1
|
Su J, Tong Z, Feng Z, Wu S, Zhou F, Li R, Chen W, Ye Z, Guo Y, Yao S, Yu X, Chen Q, Chen L. Protective effects of DcR3-SUMO on lipopolysaccharide-induced inflammatory cells and septic mice. Int J Biol Macromol 2024; 275:133703. [PMID: 38986982 DOI: 10.1016/j.ijbiomac.2024.133703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Despite the high mortality rate associated with sepsis, no specific drugs are available. Decoy receptor 3 (DcR3) is now considered a valuable biomarker and therapeutic target for managing inflammatory conditions. DcR3-SUMO, an analog of DcR3, has a simple production process and high yield. However, its precise underlying mechanisms in sepsis remain unclear. This study investigated the protective effects of DcR3-SUMO on lipopolysaccharide (LPS)-induced inflammatory cells and septic mice. We evaluated the effects of DcR3 intervention and overexpression on intracellular inflammatory cytokine levels in vitro. DcR3-SUMO significantly reduced cytokine levels within inflammatory cells, and notably increased DcR3 protein and mRNA levels in LPS-induced septic mice, confirming its anti-inflammatory efficacy. Our in vitro and in vivo results demonstrated comparable anti-inflammatory effects between DcR3-SUMO and native DcR3. DcR3-SUMO protein administration in septic mice notably enhanced tissue morphology, decreased sepsis scores, and elevated survival rates. Furthermore, DcR3-SUMO treatment effectively lowered inflammatory cytokine levels in the serum, liver, and lung tissues, and mitigated the extent of tissue damage. AlphaFold3 structural predictions indicated that DcR3-SUMO, similar to DcR3, effectively interacts with the three pro-apoptotic ligands, namely TL1A, LIGHT, and FasL. Collectively, DcR3-SUMO and DcR3 exhibit comparable anti-inflammatory effects, making DcR3-SUMO a promising therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China.
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Rui Li
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Zhen Ye
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Guo
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shun Yao
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xing Yu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China.
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
2
|
Su J, Tong Z, Wu S, Zhou F, Chen Q. Research Progress of DcR3 in the Diagnosis and Treatment of Sepsis. Int J Mol Sci 2023; 24:12916. [PMID: 37629097 PMCID: PMC10454171 DOI: 10.3390/ijms241612916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Decoy receptor 3 (DcR3), a soluble glycosylated protein in the tumor necrosis factor receptor superfamily, plays a role in tumor and inflammatory diseases. Sepsis is a life-threatening organ dysfunction caused by the dysregulation of the response to infection. Currently, no specific drug that can alleviate or even cure sepsis in a comprehensive and multi-level manner has been found. DcR3 is closely related to sepsis and considerably upregulated in the serum of those patients, and its upregulation is positively correlated with the severity of sepsis and can be a potential biomarker for diagnosis. DcR3 alone or in combination with other markers has shown promising results in the early diagnosis of sepsis. Furthermore, DcR3 is a multipotent immunomodulator that can bind FasL, LIGHT, and TL1A through decoy action, and block downstream apoptosis and inflammatory signaling. It also regulates T-cell and macrophage differentiation and modulates immune status through non-decoy action; therefore, DcR3 could be a potential drug for the treatment of sepsis. The application of DcR3 in the treatment of a mouse model of sepsis also achieved good efficacy. Here, we introduce and discuss the progress in, and suggest novel ideas for, research regarding DcR3 in the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Z.T.); (S.W.); (F.Z.)
