1
|
Dhanapal ACTA, Wuni R, Ventura EF, Chiet TK, Cheah ESG, Loganathan A, Quen PL, Appukutty M, Noh MFM, Givens I, Vimaleswaran KS. Implementation of Nutrigenetics and Nutrigenomics Research and Training Activities for Developing Precision Nutrition Strategies in Malaysia. Nutrients 2022; 14:5108. [PMID: 36501140 PMCID: PMC9740135 DOI: 10.3390/nu14235108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Nutritional epidemiological studies show a triple burden of malnutrition with disparate prevalence across the coexisting ethnicities in Malaysia. To tackle malnutrition and related conditions in Malaysia, research in the new and evolving field of nutrigenetics and nutrigenomics is essential. As part of the Gene-Nutrient Interactions (GeNuIne) Collaboration, the Nutrigenetics and Nutrigenomics Research and Training Unit (N2RTU) aims to solve the malnutrition paradox. This review discusses and presents a conceptual framework that shows the pathway to implementing and strengthening precision nutrition strategies in Malaysia. The framework is divided into: (1) Research and (2) Training and Resource Development. The first arm collects data from genetics, genomics, transcriptomics, metabolomics, gut microbiome, and phenotypic and lifestyle factors to conduct nutrigenetic, nutrigenomic, and nutri-epigenetic studies. The second arm is focused on training and resource development to improve the capacity of the stakeholders (academia, healthcare professionals, policymakers, and the food industry) to utilise the findings generated by research in their respective fields. Finally, the N2RTU framework foresees its applications in artificial intelligence and the implementation of precision nutrition through the action of stakeholders.
Collapse
Affiliation(s)
- Anto Cordelia T. A. Dhanapal
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6DZ, UK
| | - Eduard F. Ventura
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6DZ, UK
| | - Teh Kuan Chiet
- Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Eddy S. G. Cheah
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Annaletchumy Loganathan
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Phoon Lee Quen
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Mahenderan Appukutty
- Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
- Nutrition Society of Malaysia, Jalan PJS 1/48 off Jalan Klang Lama, Petaling Jaya 46150, Malaysia
| | - Mohd F. M. Noh
- Institute for Medical Research, National Institutes of Health, Jalan Setia Murni U13/52, Shah Alam 40170, Malaysia
| | - Ian Givens
- Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading RG6 6AH, UK
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6DZ, UK
- Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading RG6 6AH, UK
| |
Collapse
|
2
|
Lim JL, Lohmann K, Tan AH, Tay YW, Ibrahim KA, Abdul Aziz Z, Mawardi AS, Puvanarajah SD, Lim TT, Looi I, Ooi JCE, Chia YK, Muthusamy KA, Bauer P, Rolfs A, Klein C, Ahmad-Annuar A, Lim SY. Glucocerebrosidase (GBA) gene variants in a multi-ethnic Asian cohort with Parkinson's disease: mutational spectrum and clinical features. J Neural Transm (Vienna) 2021; 129:37-48. [PMID: 34779914 DOI: 10.1007/s00702-021-02421-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
GBA variants are associated with increased risk and earlier onset of Parkinson's disease (PD), and more rapid disease progression especially with "severe" variants typified by p.L483P. GBA mutation screening studies from South-East Asia, with > 650 million inhabitants of diverse ancestries, are very limited. We investigated the spectrum of GBA variants, and associated clinico-demographic features, in a multi-ethnic PD cohort in Malaysia. Patients (n = 496) were recruited from seven centres, primarily of Chinese (45%), Malay (37%), and Indian (13%) ethnicities. All GBA coding exons were screened using a next-generation sequencing-based PD gene panel and verified with Sanger sequencing. We identified 14 heterozygous GBA alleles consisting of altogether 17 missense variants (8 classified as pathogenic or likely pathogenic for PD) in 25 (5.0%) patients, with a substantially higher yield among early (< 50 years) vs. late-onset patients across all three ethnicities (9.1-13.2% vs. 1.0-3.2%). The most common variant was p.L483P (including RecNciI, n = 11, 2.2%), detected in all three ethnicities. Three novel variants/recombinant alleles of uncertain significance were found; p.P71L, p.L411P, and p.L15S(;)S16G(;)I20V. The common European risk variants, p.E365K, p.T408M, and p.N409S, were not detected. A severe disease course was noted in the majority of GBA-variant carriers, across a range of detected variants. We report a potentially novel observation of spine posture abnormalities in GBA-variant carriers. This represents the largest study on GBA variation from South-East Asia, and highlights that these populations, especially those with EOPD, would be relevant for studies including clinical trials targeting GBA pathways.
