1
|
Park YS, Choi Y, Lee JS. Focal adhesion dynamics-mediated cell migration and proliferation on silica bead arrays. Biomater Sci 2025; 13:1849-1857. [PMID: 40012335 DOI: 10.1039/d4bm01659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Interactions between cells and the extracellular matrix (ECM) alter cellular behaviors, including adhesion, migration, proliferation, and differentiation via focal adhesions that link the ECM to the actin cytoskeleton as an intracellular signaling pathway. Although nanomaterials with various mechanical, geometrical, and topographical features have been used to provide a variety of cell-ECM interactions, it remains unclear how their nanostructured surfaces affect cellular behavior. In this study, we investigated focal adhesion dynamics during the migration and proliferation of HeLa cells on silica bead (SB) arrays with various nanotopographies. Cell adhesion was altered according to the surface curvature and pinhole size of the SB arrays, and cell morphology was determined by the ratio of the adhesive and non-adhesive areas of cells on the SB arrays. In turn, this triggered different focal adhesion dynamics in cells. In addition, we demonstrated the rapid migration and high proliferation characteristics of rounded cells with weak adhesion based on confocal microscopy analysis and migration trajectory on SB arrays, indicating focal adhesion dynamics-mediated cell migration and proliferation on nanostructured surfaces.
Collapse
Affiliation(s)
- Yi-Seul Park
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| | - Yerin Choi
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea.
| | - Jin Seok Lee
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
2
|
Szewczyk A, Rembiałkowska N, Migocka-Patrzałek M, Szlasa W, Chwiłkowska A, Daczewska M, Novickij V, Kulbacka J. Optimizing Jasplakinolide delivery in rhabdomyosarcoma cells using pulsed electric fields (PEFs) for enhanced therapeutic impact. Bioelectrochemistry 2025; 165:108969. [PMID: 40090208 DOI: 10.1016/j.bioelechem.2025.108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
This study explores the combination of jasplakinolide with electroporation (JSP + EP), a method enhancing targeted molecule delivery. CHO-K1 (Chinese hamster ovarian), C2C12 (mouse myoblast), and RD (rhabdomyosarcoma) cells were treated with jasplakinolide (50 nM) in HEPES buffer and exposed to electrical pulses (0.8-1.2 kV/cm). Cell viability was measured via the MTS assay, cytoskeleton structure was assessed with confocal microscopy, and docking studies examined jasplakinolide-actin interactions. The combination of jasplakinolide and electric pulses synergistically affected RMS cells (Rhabdomyosarcoma), causing significant cytoskeletal changes and reduced viability. Docking studies revealed that jasplakinolide interacts with both monomeric and filamentous actin, highlighting a dual mechanism. Confocal imaging showed substantial actin cytoskeleton disruption in cancer cells, with minimal effects on normal cells. Jasplakinolide combined with electric pulses can specifically target cancer cells with less cytotoxicity to normal cells, potentially reducing side effects following the clinical procedure.
Collapse
Affiliation(s)
- Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Poland
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania; Vilnius Gediminas Technical University, Faculty of Electronics, Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| |
Collapse
|
3
|
Li Y, Zhang H, Yang F, Zhu D, Chen S, Wang Z, Wei Z, Yang Z, Jia J, Zhang Y, Wang D, Ma M, Kang X. Mechanisms and therapeutic potential of disulphidptosis in cancer. Cell Prolif 2025; 58:e13752. [PMID: 39354653 DOI: 10.1111/cpr.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
SLC7A11 plays a pivotal role in tumour development by facilitating cystine import to enhance glutathione synthesis and counteract oxidative stress. Disulphidptosis, an emerging form of cell death observed in cells with high expression of SLC7A11 under glucose deprivation, is regulated through reduction-oxidation reactions and disulphide bond formation. This process leads to contraction and collapse of the F-actin cytoskeleton from the plasma membrane, ultimately resulting in cellular demise. Compared to other forms of cell death, disulphidptosis exhibits distinctive characteristics and regulatory mechanisms. This mechanism provides novel insights and innovative strategies for cancer treatment while also inspiring potential therapeutic approaches for other diseases. Our review focuses on elucidating the molecular mechanism underlying disulphidptosis and its connection with the actin cytoskeleton, identifying alternative metabolic forms of cell death, as well as offering insights into disulphidptosis-based cancer therapy. A comprehensive understanding of disulphidptosis will contribute to our knowledge about fundamental cellular homeostasis and facilitate the development of groundbreaking therapies for disease treatment.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Haijun Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
- The Second People's Hospital of Gansu Province, Lanzhou, PR China
| | - Fengguang Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Shijie Chen
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhaoheng Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Ziyan Wei
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhili Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Jingwen Jia
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Yizhi Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Dongxin Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Mingdong Ma
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| |
Collapse
|
4
|
Chen J, Cui Y, Chen Z, Ding H, Li C, Ju S, Ding C, Xu C, Zhao J, Tong X. Aberrant Expression of JAM2 Inhibits Invasion and Migration in Lung Adenocarcinoma. Cancer Rep (Hoboken) 2025; 8:e70038. [PMID: 39838844 PMCID: PMC11751475 DOI: 10.1002/cnr2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. JAM2, a member of the Junctional adhesion molecule (JAM) family, plays diverse roles in cell-cell contacts and tumor development. Although JAM2's expression and functions have been reported in various cancers, its clinical and biological significance in LUAD remains unclear. AIMS The aim of this study was to investigate the expression and function of JAM2 in LUAD, and to assess its potential as a prognostic gene and a molecular target for early diagnosis and targeted therapy. MATERIALS Immunohistochemistry (IHC) was performed on 37 pairs of LUAD tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted among co-expression genes in different JAM2 subgroups. In vitro experiments were also conducted to study the migratory and invasive capabilities of LUAD cells when JAM2 was overexpressed. RESULTS The study confirmed that JAM2 was downregulated in LUAD, possibly due to methylation. JAM2 emerged as an independent prognostic gene for predicting the outcomes of patients with LUAD. IHC analysis revealed the significance of JAM2 with clinicopathological parameters in LUAD. GO and KEGG analyses provided insights into the biological processes and pathways associated with JAM2. In vitro experiments showed that overexpressing JAM2 significantly suppressed the migratory and invasive capabilities of LUAD cells. Additionally, JAM2 played a crucial role in LUAD inflammatory infiltration, and higher JAM2 expression predicted a better immunotherapy response. CONCLUSION JAM2 may serve as a promising molecular target for early diagnosis and targeted therapy of LUAD. Its downregulation in LUAD, potential role as a prognostic gene, and influence on cell migration, invasion, and inflammatory infiltration make it a valuable target for further research and development of therapeutic strategies.