| |
Collapse
|
3
|
Di W, Jin Z, Lei W, Liu Q, Yang W, Zhang S, Lu C, Xu X, Yang Y, Zhao H. Protection of melatonin treatment and combination with traditional antibiotics against septic myocardial injury. Cell Mol Biol Lett 2023; 28:35. [PMID: 37101253 PMCID: PMC10134561 DOI: 10.1186/s11658-022-00415-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/23/2022] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Heart failure is a common complication of sepsis with a high mortality rate. It has been reported that melatonin can attenuate septic injury due to various properties. On the basis of previous reports, this study will further explore the effects and mechanisms of melatonin pretreatment, posttreatment, and combination with antibiotics in the treatment of sepsis and septic myocardial injury. METHODS AND RESULTS Our results showed that melatonin pretreatment showed an obvious protective effect on sepsis and septic myocardial injury, which was related to the attenuation of inflammation and oxidative stress, the improvement of mitochondrial function, the regulation of endoplasmic reticulum stress (ERS), and the activation of the AMPK signaling pathway. In particular, AMPK serves as a key effector for melatonin-initiated myocardial benefits. In addition, melatonin posttreatment also had a certain degree of protection, while its effect was not as remarkable as that of pretreatment. The combination of melatonin and classical antibiotics had a slight but limited effect. RNA-seq detection clarified the cardioprotective mechanism of melatonin. CONCLUSION Altogether, this study provides a theoretical basis for the application strategy and combination of melatonin in septic myocardial injury.
Collapse
Affiliation(s)
- Wencheng Di
- Department of Cardiovascular Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, 29 Bulan Road, Shenzhen, Guangdong Province, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Military Medical University, 127 Changle West Road, Xi'an, China
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Shaofei Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Xiaoling Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, 229 Taibai North Road, Xi'an, China.
- Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Military Medical University, 1 Xinsi Road, Xi'an, China.
| |
Collapse
|
4
|
Zhao S, Wu W, Liao J, Zhang X, Shen M, Li X, Lin Q, Cao C. Molecular mechanisms underlying the renal protective effects of coenzyme Q10 in acute kidney injury. Cell Mol Biol Lett 2022; 27:57. [PMID: 35869439 PMCID: PMC9308331 DOI: 10.1186/s11658-022-00361-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractCoenzyme Q10 (CoQ10), an endogenous antioxidant, has been reported frequently to exert an outstanding protective effect on multiple organ injury, including acute kidney injury (AKI). In this study, we aim to summarize all the current evidence of the protective action of CoQ10 against AKI as there are presently no relevant reviews in the literature. After a systematic search, 20 eligible studies, either clinical trials or experimental studies, were included and further reviewed. CoQ10 treatment exhibited a potent renal protective effect on various types of AKI, such as AKI induced by drugs (e.g., ochratoxin A, cisplatin, gentamicin, L-NAME, and nonsteroidal anti-inflammatory drug), extracorporeal shock wave lithotripsy (ESWL), sepsis, contrast media, and ischemia–reperfusion injury. The renal protective role of CoQ10 against AKI might be mediated by the antiperoxidative, anti-apoptotic, and anti-inflammatory potential of CoQ10. The molecular mechanisms for the protective effects of CoQ10 might be attributed to the regulation of multiple essential genes (e.g., caspase-3, p53, and PON1) and signaling cascades (e.g., Nrf2/HO-1 pathway). This review highlights that CoQ10 may be a potential strategy in the treatment of AKI.
