalamus and left fusiform gyrus. The lower FC was found within the prefrontal cortex. No significant correlation between the neuroimaging indices and pain intensity was observed. The neuroimaging indices showed satisfactory classification performance between the BMP patients and HCs, and the combined ALFF and ReHo showed a better accuracy rate (93.7%) than individual indices. In conclusion, altered brain functional activity and connectivity in the prefrontal cortex, fusiform gyrus, and thalamus may be associated with the neuropathology of BMP and may represent a potential biomarker for classifying BMP patients and healthy controls.
Collapse
Affiliation(s)
- Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ying Cao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ling Tian
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Liejun Yang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Sixiong Wang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shihong Liu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Huiqing Yu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Huiqing Yu
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- Jiuquan Zhang
| |
Collapse
|
16
|
Wang ZW, Yin ZH, Wang X, Zhang YT, Xu T, Du JR, Wen Y, Liao HQ, Zhao Y, Liang FR, Zhao L. Brain structural and functional changes during menstrual migraine: Relationships with pain. Front Mol Neurosci 2022; 15:967103. [PMID: 36187356 PMCID: PMC9515315 DOI: 10.3389/fnmol.2022.967103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/25/2022] [Indexed: 12/21/2022] Open
Abstract
Objectives Menstrual migraine (MM) is a special type of migraine associated with the ovarian cycle, which imposes a marked burden on female patients. However, the pathogenesis of MM is not completely understood. We investigated gray matter volume (GMV) and functional connectivity (FC) alterations in patients with MM to explore whether there are changes in resting-state FC (rsFC) in brain regions with structural GMV abnormalities and investigated their relevance to pain and concomitant symptoms. Methods Seventy-five patients with MM and 54 female healthy controls underwent functional magnetic resonance imaging and examination. The patients completed a patient’s headache diary, which included the frequency of migraine attacks, a visual analog scale for pain, a self-rating anxiety scale, and a self-rating depression scale. We used voxel-based morphometry (VBM) to examine the GMV differences between the MM and healthy control groups. The identified brain areas were selected as seeds to assess functional changes in the MM group. Correlation analysis between the altered VBM/rsFC and clinical outcomes was performed. Results Compared with healthy controls, patients with MM showed decreased GMV in the right anterior cingulum cortex (ACC) and increased GMV in the right superior parietal cortex. Pearson’s correlation analysis illustrated that only GMV in the right ACC was associated with visual analogue scale pain scores in the MM group. RsFC with the ACC as the seed showed that patients with MM exhibited increased FC between the ACC and the left inferior temporal gyrus, bilateral angular gyrus, and right precuneus. Correlation analysis showed that the change in FC between the right ACC and the right precuneus was positively correlated with headache frequency, and the change in FC between the right ACC and the right angular gyrus was positively correlated with the depression score. Conclusion Our results suggested that the ACC may be an important biomarker in MM, and its structural and functional impairments are significantly associated with the severity of pain and pain-related impairment of emotion in patients with MM. These findings demonstrated that headache-associated structural and functional abnormalities in the ACC may can provide integrative evidence on the physiological mechanisms of MM.
Collapse
Affiliation(s)
- Zi-wen Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Zi-han Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Xiao Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-tong Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Tao Xu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
| | - Jia-rong Du
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua-qiang Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zhao
- Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu, China
| | - Fan-rong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
- Fan-rong Liang,
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Provincial Acupuncture Clinical Medicine Research Center, Chengdu, China
- *Correspondence: Ling Zhao,
| |
Collapse
|
17
|
Wei HL, Yang WJ, Zhou GP, Chen YC, Yu YS, Yin X, Li J, Zhang H. Altered static functional network connectivity predicts the efficacy of non-steroidal anti-inflammatory drugs in migraineurs without aura. Front Mol Neurosci 2022; 15:956797. [PMID: 36176962 PMCID: PMC9513180 DOI: 10.3389/fnmol.2022.956797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Brain networks have significant implications for the understanding of migraine pathophysiology and prognosis. This study aimed to investigate whether large-scale network dysfunction in patients with migraine without aura (MwoA) could predict the efficacy of non-steroidal anti-inflammatory drugs (NSAIDs). Seventy patients with episodic MwoA and 33 healthy controls (HCs) were recruited. Patients were divided into MwoA with effective NSAIDs (M-eNSAIDs) and with ineffective NSAIDs (M-ieNSAIDs). Group-level independent component analysis and functional network connectivity (FNC) analysis were used to extract intrinsic networks and detect dysfunction among these networks. The clinical characteristics and FNC abnormalities were considered as features, and a support vector machine (SVM) model