Collapse
Affiliation(s)
- Jun Chen
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yuan Cui
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhimeng Chen
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hao Ding
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chang Li
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Sheng Ju
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Cheng Ding
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chun Xu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Zhao
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xin Tong
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
5
|
Li Y, Mei Z, Deng P, Zhou S, Qian A, Zhang X, Li J. Unraveling the mechanism in l-Caldesmon regulating the osteogenic differentiation of PDLSCs: An innovative perspective. Cell Signal 2024; 118:111147. [PMID: 38513808 DOI: 10.1016/j.cellsig.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Maxillofacial bone defect is one of the common symptoms in maxillofacial, which affects the function and aesthetics of maxillofacial region. Periodontal ligament stem cells (PDLSCs) are extensively used in bone tissue engineering. The mechanism that regulates the osteogenic differentiation of PDLSCs remains not fully elucidated. Previous studies demonstrated that l-Caldesmon (l-CALD, or CALD1) might be involved in the osteogenic differentiation of PDLSCs. Here, the mechanism by which CALD1 regulates the osteogenic differentiation of PDLSCs is investigated. The osteogenic differentiation of PDLSCs is enhanced with Cald1 knockdown. Whole transcriptome sequencing (RNA-seq) analysis shows that bone morphogenetic proteins (BMP) signaling pathway and Wingless type (Wnt) pathway have significant change with Cald1 knockdown, and the expressions of Wnt-induced secreted protein 1 (WISP1), BMP2, Smad1/5/9, and p-Smad1/5/9 are significantly upregulated, while Glycogen synthase kinase 3β (GSK3β) and p-GSK3β are downregulated. In addition, subcutaneous implantation in nude mice shows that knockdown of Cald1 enhances the osteogenic differentiation of PDLSCs in vivo. Taken together, this study demonstrates that knockdown of Cald1 enhances the osteogenic differentiation of PDLSCs by BMP and Wnt signaling pathways, and provides a novel approach for subsequent clinical treatment.
Collapse
Affiliation(s)
- Yuejia Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Ziyi Mei
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Pingmeng Deng
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Sha Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Aizhuo Qian
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Xiya Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China..
| |
Collapse
|
6
|
Yu J, Wang S, Chen SJ, Zheng MJ, Yuan CR, Lai WD, Wen JJ, You WT, Liu PQ, Khanna R, Jin Y. Sinomenine ameliorates fibroblast-like synoviocytes dysfunction by promoting phosphorylation and nuclear translocation of CRMP2. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117704. [PMID: 38176664 DOI: 10.1016/j.jep.2024.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and arthritic pain. Sinomenine (SIN), derived from the rhizome of Chinese medical herb Qing Teng (scientific name: Sinomenium acutum (Thunb.) Rehd. Et Wils), has a longstanding use in Chinese traditional medicine for treating rheumatoid arthritis. It has been shown to possess anti-inflammatory, analgesic, and immunosuppressive effects with minimal side-effects clinically. However, the mechanisms governing its effects in treatment of joint pathology, especially on fibroblast-like synoviocytes (FLSs) dysfunction, and arthritic pain remains unclear. AIM This study aimed to investigate the effect and underlying mechanism of SIN on arthritic joint inflammation and joint FLSs dysfunctions. MATERIALS AND METHODS Collagen-induced arthritis (CIA) was induced in rats and the therapeutic effects of SIN on joint pathology were evaluated histopathologically. Next, we conducted a series of experiments using LPS-induced FLSs, which were divided into five groups (Naïve, LPS, SIN 10, 20, 50 μg/ml). The expression of inflammatory factors was measured by qPCR and ELISA. The invasive ability of cells was detected by modified Transwell assay and qPCR. Transwell migration and cell scratch assays were used to assess the migration ability of cells. The distribution and content of relevant proteins were observed by immunofluorescence and laser confocal microscopy, as well as Western Blot and qPCR. FLSs were transfected with plasmids (CRMP2 T514A/D) to directly modulate the post-translational modification of CRMP2 protein and downstream effects on FLSs function was monitored. RESULTS SIN alleviated joint inflammation in rats with CIA, as evidenced by improvement of synovial hyperplasia, inflammatory cell infiltration and cartilage damage, as well as inhibition of pro-inflammatory cytokines release from FLSs induced by LPS. In vitro studies revealed a concentration-dependent suppression of SIN on the invasion and migration of FLSs induced by LPS. In addition, SIN downregulated the expression of cellular CRMP2 that was induced by LPS in FLSs, but increased its phosphorylation at residue T514. Moreover, regulation of pCRMP2 T514 by plasmids transfection (CRMP2 T514A/D) significantly influenced the migration and invasion of FLSs. Finally, SIN promoted nuclear translocation of pCRMP2 T514 in FLSs. CONCLUSIONS SIN may exert its anti-inflammatory and analgesic effects by modulating CRMP2 T514 phosphorylation and its nuclear translocation of FLSs, inhibiting pro-inflammatory cytokine release, and suppressing abnormal invasion and migration. Phosphorylation of CRMP2 at the T514 site in FLSs may present a new therapeutic target for treating inflammatory joint's destruction and arthritic pain in RA.