Collapse
|
5
|
Predictive values of the SOFA score and procalcitonin for septic shock after percutaneous nephrolithotomy. Urolithiasis 2022; 50:729-735. [PMID: 36214882 PMCID: PMC9584975 DOI: 10.1007/s00240-022-01366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
Abstract
To investigate the value of combination of the Sequential Organ Failure Assessment (SOFA) score and procalcitonin (PCT) for prediction of septic shock after percutaneous nephrolithotomy (PCNL). A total of 1328 patients receiving PCNL for renal calculi were allocated into control group (without septic shock) and septic shock group, and related data were retrospectively collected. Univariate analysis was firstly performed, and the variables with two sided P < 0.10 were then included in logistic regression analysis to determine independent risk factors. Receiver operating characteristic (ROC) curve was utilized to evaluate the predictive values. Area under curve (AUC) was compared using Z test. Postoperative septic shock was developed in 61 patients (4.6%) and not developed in 1267 patients (95.3%). Multivariate analysis demonstrated that SOFA score (OR: 1.316, 95% CI 1.125–1.922), PCT (OR: 1.205, 95% CI 1.071–1.696) and operative time (OR: 1.108, 95% CI 1.032–1.441) were independent risk factors for septic shock with adjustment for sex, history of urolithiasis surgery, positive history of urine culture and history of PCNL. The ROC curves demonstrated that the AUCs of SOFA score and PCT for predicting septic shock after PCNL were 0.896 (95% CI 0.866–0.927) and 0.792 (95% CI 0.744–0.839), respectively. The AUC of their combination was 0.971 (95% CI 0.949–0.990), which was higher than those of individual predictions (vs 0.896, Z = 4.086, P < 0.001; vs 0.792, Z = 6.983, P < 0.001). Both the SOFA score and PCT could be applied in predicting septic shock after PCNL, and their combination could further elevate the diagnostic ability.
Collapse
|
6
|
Abstract
BACKGROUND Soluble urokinase-type plasminogen activator receptor (suPAR) has the potential to diagnose infectious diseases. Due to the lack of reliable biomarkers and the importance of timely diagnosis for sepsis treatment, we conducted this systematic review and meta-analysis to evaluate the value of suPAR diagnosis and prognosis for sepsis. METHODS PubMed, Embase, Web of Science, and Cochrane Library databases were searched for studies, which reported the value of suPAR diagnosis and/or prognosis in patients with sepsis. RESULTS A total of 30 studies involving 6,906 patients were included. Sensitivity and specificity of suPAR for diagnosing sepsis were 0.76 [95% confidence interval (CI), 0.63-0.86] and 0.78 (95% CI, 0.72-0.83), respectively. The area under the summary receiver-operating characteristic curve (AUC) was 0.83 (95% CI, 0.80-0.86). Pooled sensitivity and specificity for predicting mortality were 0.74 (95% CI, 0.67-0.80) and 0.70 (95% CI, 0.63-0.76), respectively, with AUC of 0.78 (95% CI, 0.74-0.82). In addition, AUC for differentiating sepsis from systemic inflammatory response syndrome (SIRS) was 0.81 (95% CI, 0.77-0.84), and the sensitivity and specificity were 0.67 (95% CI, 0.58-0.76) and 0.82 (95% CI, 0.73-0.88), respectively. CONCLUSION suPAR is a feasible biomarker for timely diagnosis and prognosis of sepsis. Compared with effective value of procalcitonin (PCT) identified by previous meta-analysis, suPAR has similar clinical guiding value, whereas suPAR exhibits higher specificity, which can facilitate the deficiencies of PCT. suPAR also shows a diagnostic value in differentiating sepsis from SIRS. Considering the lack of biomarkers for sepsis and the similar clinical value of suPAR and PCT, suPAR should be considered as a biomarker in clinical practice for sepsis.
Collapse
|
7
|
Yan S, Zhang G. Predictive performance of critical illness scores and procalcitonin in sepsis caused by different gram-stain bacteria. Clinics (Sao Paulo) 2021; 76:e2610. [PMID: 34133658 PMCID: PMC8158675 DOI: 10.6061/clinics/2021/e2610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/15/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES To compare the early and late predictive values of several critical illness scores (CISs) and biomarkers in sepsis-3 patients with bloodstream infections (BSIs) and to identify the prognostic value of procalcitonin (PCT) for different gram-stain bacteria infections. METHODS Patients with at least one positive blood culture within 24h of emergency department admission and with a final diagnosis of sepsis/septic shock were enrolled. CISs were calculated based on the first parameters on the day of admission. The receiver operating characteristics curve was used to analyze the predictive value of CISs and biomarkers for early and late mortality. RESULTS Of 834 enrolled patients with sepsis-3, death occurred in 214 patients within 28 days and in 273 patients within 60 days. Compared with biomarkers, CISs showed a significantly higher area under the curve (AUC) in the prediction of early and late mortality (p<0.01), especially for patients with GNB infection. The Sequential Organ Failure Assessment score showed a higher AUC for predicting early mortality than the Mortality in Emergency Department Sepsis score (p=0.036). Compared with GNB infections, the AUC values of the PCT for gram-positive bacteria (GPB) infections were higher for predicting early or late mortality; PCT showed higher AUC than high-sensitivity C-reactive protein and white blood cells for predicting early mortality (p<0.05). CONCLUSIONS CISs were more advantageous in the assessment of early and late prognosis, especially for patients with GNB infections; however, for sepsis with GPB infection, PCT can be used for the prediction of early mortality.