Collapse
Affiliation(s)
- Jia Lun Lim
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Ai Huey Tan
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia.,Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia
| | - Khairul Azmi Ibrahim
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | - Zariah Abdul Aziz
- Department of Medicine, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia
| | | | | | - Thien Thien Lim
- Island Hospital, Penang, Malaysia.,Penang General Hospital, Penang, Malaysia
| | - Irene Looi
- Department of Medicine and Clinical Research Centre, Hospital Seberang Jaya, Penang, Malaysia
| | - Joshua Chin Ern Ooi
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Yuen Kang Chia
- Department of Neurology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Peter Bauer
- Centogene AG, Am Strande 7, 18057, Rostock, Germany
| | - Arndt Rolfs
- Centogene AG, Am Strande 7, 18057, Rostock, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen-Yang Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson's and Related Disorders, University of Malaya, Kuala Lumpur, Malaysia. .,Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Syam AF, Waskito LA, Rezkitha YAA, Simamora RM, Yusuf F, Danchi KE, Bakry AF, Arnelis, Mulya E, Siregar GA, Sugihartono T, Maulahela H, Doohan D, Miftahussurur M, Yamaoka Y. Helicobacter pylori in the Indonesian Malay's descendants might be imported from other ethnicities. Gut Pathog 2021; 13:36. [PMID: 34088343 PMCID: PMC8178862 DOI: 10.1186/s13099-021-00432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Even though the incidence of H. pylori infection among Malays in the Malay Peninsula is low, we observed a high H. pylori prevalence in Sumatra, which is the main residence of Indonesian Malays. H. pylori prevalence among Indonesian Malay descendants was investigated. RESULTS Using a combination of five tests, 232 recruited participants were tested for H- pylori and participants were considered positive if at least one test positive. The results showed that the overall H. pylori prevalence was 17.2%. Participants were then categorized into Malay (Aceh, Malay, and Minang), Java (Javanese and Sundanese), Nias, and Bataknese groups. The prevalence of H. pylori was very low among the Malay group (2.8%) and no H. pylori was observed among the Aceh. Similarly, no H. pylori was observed among the Java group. However, the prevalence of H. pylori was high among the Bataknese (52.2%) and moderate among the Nias (6.1%). Multilocus sequence typing showed that H. pylori in Indonesian Malays classified as hpEastAsia with a subpopulation of hspMaori, suggesting that the isolated H. pylori were not a specific Malays H. pylori. CONCLUSIONS Even though the ethnic groups live together as a community, we observed an extremely low H. pylori infection rate among Indonesian Malay descendants with no specific Indonesian Malay H. pylori. The results suggest that H. pylori was not originally among these groups and H. pylori was imported from other ethnic groups.