with fivefold cross-validation was applied to distinguish the subjects at an individual level. Dysfunctional connections within seven networks were observed, including default mode network (DMN), executive control network (ECN), salience network (SN), sensorimotor network (SMN), dorsal attention network (DAN), visual network (VN), and auditory network (AN). Compared with M-ieNSAIDs and HCs, patients with M-eNSAIDs displayed reduced DMN-VN and SMN-VN, and enhanced VN-AN connections. Moreover, patients with M-eNSAIDs showed increased FNC patterns within ECN, DAN, and SN, relative to HCs. Higher ECN-SN connections than HCs were revealed in patients with M-ieNSAIDs. The SVM model demonstrated that the area under the curve, sensitivity, and specificity were 0.93, 0.88, and 0.89, respectively. The widespread FNC impairment existing in the modulation of medical treatment suggested FNC disruption as a biomarker for advancing the understanding of neurophysiological mechanisms and improving the decision-making of therapeutic strategy.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, Nanjing Jiangning Hospital, Nanjing, China
| | - Wen-Juan Yang
- Department of Neurology, Nanjing Jiangning Hospital, Nanjing, China
| | - Gang-Ping Zhou
- Department of Radiology, Nanjing Jiangning Hospital, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Sheng Yu
- Department of Radiology, Nanjing Jiangning Hospital, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junrong Li
- Department of Neurology, Nanjing Jiangning Hospital, Nanjing, China
| | - Hong Zhang
- Department of Radiology, Nanjing Jiangning Hospital, Nanjing, China
| |
Collapse
|
18
|
Ji Y, Cheng Q, Fu WW, Zhong PP, Huang SQ, Chen XL, Wu XR. Exploration of abnormal dynamic spontaneous brain activity in patients with high myopia via dynamic regional homogeneity analysis. Front Hum Neurosci 2022; 16:959523. [PMID: 35992950 PMCID: PMC9390771 DOI: 10.3389/fnhum.2022.959523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Aim Patients with high myopia (HM) reportedly exhibit changes in functional brain activity, but the mechanism underlying such changes is unclear. This study was conducted to observe differences in dynamic spontaneous brain activity between patients with HM and healthy controls (HCs) via dynamic regional homogeneity (dReHo) analysis. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed on 82 patients with HM and 59 HCs who were closely matched for age, sex, and weight. The dReHo approach was used to assess local dynamic activity in the human brain. The association between mean dReHo signal values and clinical symptoms in distinct brain areas in patients with HM was determined via correlation analysis. Results In the left fusiform gyrus (L-FG), right inferior temporal gyrus (R-ITG), right Rolandic operculum (R-ROL), right postcentral gyrus (R-PoCG), and right precentral gyrus (R-PreCG), dReHo values were significantly greater in patients with HM than in HCs. Conclusion Patients with HM have distinct functional changes in various brain regions that mainly include the L-FG, R-ITG, R-ROL, R-PoCG, and R-PreCG. These findings constitute important evidence for the roles of brain networks in the pathophysiological mechanisms of HM and may aid in the diagnosis of HM.
Collapse
|
19
|
Lan L, Yin T, Tian Z, Lan Y, Sun R, Li Z, Jing M, Wen Q, Li S, Liang F, Zeng F. Acupuncture Modulates the Spontaneous Activity and Functional Connectivity of Calcarine in Patients With Chronic Stable Angina Pectoris. Front Mol Neurosci 2022; 15:842674. [PMID: 35557556 PMCID: PMC9087858 DOI: 10.3389/fnmol.2022.842674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAcupuncture is an effective adjunctive therapy for chronic stable angina pectoris (CSAP), while the underlying mechanism is unclear. This study aimed to investigate the central pathophysiology of CSAP and explore the mechanism of different acupoint prescriptions for CSAP from the perspective of brain-heart interaction.MethodsThirty-seven CSAP patients and sixty-five healthy subjects (HS) were enrolled, and thirty CSAP patients were divided into two acupoint prescriptions groups (Group A: acupoints on the meridian directly related to the Heart; Group B: acupoints on the meridian indirectly related to the Heart). The Magnetic Resonance Imaging data and clinical data were collected at baseline and after treatment. The comparisons of brain spontaneous activity patterns were performed between CSAP patients and HS, as well as between baseline and after treatment in CSAP patients. Then, the changes in resting-state functional connectivity before and after treatment were compared between the two acupoint prescriptions.ResultsChronic stable angina pectoris patients manifested higher spontaneous activity on the bilateral calcarine, left middle occipital gyrus, right superior temporal gyrus, and right postcentral gyrus. After acupuncture treatment, the spontaneous activity of the left calcarine, left cuneus, and right orbitofrontal gyrus was decreased. The left calcarine was identified as region-of-interest for functional connectivity analysis. Compared with group B, CSAP patients in group A had significantly increased functional connectivity between left calcarine and the left inferior temporal gyrus/cerebellum crus 1, left hippocampus, left thalamus, and left middle cingulate cortex after treatment. Thresholds for all comparisons were p < 0.05, Gaussian Random Field corrected.ConclusionRegulating the aberrant spontaneous activity of the calcarine might be an underlying mechanism of acupuncture for CSAP. The multi-threaded modulation of functional connectivity between calcarine and multiple pain-related brain regions might be a potential mechanism for better efficacy of acupuncture at points on the meridian directly related to the Heart.