Collapse
|
8
|
Kiyan Y, Tkachuk S, Rong S, Gorrasi A, Ragno P, Dumler I, Haller H, Shushakova N. TLR4 Response to LPS Is Reinforced by Urokinase Receptor. Front Immunol 2020; 11:573550. [PMID: 33362762 PMCID: PMC7757075 DOI: 10.3389/fimmu.2020.573550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
GPI-anchored uPAR is the receptor for the extracellular serine protease urokinase-type plasminogen activator (uPA). Though uPAR role in inflammatory processes is documented, underlying mechanisms are not fully understood. In this study we demonstrate that uPAR is a part of Toll-like receptor 4 (TLR4) interactome. Downregulation of uPAR expression resulted in diminished LPS-induced TLR4 signaling, less activation of NFκB, and decreased secretion of inflammatory mediators in myeloid and non-myeloid cells in vitro. In vivo uPAR−/− mice demonstrated better survival, strongly diminished inflammatory response and better organ functions in cecal ligation and puncture mouse polymicrobial sepsis model. Mechanistically, GPI-uPAR and soluble uPAR colocalized with TLR4 on the cell membrane and interacted with scavenger receptor CD36. Our data show that uPAR can interfere with innate immunity response via TLR4 and this mechanism represents a potentially important target in inflammation and sepsis therapy.
Collapse
Affiliation(s)
- Yulia Kiyan
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Sergey Tkachuk
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | | | | | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| | - Inna Dumler
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Nephrology Department, Hannover Medical School, Hannover, Germany
| | - Nelli Shushakova
- Nephrology Department, Hannover Medical School, Hannover, Germany.,Phenos GmbH, Hannover, Germany
| |
Collapse
|
9
|
Biomarkers for Point-of-Care Diagnosis of Sepsis. MICROMACHINES 2020; 11:mi11030286. [PMID: 32164268 PMCID: PMC7143187 DOI: 10.3390/mi11030286] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/18/2022]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. In 2017, almost 50 million cases of sepsis were recorded worldwide and 11 million sepsis-related deaths were reported. Therefore, sepsis is the focus of intense research to better understand the complexities of sepsis response, particularly the twin underlying concepts of an initial hyper-immune response and a counter-immunological state of immunosuppression triggered by an invading pathogen. Diagnosis of sepsis remains a significant challenge. Prompt diagnosis is essential so that treatment can be instigated as early as possible to ensure the best outcome, as delay in treatment is associated with higher mortality. In order to address this diagnostic problem, use of a panel of biomarkers has been proposed as, due to the complexity of the sepsis response, no single marker is sufficient. This review provides background on the current understanding of sepsis in terms of its epidemiology, the evolution of the definition of sepsis, pathobiology and diagnosis and management. Candidate biomarkers of interest and how current and developing point-of-care testing approaches could be used to measure such biomarkers is discussed.
Collapse
|
10
|
Relationships between serum procalcitonin level, severity and different stresses of non-septic critically ill patients. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Background: To explore the relationships between serum procalcitonin (PCT) level, severity and different stresses of non-septic critically ill patients.
