1
|
Alpuente A, Gallardo VJ, Asskour L, Caronna E, Torres-Ferrus M, Pozo-Rosich P. Dynamic fluctuations of salivary CGRP levels during migraine attacks: association with clinical variables and phenotypic characterization. J Headache Pain 2024; 25:58. [PMID: 38637736 PMCID: PMC11027425 DOI: 10.1186/s10194-024-01772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Migraine is a complex neurological disorder with significant heterogeneity in its clinical presentation and molecular mechanisms. Calcitonin gene-related peptide (CGRP) has emerged as a key player in migraine pathophysiology, but challenges remain in its utilization as a biomarker. This study aimed to investigate salivary CGRP levels during migraine attacks across the frequency spectrum and explore associations with clinical variables. METHODS A prospective longitudinal pilot study was conducted, recruiting migraine patients from an outpatient headache clinic. Salivary CGRP levels were measured at interictal, onset, post-2 h of onset and end-of-attack. Using generalized linear mixed models, we explored the effect of CGRP changes over the attack in presence of depressive symptoms (DS), acute attack treatment, and after three-months of erenumab treatment. Finally, patients were classified and compared according to their CGRP phenotype. RESULTS A total of 44 migraine patients were included (90.9% women), with 80 migraine attacks analyzed. Salivary CGRP levels increased at the onset of migraine attacks. We observed statistically significant interactions between DS and both the linear (Est. [SE]: 19.4 [5.8], p = 0.001) and quadratic terms of time (-19.1 [6.0], p = 0.002). Additionally, a significant three-way interaction within the use of acute treated attack (linear-term: -18.5 [6.2], p = 0.005; quadratic-term: 19.2 [6.8], p = 0.005) was also found. Molecular phenotyping revealed that 72.7% (32/44) of patients presented only CGRP-dependent attacks, while 27.3% (12/44) presented non-CGRP-dependent migraine attacks. Patients with only CGRP-dependent attacks were associated with younger age, shorter disease evolution time, a higher proportion of aura, and fewer monthly headache days (p < 0.05). Exploratory analysis of erenumab treatment effects did not result in changes in CGRP levels during migraine attacks. CONCLUSIONS Our study underscores the dynamic nature of migraine at a molecular level and emphasizes the importance of integrating clinical variables, such as depressive symptoms, in understanding its pathophysiology. The identification of distinct migraine subtypes based on CGRP dependence suggests potential opportunities for personalized treatment approaches.
Collapse
Affiliation(s)
- Alicia Alpuente
- Neurology Department, Headache Clinic, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victor J Gallardo
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laila Asskour
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Edoardo Caronna
- Neurology Department, Headache Clinic, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Torres-Ferrus
- Neurology Department, Headache Clinic, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patricia Pozo-Rosich
- Neurology Department, Headache Clinic, Vall d'Hebron University Hospital, Barcelona, Spain.
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
de Mora F, Messlinger K. Is calcitonin gene-related peptide (CGRP) the missing link in food histamine-induced migraine? A review of functional gut-to-trigeminovascular system connections. Drug Discov Today 2024; 29:103941. [PMID: 38447930 DOI: 10.1016/j.drudis.2024.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Calcitonin gene-related peptide (CGRP) and histamine plasma concentrations increase during migraine attacks. Both mediators are potent vasodilators, and they have been shown to reciprocally contribute to the release of each other in the trigeminovascular system, possibly driving migraine development. A high-histamine-content diet triggers migraine in patients who have histamine degradation deficiency owing to diaminooxidase (DAO) gene mutations. Therefore, studying functional links between exogenous histamine and CGRP seems promising for the understanding of diet-induced migraine generation. Notably, there is a lack of knowledge about the interplay of the enteric nervous system and the spinal/trigeminal somatosensory system with regard to CGRP and histamine. Based on background evidence, we propose that a functional interconnection between exogenous histamine and CGRP contributes to migraine development.