Collapse
Affiliation(s)
- Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine-Cipto Mangunkusumo Teaching Hospital, University of Indonesia, Jakarta, Indonesia
| | - Langgeng Agung Waskito
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Faculty of Medicine, University of Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Rentha Monica Simamora
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fauzi Yusuf
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Zainoel Abidin General Hospital, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Kanserina Esthera Danchi
- Department of Internal Medicine, Dr. M Thomsen Nias Gunungsitoli General Hospital, Nias, Indonesia
| | - Ahmad Fuad Bakry
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Sriwijaya University, Palembang, Indonesia
| | - Arnelis
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Erwin Mulya
- Department of Internal Medicine, Cimacan General Hospital, Cianjur, Indonesia
| | - Gontar Alamsyah Siregar
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Sumatera Utara, Medan, Indonesia
| | - Titong Sugihartono
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr Soetomo Teaching Hospital, Universitas Airlangga, Jalan Mayjend Prof. Dr. Moestopo No. 6-8, Surabaya, 60286, Indonesia
| | - Hasan Maulahela
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine-Cipto Mangunkusumo Teaching Hospital, University of Indonesia, Jakarta, Indonesia
| | - Dalla Doohan
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Miftahussurur
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr Soetomo Teaching Hospital, Universitas Airlangga, Jalan Mayjend Prof. Dr. Moestopo No. 6-8, Surabaya, 60286, Indonesia.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama Machi, Yufu City, Oita, 879-5593, Japan.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Hanis Zainal Abidin NW, Mohd Nor N, Sundararajulu P, Zafarina Z. Understanding the genetic history of Malay populations in Peninsular Malaysia via KIR genes diversity. Am J Hum Biol 2020; 33:e23545. [PMID: 33289243 DOI: 10.1002/ajhb.23545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Killer cell immunoglobulin-like receptor (KIR) genes with high polymorphism at genotypic levels are important in providing immune defense and have been expanded towards human population genetics. The aim of this study is to provide supporting information from this new biomarker to strengthen the comprehension of genetic history of the complex Malay population. METHODS KIR genotyping for 213 unadmixed Malay individuals from six subethnic groups (Acheh, Bugis, Champa, Mandailing, Minang and Kedah) was carried out using PCR-SSP (sequence specific primers) method in 16 independent reactions. RESULTS The most frequent KIR genotype observed is AA1, followed by AB4 and AB5. Five genotypes; AA1, AB4, AB5, AB7 and AB8 were shared among all Malay subethnic groups. The highest frequency of KIR haplotype A was observed in Minang Malays, whereas Acheh and Kedah Malays carry a balanced distribution of A and B KIR haplotypes. PCA for the KIR genes clearly illustrated six ethnogeographical population clusters; Africans, Amerindian, Northeast Asian, South Asian, Oceania and Southeast Asian populations. All six Malay subethnic groups fell within the Southeast Asian cluster. CONCLUSIONS The complex array of KIR genotypes observed in the Malays indicates their historical interactions with various populations, especially with the Chinese, Indians and Orang Asli. This study has demonstrated the potential of KIR genes as a genetic marker for deducing population structure and genetic relationship between populations.
Collapse
Affiliation(s)
| | - Norazmi Mohd Nor
- Human Identification/DNA Unit, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Panneerchelvam Sundararajulu
- Human Identification/DNA Unit, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zainuddin Zafarina
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| |
Collapse
|
5
|
Hakim HM, Khan HO, Lalung J, Nelson BR, Chambers GK, Edinur HA. Autosomal STR Profiling and Databanking in Malaysia: Current Status and Future Prospects. Genes (Basel) 2020; 11:genes11101112. [PMID: 32977385 PMCID: PMC7597947 DOI: 10.3390/genes11101112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Science and technology are extensively used in criminal investigation. From the mid- to late-1980s, one of the scientific discoveries that has had a particularly remarkable impact on this field has been the use of highly variable DNA sequence regions (minisatellites) in the human genome for individual identification. The technique was initially referred to as DNA fingerprinting, but is now more widely referred to as DNA profiling. Since then, many new developments have occurred within this area of science. These include the introduction of new genetic markers (microsatellites also known as short tandem repeats/STRs), the use of the polymerase chain reaction for target amplification, the development of DNA databases (databanking), and the advancement and/or improvement of genotyping protocols and technologies. In 2019, we described the progress of DNA profiling and DNA databanking in Malaysia for the first time. This report included information on DNA analysis regulations and legislation, STR genotyping protocols, database management, and accreditation status. Here, we provide an update on the performance of our DNA databank (numbers of DNA profiles and hits) plus the technical issues associated with correctly assigning the weight of evidence for DNA profiles in an ethnically diverse population, and the potential application of rapid DNA testing in the country. A total of 116,534 DNA profiles were obtained and stored in the Forensic DNA Databank of Malaysia (FDDM) by 2019, having increased from 70,570 in 2017. The number of hits increased by more than three-fold in just two years, where 17 and 69 hits between the DNA profiles stored in the FDDM and those from crime scenes, suspects, detainees, drug users, convicts, missing persons, or volunteers were recorded in 2017 and 2019, respectively. Forensic DNA analysis and databanking are thus progressing well in Malaysia and have already contributed to many criminal investigations. However, several other issues are discussed here, including the need for STR population data for uncharacterized population groups, and pilot trials for adopting rapid DNA profiling technology. These aspects should be considered by policy makers and law enforcement agencies in order to increase the reliability and efficiency of DNA profiling in criminal cases and in kinship analysis in Malaysia.