Materials and Methods: Patients were divided into traumatic stress, stroke-induced stress and non-infectious inflammatory stress groups. According to 28-day prognosis, they were divided into survival and death groups. The factors affecting prognosis were studied by multivariate logistic regression analysis.
Results: PCT level was significantly positively correlated with Acute Physiology and Chronic Health Evaluation II (APACHE II) and sequential organ failure assessment (SOFA) scores (P=0.001). The PCT level and abnormality rate of the traumatic stress group significantly exceeded those of other groups (P---lt---0.05). The APACHE II score, SOFA score and 28-day mortality rate of traumatic stress and stroke-induced stress groups significantly exceeded those of the non-infectious inflammatory stress group (P---lt---0.05). The PCT level, APACHE II score and SOFA score of the death group significantly surpassed those of the survival group (P---lt---0.05). With rising PCT level, APACHE II score, SOFA score and 28-day mortality rate all increased, with significant intergroup differences (P---lt---0.01). Multivariate logistic analysis showed that serum PCT level, APACHE II score and SOFA score were independent risk factors for prognosis. The area under ROC curve for prognosis evaluated by PCT level was 0.797 (95%CI = 0.710~0.878, P=0.000). At a 4.3 μg/L cut-off, the sensitivity and specificity for predicting 28-day mortality were 87.4% and 78.1%, respectively.
Conclusion: The serum PCT level of non-septic critically ill patient was positively correlated with severity, which was more likely elevated by traumatic stress than other stresses.
Collapse
|
11
|
Zhang Q, Li L, Chen H, Zhang G, Zhu S, Kong R, Chen H, Wang G, Sun B. Soluble urokinase plasminogen activator receptor associates with higher risk, advanced disease severity as well as inflammation, and might serve as a prognostic biomarker of severe acute pancreatitis. J Clin Lab Anal 2019; 34:e23097. [PMID: 31774228 PMCID: PMC7083411 DOI: 10.1002/jcla.23097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to explore the potential of soluble urokinase plasminogen activator receptor (suPAR) as a biomarker for severe acute pancreatitis (SAP) risk prediction and disease management in SAP patients. Methods Totally 225 acute pancreatitis (AP) patients (including 75 SAP, 75 moderate‐severe acute pancreatitis [MSAP], and 75 mild acute pancreatitis [MAP] patients) were recruited based on the Atlanta classification, and their serum samples were obtained within 24 hours after admission. Meanwhile, 75 health controls (HCs) were recruited with their serum samples collected at the enrollment. The serum suPAR was then detected using enzyme‐linked immunosorbent assay. Results The suPAR level was increased in SAP patients compared with MSAP patients (P = .023), MAP patients (P < .001), and HCs (P < .001). Receiver operating characteristic (ROC) curve presented that suPAR could not only differentiate SAP patients from HCs (AUC: 0.920, 95%CI: 0.875‐0.965) but also differentiate SAP patients from MSAP (AUC: 0.684, 95%CI: 0.600‐0.769) and MAP patients (AUC: 0.855, 95%CI: 0.797‐0.912). In SAP patients, suPAR was positively correlated with Ranson score (P < .001), acute physiology and chronic healthcare evaluation II score (P = .001), sequential organ failure assessment score (P < .001), and C‐reaction protein (P = .002). Further ROC curve exhibited that suPAR (AUC: 0.806, 95%CI: 0.663‐0.949) was of good value in predicting increased inhospital mortality of SAP patients. Conclusion Soluble urokinase plasminogen activator receptor is of good predictive value for SAP risk and may serve as a potential biomarker for disease severity, inflammation, and inhospital mortality in SAP patients.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siqiang Zhu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Lin S, Wu B, Lin Y, Wang M, Zhu Y, Jiang J, Zhang L, Lin J. Expression and Clinical Significance of Decoy Receptor 3 in Acute-on-Chronic Liver Failure. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9145736. [PMID: 31317042 PMCID: PMC6604490 DOI: 10.1155/2019/9145736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