Collapse
Affiliation(s)
- Jie Yu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Song Wang
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Si-Jia Chen
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Meng-Jia Zheng
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Cun-Rui Yuan
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Wei-Dong Lai
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Jun-Jun Wen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Wen-Ting You
- Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, 317500, China
| | - Pu-Qing Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, College of Dentistry, and NYU Pain Research Center, New York, 10010, USA.
| | - Yan Jin
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Liu SS, Fang X, Wen X, Liu JS, Alip M, Sun T, Wang YY, Chen HW. How mesenchymal stem cells transform into adipocytes: Overview of the current understanding of adipogenic differentiation. World J Stem Cells 2024; 16:245-256. [PMID: 38577237 PMCID: PMC10989283 DOI: 10.4252/wjsc.v16.i3.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 03/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts, chondrocytes and adipocytes. The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes, in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes. Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis. However, the mechanism underlying the adipogenic differentiation of MSCs is not fully understood. Here, the current knowledge of adipogenic differentiation in MSCs is reviewed, focusing on signaling pathways, noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation. Finally, the relationship between maladipogenic differentiation and diseases is briefly discussed. We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xiang Fang
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Xin Wen
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Ji-Shan Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Miribangvl Alip
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Tian Sun
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Yuan-Yuan Wang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui Province, China
| | - Hong-Wei Chen
- Department of Reumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
8
|
Anderson H, Hersh DS, Khan Y. The potential role of mechanotransduction in the management of pediatric calvarial bone flap repair. Biotechnol Bioeng 2024; 121:39-52. [PMID: 37668193 PMCID: PMC10841298 DOI: 10.1002/bit.28534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Accepted: 08/05/2023] [Indexed: 09/06/2023]
Abstract
Pediatric patients suffering traumatic brain injuries may require a decompressive craniectomy to accommodate brain swelling by removing a portion of the skull. Once the brain swelling subsides, the preserved calvarial bone flap is ideally replaced as an autograft during a cranioplasty to restore protection of the brain, as it can reintegrate and grow with the patient during immature skeletal development. However, pediatric patients exhibit a high prevalence of calvarial bone flap resorption post-cranioplasty, causing functional and cosmetic morbidity. This review examines possible solutions for mitigating pediatric calvarial bone flap resorption by delineating methods of stimulating mechanosensitive cell populations with mechanical forces. Mechanotransduction plays a critical role in three main cell types involved with calvarial bone repair, including mesenchymal stem cells, osteoblasts, and dural cells, through mechanisms that could be exploited to promote osteogenesis. In particular, physiologically relevant mechanical forces, including substrate deformation, external forces, and ultrasound, can be used as tools to stimulate bone repair in both in vitro and in vivo systems. Ultimately, combating pediatric calvarial flap resorption may require a combinatorial approach using both cell therapy and bioengineering strategies.