Collapse
Affiliation(s)
- Fernando de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Edificio V, Universidad Autónoma de Barcelona, Campus UAB - 08193 Bellaterra, Barcelona, Spain
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, D-91054 Erlangen, Germany.
| |
Collapse
|
3
|
Labastida-Ramírez A, Caronna E, Gollion C, Stanyer E, Dapkute A, Braniste D, Naghshineh H, Meksa L, Chkhitunidze N, Gudadze T, Pozo-Rosich P, Burstein R, Hoffmann J. Mode and site of action of therapies targeting CGRP signaling. J Headache Pain 2023; 24:125. [PMID: 37691118 PMCID: PMC10494408 DOI: 10.1186/s10194-023-01644-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Targeting CGRP has proved to be efficacious, tolerable, and safe to treat migraine; however, many patients with migraine do not benefit from drugs that antagonize the CGRPergic system. Therefore, this review focuses on summarizing the general pharmacology of the different types of treatments currently available, which target directly or indirectly the CGRP receptor or its ligand. Moreover, the latest evidence regarding the selectivity and site of action of CGRP small molecule antagonists (gepants) and monoclonal antibodies is critically discussed. Finally, the reasons behind non-responders to anti-CGRP drugs and rationale for combining and/or switching between these therapies are addressed.
Collapse
Affiliation(s)
- Alejandro Labastida-Ramírez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
| | - Edoardo Caronna
- Headache Unit, Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
- Headache Research Group, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | | | - Diana Braniste
- Institute of Neurology and Neurosurgery, Diomid Gherman, Chișinău, Moldova
- State University of Medicine and Pharmacy, Nicolae Testemițanu, Moldova
| | - Hoda Naghshineh
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Science, Tehran, Iran
| | - Liga Meksa
- Headache Unit, Neurology and Neurosurgery Department, Riga East University Hospital Gailezers, Riga, Latvia
| | | | - Tamari Gudadze
- Department of Neurology, Christian Hospital Unna, Unna, Germany
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
- Headache Research Group, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
- Center for Life Science, Room 649, 3 Blackfan Circle, Boston, MA, 02215, USA
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE1 1UL, UK.
- NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, UK.
| |
Collapse
|
4
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Frank F, Kaltseis K, Messlinger K, Broessner G. Short Report of Longitudinal CGRP-Measurements in Migraineurs During a Hypoxic Challenge. Front Neurol 2022; 13:925748. [PMID: 35968307 PMCID: PMC9367467 DOI: 10.3389/fneur.2022.925748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Calcitonin gene related peptide (CGRP) plays a key role in the pathophysiology of migraine and is therefore considered a potential biomarker for primary headache disorders. The challenge remaining is establishing standardized protocols for its assessment in various extracellular compartments and identifying pathological situations associated with an increase in CGRP. Methods We performed longitudinal measurements of CGRP plasma levels in 30 volunteers with the diagnosis of episodic migraine with and without aura under controlled circumstances during an induced migraine attack under a hypoxic challenge. Blood samples were collected from a cubital vein and CGRP plasma levels measured using ELISA. Results CGRP levels varied significantly between the subjects at baseline (15.48–1,889.31 pg/ml) but were neither associated with socio-demographic data nor with headache/migraine frequency or intensity collected before hypoxic exposure. CGRP levels during hypoxia fluctuated around baseline and increased with prolonged hypoxia but did not differ significantly in subjects with migraine or headache compared to those without. However, subjects experiencing migraine without aura showed significantly higher levels than those with aura. Ictal CGRP levels were increased in females, in subjects with a negative family history regarding headaches, in those older than 30 years of age or with a recent headache attack before the experiment (p < 0.05). Conclusion CGRP plasma levels seem to be highly variable even at baseline in migraine patients and increased during hypoxic challenge and migraine attacks. This is the first in human longitudinal measurement of peripheral CGRP levels during induced migraine attacks using a highly standardized protocol.