AIMS To explore the expression level and clinical significance of decoy receptor 3 (DcR3) in patients with acute-on-chronic liver failure (ACLF). METHODS Serum DcR3 levels were measured by enzyme-linked immunosorbent assay (ELISA) in 76 patients with ACLF and 41 non-ACLF patients with chronic liver disease. Blood routine and liver functions were accessed for their correlations with DcR3. RESULTS Serum DcR3 in ACLF patients was significantly higher than that in non-ACLF patients. It was positively correlated with neutrophilic granulocyte, aspartate aminotransferase, prothrombin time, and international standardized ratio, but negatively correlated with platelet and serum albumin. At the early stage, the level of DcR3 was not significantly different between the survival and nonsurvival group of ACLF. However, at the late stage, DcR3 increased in nonsurvival and gradually decreased in survivals. The baseline DcR3 could not sufficiently predict the outcome of ACLF, while the change of DcR3 within the first week displayed a better predictive value than model for end-stage liver disease (MELD) score. CONCLUSIONS DcR3 was highly expressed in patients with ACLF and correlated with several clinical indices. Dynamic change of DcR3 might predict the prognosis of ACLF.
Collapse
Affiliation(s)
- Su Lin
- Liver Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Bing Wu
- Fujian Key Lab of Individualized Active Immunotherapy and Key Lab of Radiation Biology of Fujian Province Universities, Fuzhou 350005, China
| | - Yehong Lin
- Liver Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Mingfang Wang
- Liver Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Yueyong Zhu
- Liver Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Jiaji Jiang
- Liver Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Lurong Zhang
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
- Lab of Radiation Biology, Fujian Provincial Tumor Hospital, Fuzhou 350006, China
| | - Jianhua Lin
- Fujian Key Lab of Individualized Active Immunotherapy and Key Lab of Radiation Biology of Fujian Province Universities, Fuzhou 350005, China
| |
Collapse
|
13
|
Molano Franco D, Arevalo‐Rodriguez I, Roqué i Figuls M, Montero Oleas NG, Nuvials X, Zamora J. Plasma interleukin-6 concentration for the diagnosis of sepsis in critically ill adults. Cochrane Database Syst Rev 2019; 4:CD011811. [PMID: 31038735 PMCID: PMC6490303 DOI: 10.1002/14651858.cd011811.pub2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The definition of sepsis has evolved over time, along with the clinical and scientific knowledge behind it. For years, sepsis was defined as a systemic inflammatory response syndrome (SIRS) in the presence of a documented or suspected infection. At present, sepsis is defined as a life-threatening organ dysfunction resulting from a dysregulated host response to infection. Even though sepsis is one of the leading causes of mortality in critically ill patients, and the World Health Organization (WHO) recognizes it as a healthcare priority, it still lacks an accurate diagnostic test. Determining the accuracy of interleukin-6 (IL-6) concentrations in plasma, which is proposed as a new biomarker for the diagnosis of sepsis, might be helpful to provide adequate and timely management of critically ill patients, and thus reduce the morbidity and mortality associated with this condition. OBJECTIVES To determine the diagnostic accuracy of plasma interleukin-6 (IL-6) concentration for the diagnosis of bacterial sepsis in critically ill adults. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, LILACS, and Web of Science on 25 January 2019. We screened references in the included studies to identify additional studies. We did not apply any language restriction to the electronic searches. SELECTION CRITERIA We included diagnostic accuracy studies enrolling critically ill adults aged 18 years or older under suspicion of sepsis during their hospitalization, where IL-6 concentrations were evaluated by serological measurement. DATA COLLECTION AND ANALYSIS Two review authors independently screened the references to identify relevant studies and extracted data. We assessed the methodological quality of studies using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. We