Collapse
Affiliation(s)
- Hanna Anderson
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
| | - David S Hersh
- Department of Surgery, UConn School of Medicine, Farmington, Connecticut, USA
- Division of Neurosurgery, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Yusuf Khan
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
- The Cato T. Laurencin Institute for Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
- Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
9
|
Zhang R, Chen S, Yang Z, Zhang N, Guo K, Lv K, Zhou Z, Gao M, Hu X, Su Y, He J, Wang F. Actin polymerization inhibition by targeting ARPC2 affects intestinal stem cell homeostasis. BURNS & TRAUMA 2023; 11:tkad038. [PMID: 37849945 PMCID: PMC10578047 DOI: 10.1093/burnst/tkad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 10/19/2023]
Abstract
Background The rapid turnover of the intestinal epithelium is driven by the proliferation and differentiation of intestinal stem cells (ISCs). The dynamics of the F-actin cytoskeleton are critical for maintaining intercellular force and the signal transduction network. However, it remains unclear how direct interference with actin polymerization impacts ISC homeostasis. This study aims to reveal the regulatory effects of the F-actin cytoskeleton on the homeostasis of intestinal epithelium, as well as the potential risks of benproperine (BPP) as an anti-tumor drug. Methods Phalloidin fluorescence staining was utilized to test F-actin polymerization. Flow cytometry and IHC staining were employed to discriminate different types of intestinal epithelial cells. Cell proliferation was assessed through bromo-deoxyuridine (BrdU) and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays. The proliferation and differentiation of intestinal stem cells were replicated in vitro through organoid culture. Epithelial migration was evaluated through BrdU pulse labeling and chasing in mice. Results The F-actin content was observed to significantly increase as crypt cells migrated into the villus region. Additionally, actin polymerization in secretory cells, especially in Paneth cells (PCs), was much higher than that in neighboring ISCs. Treatment with the newly identified actin-related protein 2/3 complex subunit 2 (ARPC2) inhibitor BPP led to a dose-dependent increase or inhibition of intestinal organoid growth in vitro and crypt cell proliferation in vivo. Compared with the vehicle group, BPP treatment decreased the expression of Lgr5 ISC feature genes in vivo and in organoid culture. Meanwhile, PC differentiation derived from ISCs and progenitors was decreased by inhibition of F-actin polymerization. Mechanistically, BPP-induced actin polymerization inhibition may activate the Yes1-associated transcriptional regulator pathway, which affects ISC proliferation and differentiation. Accordingly, BPP treatment affected intestinal epithelial cell migration in a dose-dependent manner. Conclusion Our findings indicate that the regulation of cytoskeleton reorganization can affect ISC homeostasis. In addition, inhibiting ARPC2 with the Food and Drug Administration-approved drug BPP represents a novel approach to influencing the turnover of intestinal epithelial cells.
Collapse
Affiliation(s)
- Ruzhen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
- College of Life Sciences, Chongqing Normal University,Chongqing, 401331China
| | - Sheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Zhifan Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Ning Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Kenan Guo
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Third Military Medical University, Chongqing 400038, China
| | - Keyi Lv
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Zimo Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Meijiao Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xiancheng Hu
- College of Life Sciences, Chongqing Normal University,Chongqing, 401331China
| | - Yongping Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jianming He
- Department of Radiotherapy, Hebei Province Hospital of Chinese Medicine, Hebei University of Chinese Medicine, Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research (Hebei), Shijiazhuang, 050011
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
10
|
Abenza JF, Rossetti L, Mouelhi M, Burgués J, Andreu I, Kennedy K, Roca-Cusachs P, Marco S, García-Ojalvo J, Trepat X. Mechanical control of the mammalian circadian clock via YAP/TAZ and TEAD. J Cell Biol 2023; 222:e202209120. [PMID: 37378613 PMCID: PMC10308087 DOI: 10.1083/jcb.202209120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Autonomous circadian clocks exist in nearly every mammalian cell type. These cellular clocks are subjected to a multilayered regulation sensitive to the mechanochemical cell microenvironment. Whereas the biochemical signaling that controls the cellular circadian clock is increasingly well understood, mechanisms underlying regulation by mechanical cues are largely unknown. Here we show that the fibroblast circadian clock is mechanically regulated through YAP/TAZ nuclear levels. We use high-throughput analysis of single-cell circadian rhythms and apply controlled mechanical, biochemical, and genetic perturbations to study the expression of the clock gene Rev-erbα. We observe that Rev-erbα circadian oscillations are disrupted with YAP/TAZ nuclear translocation. By targeted mutations and overexpression of YAP/TAZ, we show that this mechanobiological regulation, which also impacts core components of the clock such as Bmal1 and Cry1, depends on the binding of YAP/TAZ to the transcriptional effector TEAD. This mechanism could explain the impairment of circadian rhythms observed when YAP/TAZ activity is upregulated, as in cancer and aging.
Collapse
Affiliation(s)
- Juan F. Abenza
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Malèke Mouelhi
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Javier Burgués
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Ion Andreu
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Keith Kennedy
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Santiago Marco
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Barcelona, Spain
| | - Jordi García-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
11
|
Zhu J, Long T, Gao L, Zhong Y, Wang P, Wang X, Li Z, Hu Z. RPL21 interacts with LAMP3 to promote colorectal cancer invasion and metastasis by regulating focal adhesion formation. Cell Mol Biol Lett 2023; 28:31. [PMID: 37062845 PMCID: PMC10108486 DOI: 10.1186/s11658-023-00443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Metastasis is the leading cause of death among patients with colorectal cancer (CRC). Therefore, it is important to explore the molecular mechanisms of metastasis to develop effective therapeutic targets for CRC. In the present study, ribosomal protein L21 (RPL21) was considered as being involved in promoting CRC metastasis, yet the underlying mechanism requires further investigation. METHODS Immunohistochemistry, western blotting, and quantitative reverse transcription polymerase chain reaction were performed to measure the expression of RPL21 and lysosome-associated membrane protein 3 (LAMP3) in CRC tissues and cells. Wound healing, transwell migration, and invasion assays were performed to study the migration and invasion of cultured CRC cells. An orthotopic CRC mouse model was developed to investigate the metastatic ability of CRC. Transcriptome sequencing was conducted to identify the genes related to RPL21. The dual-luciferase reporter gene assay was performed to determine the transcriptional activity of transcription factor EB (TFEB). The GST/His pull-down assay was performed to investigate the specific binding sites of RPL21 and LAMP3. The cell adhesion assay was performed to determine the adhesion ability of CRC cells. Immunofluorescence staining was performed to observe focal adhesions (FAs). RESULTS RPL21 was highly expressed in CRC, contributing to tumor invasiveness and poor patient prognosis. Functionally, RPL21 promoted the migration and invasion of CRC cells in vitro and tumor metastasis in vivo. Moreover, LAMP3 was identified as being highly related to RPL21 and was essential in promoting the migration and invasion of CRC cells. Mechanistically, RPL21 activated the transcriptional function of TFEB to upregulate LAMP3 expression. RPL21 directly bound to the aa 341-416 domain of LAMP3 via its aa 1-40 and aa 111-160 segments. The combination of RPL21 and LAMP3 enhanced the stability of the RPL21 protein by suppressing the degradation of the ubiquitin-proteasome system. Furthermore, RPL21 and LAMP3 promoted the formation of immature FAs by activating the FAK/paxillin/ERK signaling pathway. CONCLUSIONS RPL21 promoted invasion and metastasis by regulating FA formation in a LAMP3-dependent manner during CRC progression. The interaction between RPL21 and LAMP3 may function as a potential therapeutic target against CRC.