Collapse
Affiliation(s)
- Hashom Mohd Hakim
- DNA Databank Division (D13), Criminal Investigation Department, Royal Malaysian Police, Cheras 43200, Selangor, Malaysia;
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
- Correspondence: (H.M.H.); (H.A.E.)
| | - Hussein Omar Khan
- DNA Databank Division (D13), Criminal Investigation Department, Royal Malaysian Police, Cheras 43200, Selangor, Malaysia;
| | - Japareng Lalung
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
| | - Bryan Raveen Nelson
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Geoffrey Keith Chambers
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand;
| | - Hisham Atan Edinur
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Environmental Futures Research Institute, Griffith University, Nathan, QLD 4111, Australia
- Correspondence: (H.M.H.); (H.A.E.)
| |
Collapse
|
6
|
Jamaluddin J, Mohd Khair NK, Vinodamaney SD, Othman Z, Abubakar S. Copy number variation of CCL3L1 among three major ethnic groups in Malaysia. BMC Genet 2020; 21:1. [PMID: 31900126 PMCID: PMC6942282 DOI: 10.1186/s12863-019-0803-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 12/17/2019] [Indexed: 11/30/2022] Open
Abstract
Background C-C motif Chemokine Ligand 3 Like 1 (CCL3L1) is a multiallelic copy number variable, which plays a crucial role in immunoregulatory and hosts defense through the production of macrophage inflammatory protein (MIP)-1α. Variable range of the CCL3L1 copies from 0 to 14 copies have been documented in several different populations. However, there is still lack of report on the range of CCL3L1 copy number exclusively among Malaysians who are a multi-ethnic population. Thus, this study aims to extensively examine the distribution of CCL3L1 copy number in the three major populations from Malaysia namely Malay, Chinese and Indian. A diploid copy number of CCL3L1 for 393 Malaysians (Malay = 178, Indian = 90, and Chinese = 125) was quantified using Paralogue Ratio Tests (PRTs) and then validated with microsatellites analysis. Results To our knowledge, this is the first report on the CCL3L1 copy number that has been attempted among Malaysians and the Chinese ethnic group exhibits a diverse pattern of CCL3L1 distribution copy number from the Malay and Indian (p < 0.0001). The CCL3L1 ranged from 0 to 8 copies for both the Malay and Indian ethnic groups while 0 to 10 copies for the Chinese ethnic. Consequently, the CCL3L1 copy number among major ethnic groups in the Malaysian population is found to be significantly varied when compared to the European population (p < 0.0001). The mean/median reported for the Malay, Chinese, Indian, and European are 2.759/2.869, 3.453/3.290, 2.437/1.970 and 2.001/1.940 respectively. Conclusion This study reveals the existence of genetic variation of CCL3L1 in the Malaysian population, and suggests by examining genetic diversity on the ethnicity, and specific geographical region could help in reconstructing human evolutionary history and for the prediction of disease risk related to the CCL3L1 copy number.