estimated a summary receiver operating characteristic (SROC) curve by fitting a hierarchical summary ROC (HSROC) non-linear mixed model. We explored sources of heterogeneity using the HSROC model parameters. We conducted all analyses in the SAS statistical software package and R software. MAIN RESULTS We included 23 studies (n = 4192) assessing the accuracy of IL-6 for the diagnosis of sepsis in critically ill adults. Twenty studies that were available as conference proceedings only are awaiting classification. The included participants were heterogeneous in terms of their distribution of age, gender, main diagnosis, setting, country, positivity threshold, sepsis criteria, year of publication, and origin of infection, among other factors. Prevalence of sepsis greatly varied across studies, ranging from 12% to 78%. We considered all studies to be at high risk of bias due to issues related to the index test domain in QUADAS-2. The SROC curve showed a great dispersion in individual studies accuracy estimates (21 studies, 3650 adult patients), therefore the considerable heterogeneity in the collected data prevented us from calculating formal accuracy estimates. Using a fixed prevalence of sepsis of 50% and a fixed specificity of 74%, we found a sensitivity of 66% (95% confidence interval 60 to 72). If we test a cohort 1000 adult patients under suspicion of sepsis with IL-6, we will find that 330 patients would receive appropriate and timely antibiotic therapy, while 130 patients would be wrongly considered to have sepsis. In addition, 370 out of 1000 patients would avoid unnecessary antibiotic therapy, and 170 patients would have been undiagnosed of sepsis. This numerical approach should be interpreted with caution due to the limitations described above. AUTHORS' CONCLUSIONS Our evidence assessment of plasma interleukin-6 concentrations for the diagnosis of sepsis in critically ill adults reveals several limitations. High heterogeneity of collected evidence regarding the main diagnosis, setting, country, positivity threshold, sepsis criteria, year of publication, and the origin of infection, among other factors, along with the potential number of misclassifications, remain significant constraints for its implementation. The 20 conference proceedings assessed as studies awaiting classification may alter the conclusions of the review once they are fully published and evaluated. Further studies about the accuracy of interleukin-6 for the diagnosis of sepsis in adults that apply rigorous methodology for conducting diagnostic test accuracy studies are needed. The conclusions of the review will likely change once the 20 studies pending publication are fully published and included.
Collapse
Affiliation(s)
- Daniel Molano Franco
- Fundacion Universitaria de Ciencias de la Salud, Hospital de San JoséDepartment of Critical CareCarrera 19 # 8‐32BogotaBogotaColombia11001
| | - Ingrid Arevalo‐Rodriguez
- Hospital Universitario Ramón y Cajal (IRYCIS). CIBER Epidemiology and Public Health (CIBERESP)Clinical Biostatistics UnitCtra. Colmenar Km. 9,100MadridSpain28034
- Cochrane Associate Centre of MadridMadridSpain
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTECentro Asociado Cochrane de EcuadorQuitoEcuador
| | - Marta Roqué i Figuls
- CIBER Epidemiología y Salud Pública (CIBERESP)Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau)Sant Antoni Maria Claret 171Edifici Casa de ConvalescènciaBarcelonaCatalunyaSpain08041
| | - Nadia G Montero Oleas
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC). Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTECentro Asociado Cochrane de EcuadorQuitoEcuador
| | - Xavier Nuvials
- Hospital Vall d’HebronDepartment of Critical Care MedicinePasseig Vall d’Hebron 119‐129BarcelonaSpain08035
- Vall d'Hebron Institut de Recerca (VHIR)SODIR research groupBarcelonaSpain
| | - Javier Zamora
- Cochrane Associate Centre of MadridMadridSpain
- Women’s Health Research Unit, Centre for Primary Care and Public Health, Queen Mary University of LondonLondonUK
- Hospital Universitario Ramon y Cajal (IRYCIS). CIBER Epidemiology and Public Health (CIBERESP)Clinical Biostatistics UnitMadridSpain
| | | |
Collapse
|
14
|