Collapse
Affiliation(s)
- Jiaxian Zhu
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ting Long
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
| | - Lingfang Gao
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
| | - Yan Zhong
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
| | - Ping Wang
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiaoyan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Key Laboratory of Molecular Tumour Pathology of Guangdong Province, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zuguo Li
- Department of Pathology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518101, Guangdong, People's Republic of China.
- Key Laboratory of Molecular Tumour Pathology of Guangdong Province, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Zhiyan Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- Key Laboratory of Molecular Tumour Pathology of Guangdong Province, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Zhao K, Zhou T, Yang J, Li Y, Qin J, Wang S, Li D, Chen J, Zheng WV. Lutein shows a protective effect against the aging of mesenchymal stem cells by downregulating inflammation. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
13
|
Li M, Peng L, Wang Z, Liu L, Cao M, Cui J, Wu F, Yang J. Roles of the cytoskeleton in human diseases. Mol Biol Rep 2023; 50:2847-2856. [PMID: 36609753 DOI: 10.1007/s11033-022-08025-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/12/2022] [Indexed: 01/08/2023]
Abstract
Recently, researches have revealed the key roles of the cytoskeleton in the occurrence and development of multiple diseases, suggesting that targeting the cytoskeleton is a viable approach for treating numerous refractory diseases. The cytoskeleton is a highly structured and complex network composed of actin filaments, microtubules, and intermediate filaments. In normal cells, these three cytoskeleton components are highly integrated and coordinated. However, the cytoskeleton undergoes drastic remodeling in cytoskeleton-related diseases, causing changes in cell polarity, affecting the cell cycle, leading to senescent diseases, and influencing cell migration to accelerate cancer metastasis. Additionally, mutations or abnormalities in cytoskeletal proteins and their related proteins are closely associated with several congenital diseases. Therefore, this review summarizes the roles of the cytoskeleton in cytoskeleton-related diseases as well as its potential roles in disease treatment to provide insights regarding the physiological functions and pathological roles of the cytoskeleton.
Collapse
Affiliation(s)
- Mengxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Lijia Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China.
| |
Collapse
|
14
|
Duan S, Jiang X, Li J, Fu M, Li Z, Cheng Y, Zhuang Y, Yang M, Xiao W, Ping H, Xie Y, Xie X, Zhang X. The RXFP2-PLC/PKC signaling pathway mediates INSL3-induced regulation of the proliferation, migration and apoptosis of mouse gubernacular cells. Cell Mol Biol Lett 2023; 28:16. [PMID: 36849880 PMCID: PMC9972740 DOI: 10.1186/s11658-023-00433-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Testicular hypoplasia can affect the sexual and reproductive ability in adulthood, and even increase the risk of cancer. Abnormal development of the gubernaculum is one of the important factors of testicular hypoplasia. Therefore, a study of the structure and function of the gubernaculum is an important but neglected new breakthrough point for investigating the normal/abnormal development of the testis. Previous findings showed that Insulin like factor 3 (INSL3) is a key factor regulating the growth of gubernaculum, however, the mechanism by which INSL3 acts on the gubernaculum remains unknown. Therefore, we probed the mechanism associated with INSL3-induced the proliferation, migration, and apoptosis of gubernacular cells in mice. METHODS A culture cell model of neonatal mice gubernaculum is established by INSL3 intervention. We blocked PLC/PKC signaling pathway with U73122 pretreat to investigate the role of the PLC/PKC signaling pathway. The changes of cell proliferation, migration, and apoptosis were detected by molecular biological methods. In addition, the levels of PCNA and F-action were detected by immunofluorescence and western blotting. RESULTS We found that INSL3 can promote the proliferation and migration of gubernacular cells and inhibit their apoptosis, meanwhile, INSL3 significantly up-regulated PLC/PKC protein phosphorylation. However, treatment with the PLC/PKC signaling pathway inhibitor U73122 significantly inhibited these effects of INSL3. Besides, we found that INSL3 could up-regulate the protein expression level of PCNA and F-actin, while the PCNA and F-actin expression was significantly weakened after U73122 pretreatment. CONCLUSIONS This research revealed that INSL3 binding to RXFP2 may up-regulate the expression levels of PCNA and F-actin by activating the PLC/PKC signaling pathway to promote the proliferation and migration of gubernacular cells. It suggests that the RXFP2-PLC/PKC axis may serve as a novel molecular mechanism by which INSL3 regulates growth of the gubernaculum.