Collapse
Affiliation(s)
- Florian Frank
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Kaltseis
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Gregor Broessner
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Gregor Broessner
| |
Collapse
|
6
|
From spreading depolarization to epilepsy with neuroinflammation: The role of CGRP in cortex. Exp Neurol 2022; 356:114152. [PMID: 35760098 DOI: 10.1016/j.expneurol.2022.114152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
CGRP release plays a major role in migraine pain by activating the trigeminal pain pathways. Here we explored putative additional effects of CGRP on cortical circuits and investigated whether CGRP affects cortical excitability, cortical spreading depolarization (CSD), a phenomenon associated with migraine aura, blood-brain-barrier (BBB) and microglial morphology. We used immunohistochemistry to localize CGRP and the CGRP receptor (CGRP-R) in native cortex and evaluated morphology of microglia and integrity of the BBB after exposure to CGRP. In anesthetized rats we applied CGRP and the CGRP-R antagonist BIBN4096BS locally to the exposed cortex and monitored the spontaneous electrocorticogram and CSDs evoked by remote KCl pressure microinjection. In mouse brain slices CGRP effects on neuronal activity were explored by multielectrode array. CGRP immunoreactivity was detectable in intracortical vessels, and all cortical neurons showed CGRP-R immunoreactivity. In rat cortex in vivo, topical CGRP induced periods of epileptiform discharges, however, also dose-dependently reduced CSD amplitudes and propagation velocity. BIBN4096BS prevented these effects. CGRP evoked synchronized bursting activity in mouse cortical but not in cerebellar slices. Topical application of CGRP to rat cortex induced plasma extravasation and this was associated with reduced ramification of microglial cells. From these findings we conclude that CGRP induces a pathophysiological state in the cortex, consisting in neuronal hyperexcitability and neuroinflammation Thus, CGRP may have a pronounced impact on brain functions during migraine episodes supporting the benefit of CGRP antagonists for clinical use. However, increased cortical CGRP may end the CSD-induced aura phase of migraine.
Collapse
|
7
|
Pellesi L, Chaudhry BA, Vollesen ALH, Snoer AH, Baumann K, Skov PS, Jensen RH, Ashina M. PACAP38- and VIP-induced cluster headache attacks are not associated with changes of plasma CGRP or markers of mast cell activation. Cephalalgia 2021; 42:687-695. [PMID: 34822741 DOI: 10.1177/03331024211056248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) and vasoactive intestinal polypeptide can provoke cluster headache attacks in up to half of cluster headache patients in their active phase. At present, it is unknown whether provoked attacks are mediated via calcitonin gene-related peptide or mast cell activation. METHODS All enrolled patients with cluster headache were randomly allocated to receive a continuous infusion of either PACAP38 (10 pmol/kg/min) or vasoactive intestinal polypeptide (8 pmol/kg/min) over 20 min. We collected clinical data and measured plasma levels of calcitonin gene-related peptide and markers of mast cell activation (tryptase and histamine) at fixed time points: at baseline (T0), at the end of the infusion (T20), 10 min after the infusion (T30), and 70 min after the infusion (T90). RESULTS Blood was collected from episodic cluster headache patients in active phase (n = 14), episodic cluster headache patients in remission (n = 15), and chronic cluster headache patients (n = 15). At baseline, plasma levels of calcitonin gene-related peptide, tryptase, and histamine were not different among the three study groups. Plasma levels of calcitonin gene-related peptide (p = 0.7074), tryptase (p = 0.6673), or histamine (p = 0.4792) remained unchanged during provoked attacks compared to attack-free patients. CONCLUSION Cluster headache attacks provoked by either PACAP38 or vasoactive intestinal polypeptide were not accompanied by alterations of plasma calcitonin gene-related peptide, tryptase or histamine. The provoked attacks may not be mediated by calcitonin gene-related peptide or mast cell activation.Trial Registration: The study is registered at ClinicalTrials.gov (NCT03814226).
Collapse
Affiliation(s)
- Lanfranco Pellesi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Basit Ali Chaudhry
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Luise Haulund Vollesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agneta Henriette Snoer
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Rigmor Højland Jensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|