Increased Serum Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) Levels in FSGS: A Meta-Analysis. J Immunol Res 2019; 2019:5679518. [PMID: 31089477 PMCID: PMC6476117 DOI: 10.1155/2019/5679518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/01/2018] [Accepted: 01/20/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction The soluble urokinase-type plasminogen activator receptor (suPAR) has been found to be elevated in primary focal segmental glomerulosclerosis (pFSGS). However, its usefulness as a biomarker for FSGS remains controversial. We conducted a meta-analysis aiming at investigating the significance of suPAR in diagnosing pFSGS. Methods Electronic databases (PubMed and EMBASE) were searched to identify studies comparing suPAR levels in FSGS patients and controls, from the earliest available date to May 1, 2018. A random-effects model with standardized mean difference (SMD) was used for meta-analyses. Risk of bias was assessed using the Newcastle-Ottawa quality assessment scale. Results A total of 187 articles were screened, and the final analysis included 13 articles. In comparison to healthy controls, serum suPAR levels were significantly increased in pFSGS patients (SMD, 1.07, 95% confidence interval (CI) 0.65 to 1.48; participants = 814; studies = 9, I 2 = 85%). Higher suPAR levels were also found in patients with pFSGS compared to those with minimal change disease (SMD 0.53, 95% CI 0.22 to 0.84). Of note, such a difference was not found in pediatric groups (SMD 0.42, 95% CI -0.13 to 0.96) while it was more evidently noted in adult patients (SMD 1.32, 95% CI 0.90 to 1.74). Serum suPAR levels did not differ between pFSGS patients in remission compared to those in active proteinuric state (SMD 0.29, 95% CI -0.30 to 0.88). Comparison with membranous nephropathy and IgA nephropathy showed no significant difference. Conclusions Our meta-analysis demonstrated that, in comparison to both healthy controls and controls with minimal change disease, suPAR levels were significantly higher in adult patients with pFSGS. suPAR levels did not differ between pFSGS patients during the initial period of diagnosis and those in remission.
Collapse
|
15
|
Cui N, Zhang H, Chen Z, Yu Z. Prognostic significance of PCT and CRP evaluation for adult ICU patients with sepsis and septic shock: retrospective analysis of 59 cases. J Int Med Res 2019; 47:1573-1579. [PMID: 30656987 PMCID: PMC6460616 DOI: 10.1177/0300060518822404] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To investigate the prognostic significance of serum procalcitonin (PCT) and C-reactive protein (CRP) in patients with sepsis and those with septic shock. METHODS Fifty-nine patients were divided into sepsis and septic shock groups, as well as survivor and non-survivor groups, according to the severity of the disease and patient survival. Serum PCT and CRP measurements at the time of hospitalization in the intensive care unit were examined. RESULTS On the 2nd, 3rd, and 5th days, the CRP level was higher in the non-survivor group than in the survivor group, and the serum CRP level was higher in patients in the septic shock group than in patients in the sepsis group. Regarding changes in serum PCT level in each group, the levels of PCT were significantly different between non-survivor and survivor groups, whereas they did not differ between patients in the sepsis and septic shock groups. Serum PCT kinetics (ΔPCT) were similar between groups. CONCLUSIONS Serum PCT and CRP have good clinical diagnostic and prognostic value for patients with sepsis and septic shock. Kinetic studies of PCT and CRP can improve sensitivity and accuracy when evaluating the prognosis of patients with sepsis and those with septic shock.
Collapse
Affiliation(s)
- Na Cui
- 1 Department of ICU, Affiliated Hospital of Hebei University, Baoding, Hebei, P. R. China.,These authors contributed equally to this work
| | - Hongwei Zhang
- 1 Department of ICU, Affiliated Hospital of Hebei University, Baoding, Hebei, P. R. China.,These authors contributed equally to this work
| | - Zhi Chen
- 2 Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, P. R. China
| | - Zhanbiao Yu
- 1 Department of ICU, Affiliated Hospital of Hebei University, Baoding, Hebei, P. R. China
| |
Collapse
|