Collapse
Affiliation(s)
- Shouxing Duan
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Xuewu Jiang
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China
| | - Jianhong Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongxiabei Road, Shantou, 515041, Guangdong, China
| | - Maxian Fu
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
| | - Zhuo Li
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
| | - Yiyi Cheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Yangmu Zhuang
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Ming Yang
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Wenfeng Xiao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongxiabei Road, Shantou, 515041, Guangdong, China
| | - Hongyan Ping
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China
| | - Yao Xie
- Department of Radiology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, China.
| | - Xiaojun Xie
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China.
| | - Xuan Zhang
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China.
| |
Collapse
|
15
|
Pampanella L, Abruzzo PM, Tassinari R, Alessandrini A, Petrocelli G, Ragazzini G, Cavallini C, Pizzuti V, Collura N, Canaider S, Facchin F, Ventura C. Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton's Jelly Mesenchymal Stem Cells. Pharmaceuticals (Basel) 2023; 16:289. [PMID: 37259432 PMCID: PMC9966134 DOI: 10.3390/ph16020289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 09/01/2023] Open
Abstract
Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1-3 μM) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers.
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | | | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | - Giovannamaria Petrocelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | | | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Nicoletta Collura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| |
Collapse
|
16
|
Wang J, Yang H, Ma X, Liu J, Li L, Chen L, Wei F. LRP6/filamentous-actin signaling facilitates osteogenic commitment in mechanically induced periodontal ligament stem cells. Cell Mol Biol Lett 2023; 28:7. [PMID: 36694134 PMCID: PMC9872397 DOI: 10.1186/s11658-023-00420-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Mechanotransduction mechanisms whereby periodontal ligament stem cells (PDLSCs) translate mechanical stress into biochemical signals and thereby trigger osteogenic programs necessary for alveolar bone remodeling are being deciphered. Low-density lipoprotein receptor-related protein 6 (LRP6), a Wnt transmembrane receptor, has been qualified as a key monitor for mechanical cues. However, the role of LRP6 in the mechanotransduction of mechanically induced PDLSCs remains obscure. METHODS The Tension System and tooth movement model were established to determine the expression profile of LRP6. The loss-of-function assay was used to investigate the role of LRP6 on force-regulated osteogenic commitment in PDLSCs. The ability of osteogenic differentiation and proliferation was estimated by alkaline phosphatase (ALP) staining, ALP activity assay, western blotting, quantitative real-time PCR (qRT-PCR), and immunofluorescence. Crystalline violet staining was used to visualize cell morphological change. Western blotting, qRT-PCR, and phalloidin staining were adopted to affirm filamentous actin (F-actin) alteration. YAP nucleoplasmic localization was assessed by immunofluorescence and western blotting. YAP transcriptional response was evaluated by qRT-PCR. Cytochalasin D was used to determine the effects of F-actin on osteogenic commitment and YAP switch behavior in mechanically induced PDLSCs. RESULTS LRP6 was robustly activated in mechanically induced PDLSCs and PDL tissues. LRP6 deficiency impeded force-dependent osteogenic differentiation and proliferation in PDLSCs. Intriguingly, LRP6 loss caused cell morphological aberration, F-actin dynamics disruption, YAP nucleoplasmic relocation, and subsequent YAP inactivation. Moreover, disrupted F-actin dynamics inhibited osteogenic differentiation, proliferation, YAP nuclear translocation, and YAP activation in mechanically induced PDLSCs. CONCLUSIONS We identified that LRP6 in PDLSCs acted as the mechanosensor regulating mechanical stress-inducible osteogenic commitment via the F-actin/YAP cascade. Targeting LRP6 for controlling alveolar bone remodeling may be a prospective therapy to attenuate relapse of orthodontic treatment.
Collapse
Affiliation(s)
- Jixiao Wang
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Huiqi Yang
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Xiaobei Ma
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Jiani Liu
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Lan Li
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Lei Chen
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| | - Fulan Wei
- grid.27255.370000 0004 1761 1174Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, 250012 Shandong China
| |
Collapse
|
17
|
Liu X, Sun Y, Wang S, Zhang S, Tian Q. Actin restricts cell proliferation and promotes differentiation during planarian regeneration. Biochem Biophys Res Commun 2023; 640:150-156. [PMID: 36508928 DOI: 10.1016/j.bbrc.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/11/2022]
Abstract
Actin is an integral component of the cytoskeleton, which plays an important role in various fundamental cellular processes, such as affecting the polarity of embryonic cells during embryonic development in various model organisms. Meanwhile, previous studies have demonstrated that the polymerization of the actin cytoskeleton can affect cell migration, proliferation, and differentiation. Actin polymerization state regulated osteogenic differentiation and affected cell proliferation. However, the function of actin in regenerative biology has not been thoroughly elucidated. The planarian flatworm, which contains a large number of adult somatic stem cells (neoblasts), is an ideal model organism to study regenerative biology. Here, we identified a homolog of actin in planarian Dugesia japonica and found that RNAi targeting actin during planarian regeneration results in the formation of protrusions on the dorsal side, where the division of phospho-H3 mitotic cells is increased. In addition, a decrease in differentiation is observed in regenerating tissues after Djactin RNAi. These results indicate that Djactin functions in proliferation and differentiation control in planarian regeneration.