Collapse
Affiliation(s)
- Lei Lan
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Yin
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zilei Tian
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Lan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruirui Sun
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengjie Li
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miaomiao Jing
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Qiao Wen
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shenghong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanrong Liang
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
- *Correspondence: Fanrong Liang,
| | - Fang Zeng
- Acupuncture and Tuina School, The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
- Fang Zeng,
| |
Collapse
|
20
|
Wei HL, Xu CH, Wang JJ, Zhou GP, Guo X, Chen YC, Yu YS, He ZZ, Yin X, Li J, Zhang H. Disrupted Functional Connectivity of the Amygdala Predicts the Efficacy of Non-steroidal Anti-inflammatory Drugs in Migraineurs Without Aura. Front Mol Neurosci 2022; 15:819507. [PMID: 35283727 PMCID: PMC8908446 DOI: 10.3389/fnmol.2022.819507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Machine learning (ML) has been largely applied for predicting migraine classification. However, the prediction of efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) in migraine is still in the early stages. This study aims to evaluate whether the combination of machine learning and amygdala-related functional features could help predict the efficacy of NSAIDs in patients with migraine without aura (MwoA). A total of 70 MwoA patients were enrolled for the study, including patients with an effective response to NSAIDs (M-eNSAIDs, n = 35) and MwoA patients with ineffective response to NSAIDs (M-ieNSAIDs, n = 35). Furthermore, 33 healthy controls (HCs) were matched for age, sex, and education level. The study participants were subjected to resting-state functional magnetic resonance imaging (fMRI) scanning. Disrupted functional connectivity (FC) patterns from amygdala-based FC analysis and clinical characteristics were considered features that could promote classification through multivariable logistic regression (MLR) and support vector machine (SVM) for predicting the efficacy of NSAIDs. Further, receiver operating characteristic (ROC) curves were drawn to evaluate the predictive ability of the models. The M-eNSAIDs group exhibited enhanced FC with ipsilateral calcarine sulcus (CAL), superior parietal gyrus (SPG), paracentral lobule (PCL), and contralateral superior frontal gyrus (SFG) in the left amygdala. However, the M-eNSAIDs group showed decreased FC with ipsilateral caudate nucleus (CAU), compared to the M-ieNSAIDs group. Moreover, the M-eNSAIDs group showed higher FC with left pre-central gyrus (PreCG) and post-central gyrus (PoCG) compared to HCs. In contrast, the M-ieNSAIDs group showed lower FC with the left anterior cingulate cortex (ACC) and right SFG. Furthermore, the MwoA patients showed increased FC with the left middle frontal gyrus (MFG) in the right amygdala compared to HCs. The disrupted left amygdala-related FC patterns exhibited significant correlations with migraine characteristics in the M-ieNSAIDs group. The MLR and SVM models discriminated clinical efficacy of NSAIDs with an area under the curve (AUC) of 0.891 and 0.896, sensitivity of 0.971 and 0.833, and specificity of 0.629 and 0.875, respectively. These findings suggest that the efficacy of NSAIDs in migraine could be predicted using ML algorithm. Furthermore, this study highlights the role of amygdala-related neural function in revealing underlying migraine-related neuroimaging mechanisms.
Collapse
Affiliation(s)
- Heng-Le Wei
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Hui Xu
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Jin Wang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Gang-Ping Zhou
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Guo
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Sheng Yu
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen-Zhen He
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Junrong Li,
| | - Hong Zhang
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Hong Zhang,
| |
Collapse
|