Collapse
Affiliation(s)
- Jalilah Jamaluddin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Nur Khairina Mohd Khair
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Shameni Devi Vinodamaney
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Zulkefley Othman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Suhaili Abubakar
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Yahya P, Sulong S, Harun A, Wangkumhang P, Wilantho A, Ngamphiw C, Tongsima S, Zilfalil BA. Ancestry-informative marker (AIM) SNP panel for the Malay population. Int J Legal Med 2019; 134:123-134. [PMID: 31760471 DOI: 10.1007/s00414-019-02184-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
Ancestry-informative markers (AIMs) can be used to infer the ancestry of an individual to minimize the inaccuracy of self-reported ethnicity in biomedical research. In this study, we describe three methods for selecting AIM SNPs for the Malay population (Malay AIM panel) using different approaches based on pairwise FST, informativeness for assignment (In), and PCA-correlated SNPs (PCAIMs). These Malay AIM panels were extracted from genotype data stored in SNP arrays hosted by the Malaysian node of the Human Variome Project (MyHVP) and the Singapore Genome Variation Project (SGVP). In particular, genotype data from a total of 165 Malay individuals were analyzed, comprising data on 117 individual genotypes from the Affymetrix SNP-6 SNP array platform and data on 48 individual genotypes from the OMNI 2.5 Illumina SNP array platform. The HapMap phase 3 database (1397 individuals from 11 populations) was used as a reference for comparison with the Malay genotype data. The accuracy of each resulting Malay AIM panel was evaluated using a machine learning "ancestry-predictive model" constructed by using WEKA, a comprehensive machine learning platform written in Java. A total of 1250 SNPs were finally selected, which successfully identified Malay individuals from other world populations with an accuracy of 90%, but the accuracy decreased to 80% using 157 SNPs according to the pairwise FST method, while a panel of 200 SNPs selected using In and PCAIMs could be used to identify Malay individuals with an accuracy of approximately 80%.
Collapse
Affiliation(s)
- Padillah Yahya
- Department of Paediatrics, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Pongsakorn Wangkumhang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang District, Pathum Thani, 12120, Thailand
| | - Alisa Wilantho
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang District, Pathum Thani, 12120, Thailand
| | - Chumpol Ngamphiw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang District, Pathum Thani, 12120, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang District, Pathum Thani, 12120, Thailand
| | - Bin Alwi Zilfalil
- Department of Paediatrics, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
8
|
Yahya P, Sulong S, Harun A, Wan Isa H, Ab Rajab NS, Wangkumhang P, Wilantho A, Ngamphiw C, Tongsima S, Zilfalil BA. Analysis of the genetic structure of the Malay population: Ancestry-informative marker SNPs in the Malay of Peninsular Malaysia. Forensic Sci Int Genet 2017; 30:152-159. [DOI: 10.1016/j.fsigen.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 12/27/2022]
|
9
|
Norhalifah HK, Syaza FH, Chambers GK, Edinur HA. The genetic history of Peninsular Malaysia. Gene 2016; 586:129-35. [DOI: 10.1016/j.gene.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/17/2016] [Accepted: 04/05/2016] [Indexed: 12/27/2022]
|
10
|
Fine-scale population structure of Malays in Peninsular Malaysia and Singapore and implications for association studies. Hum Genomics 2015. [PMID: 26194999 PMCID: PMC4509480 DOI: 10.1186/s40246-015-0039-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fine scale population structure of Malays - the major population in Malaysia, has not been well studied. This may have important implications for both evolutionary and medical studies. Here, we investigated the population sub-structure of Malay involving 431 samples collected from all states from peninsular Malaysia and Singapore. We identified two major clusters of individuals corresponding to the north and south peninsular Malaysia. On an even finer scale, the genetic coordinates of the geographical Malay populations are in correlation with the latitudes (R2 = 0.3925; P = 0.029). This finding is further supported by the pairwise FST of Malay sub-populations, of which the north and south regions showed the highest differentiation (FST [North–south] = 0.0011). The collective findings therefore suggest that population sub-structure of Malays are more heterogenous than previously expected even within a small geographical region, possibly due to factors like different genetic origins, geographical isolation, could result in spurious association as demonstrated in our analysis. We suggest that cautions should be taken during the stage of study design or interpreting the association signals in disease mapping studies which are expected to be conducted in Malay population in the near future.
Collapse
|