Collapse
Affiliation(s)
- Xiaomai Liu
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Sun
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shaocong Wang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shoutao Zhang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China.
| | - Qingnan Tian
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
18
|
Micropattern Silk Fibroin Film Facilitates Tendon Repair In Vivo and Promotes Tenogenic Differentiation of Tendon Stem/Progenitor Cells through the α2 β1/FAK/PI3K/AKT Signaling Pathway In Vitro. Stem Cells Int 2023; 2023:2915826. [PMID: 36684388 PMCID: PMC9859702 DOI: 10.1155/2023/2915826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/15/2023] Open
Abstract
Background Tendon injuries are common clinical disorders. Due to the limited regeneration ability of tendons, tissue engineering technology is often used as an adjuvant treatment. This study explored the molecular pathways underlying micropattern SF film-regulated TSPC propensity and their repairing effects to highlight the application value of micropattern SF films. Methods First, we characterized the physical properties of the micropattern SF films and explored their repairing effects on the injured tendons in vivo. Then, we seeded TSPCs on SF films in vitro and determined the micropattern SF film-induced gene expression and activation of signaling pathways in TSPCs through high-throughput RNA sequencing and proteomics assays. Results The results of in vivo studies suggested that micropattern SF films can promote remodeling of the injured tendon. In addition, immunohistochemistry (IHC) results showed that tendon marker genes were significantly increased in the micropattern SF film repair group. Transcriptomic and proteomic analyses demonstrated that micropattern SF film-induced genes and proteins in TSPCs were mainly enriched in the focal adhesion kinase (FAK)/actin and phosphoinositide 3-kinase (PI3K)/AKT pathways. Western blot analysis showed that the expression of integrins α2β1, tenascin-C (TNC), and tenomodulin (TNMD) and the phosphorylation of AKT were significantly increased in the micropattern SF film group, which could be abrogated by applying PI3K/AKT inhibitors. Conclusion Micropattern SF films modified by water annealing can promote remodeling of the injured tendon in vivo and regulate the tendon differentiation of TSPCs through the α2β1/FAK/PI3K/AKT signaling pathway in vitro. Therefore, they have great medical value in tendon repair.
Collapse
|
19
|
EVL Promotes Osteo-/Odontogenic Differentiation of Dental Pulp Stem Cells via Activating JNK Signaling Pathway. Stem Cells Int 2023; 2023:7585111. [PMID: 36684389 PMCID: PMC9851786 DOI: 10.1155/2023/7585111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
Objective Human dental pulp stem cells (hDPSCs) were recognized as a suitable and promising source of stem cells in dental pulp regeneration. However, the mechanism by which hDPSCs differentiation into osteo-/odontogenic lineage remains unclear. Ena/VASP-like protein (EVL) has been found to be involved in diverse biological processes. In this study, we explored the role and underlying mechanism of EVL in osteo-/odontogenic differentiation of hDPSCs. Methods Expression of EVL was detected in hDPSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot (WB) analyses during osteo-/odontogenic differentiation. The function of EVL in osteo-/odontogenic differentiation and involvement of MAPK signaling pathways were evaluated by alkaline phosphatase (ALP) staining and activity, alizarin red staining (ARS), and qRT-PCR and western blot analyses. Results The expression of EVL was upregulated during osteo-/odontogenic differentiation of hDPSCs. Overexpression of EVL significantly increased osteo-/odontogenic capacity of hDPSCs, which was reflected in increased alkaline phosphatase (ALP) staining, ALP activity, mineralized nodule formation, and the expressions of genes related to osteo-/odontogenic differentiation, while downregulation of EVL inhibited it. In addition, EVL activated the JNK pathway and phosphorylation of p38 MAPK during differentiation procedure of hDPSCs. The EVL-enhanced differentiation of DPSCs was suppressed by blocking the JNK pathway, rather than the p38 MAPK pathway. Conclusion EVL promotes the osteo-/odontogenic differentiation of hDPSCs by activating the JNK pathway, providing a future target for osteo-/odontogenic differentiation and dental pulp regeneration.
Collapse
|
20
|
Wang F, Wang Q, Zhao Y, Tian Z, Chang S, Tong H, Liu N, Bai S, Li X, Fan J. Adipose-derived stem cells with miR-150-5p inhibition laden in hydroxyapatite/tricalcium phosphate ceramic powders promote osteogenesis via regulating Notch3 and activating FAK/ERK and RhoA. Acta Biomater 2023; 155:644-653. [PMID: 36206975 DOI: 10.1016/j.actbio.2022.09.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 02/02/2023]
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are multipotent stromal cells and play huge role in forming and repairing bone tissues. Emerging evidence shows that MicroRNAs (miRNAs) are involved in ADSCs differentiation. Here, we explored the role of miR-150-5p and its related mechanisms in ADSCs osteogenesis. Real-time PCR was used to determine miR-150-5p expression during ADSCs osteogenesis. miR-150-5p inhibitors, miR-150-5p ADV or short hairpin RNA (shRNA) of Notch3 were transfected to ADSCs for analyzing the effects on osteogenesis. The mixture of hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic powders and transfected ADSCs was implanted into BALB/C nude mice. Micro-CT and histological methods were performed to evaluate the new bone formation. Compared with negative control (NC) and miR-150-5p overexpression, inhibition of miR-150-5p increased ADSCs osteogenesis by regulating Notch3. MiR-150-5p overexpression decreased the expression of pFAK, pERK1/2, and RhoA, while these were up-regulated when miR-150-5p was inhibited, or notch3 was silenced. Furthermore, miR-150-5p inhibition partially reversed the suppression effect of notch3 knockdown on osteogenesis in vitro and in vivo. This study demonstrated the critical function of miR-150-5p during osteogenesis. The combination of ADSCs with miR-150-5p inhibition and HA/TCP might be a promising strategy for bone damage repair. STATEMENT OF SIGNIFICANCE: Osteoporosis is a common chronic metabolic bone disease in humans. Bone tissue engineering based on mesenchymal stem cells, biomaterials, and growth factors, provides a promising way to treat osteoporosis and bone defects. ADSCs commonly differentiate into adipose cells, they can also differentiate into osteogenic cell lineages. Nucleic acids and protein have usually been considered as regulators of ADSCs osteogenic differentiation. In the current study, we demonstrated the combination of ADSCs with miR-150-5p inhibition and hydroxyapatite/tricalcium phosphate ceramic powders enhanced bone regeneration. Furthermore, miR-150-5p/Notch3 axis regulating osteogenesis via the FAK/ERK1/2 and RhoA pathway was assessed. The current study showed the application of ADSCs in bone regeneration might be a promising strategy for osteoporosis and bone damage repairing.
Collapse
Affiliation(s)
- Fanglin Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Qiao Wang
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yu Zhao
- Department of Plastic Surgery, Shengjing Hospital, Affiliated Hospital of China Medical University, No.36 Sanhao Street, Heping area, Shenyang, Liaoning 110004, PR China
| | - Zhiyu Tian
- Clinical Primary Department 105K, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Shijie Chang
- Division of Biomedical Engineering, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Hao Tong
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Ningwei Liu
- 5+3 Integration of Clinical Medicine 106K, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Shuling Bai
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Xiang Li
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Department of Cell Biology, School of Life Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Jun Fan
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
21
|
Kim KW, Shin YJ, Lee SCS. Novel ROCK Inhibitors, Sovesudil and PHP-0961, Enhance Proliferation, Adhesion and Migration of Corneal Endothelial Cells. Int J Mol Sci 2022; 23:ijms232314690. [PMID: 36499014 PMCID: PMC9740482 DOI: 10.3390/ijms232314690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
The loss or dysfunction of human corneal endothelial cells (hCEnCs) is a leading cause of blindness due to corneal failure. Corneal transplantation with a healthy donor cornea has been the only available treatment for corneal endothelial disease. However, the need for way to regenerate the CEnCs has been increased due to the global shortage of donor corneas. The aim of the study is to investigate whether novel Rho-kinase (ROCK) inhibitors can induce the cultivation and regeneration of hCEnCs. Cultured hCEnCs were treated with Y-27632, sovesudil, or PHP-0961 for 24 h. Cellular responses, including cell viability, cytotoxicity, proliferation, and Ki67 expression with ROCK inhibitors were evaluated. We also evaluated wound healing and cell adhesion assays. Porcine corneas were used ex vivo to evaluate the effects of Y-27632, sovesudil, and PHP-0961 on wound healing and regeneration. We performed live/dead cell assays and immunofluorescence staining for SRY (sex determining region Y)-box 2 (SOX2), β-catenin, and ZO-1 on porcine corneas after ROCK inhibitor treatments. Cell viability, cell proliferation rate, and the number of Ki67-positive cells were higher in Y-27632, sovesudil and PHP-0961 treated cells compared to the control. There was no difference in LDH cytotoxicity test between any groups. Cells treated with Y-27632, sovesudil and PHP-0961 showed faster migration, wound healing, and cell adhesion. In the porcine ex vivo experiments, wound healing, the number of live cells, and SOX2-positive cells were higher in Y-27632, sovesudil and PHP-0961 treated corneas. In all experiments, sovesudil and PHP-0961, the novel ROCK inhibitors, were equal or superior to the results of the ROCK inhibitor positive control, Y-27632. In conclusion, sovesudil and PHP-0961, novel ROCK inhibitors have the capacity to regenerate hCEnCs by enhancing cell proliferation and adhesion between cells.
Collapse
Affiliation(s)
- Kyung Wook Kim
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
- Correspondence: ; Tel.: +82-2-6960-1240
| | - Sammy Chi Sam Lee
- pH Pharma Co., Ltd., B-1009, U-Space, 670 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13494, Republic of Korea
| |
Collapse
|
22
|
Zheng WV, Xu W, Li Y, Qin J, Zhou T, Li D, Xu Y, Cheng X, Xiong Y, Chen Z. Anti-aging effect of β-carotene through regulating the KAT7-P15 signaling axis, inflammation and oxidative stress process. Cell Mol Biol Lett 2022; 27:86. [PMID: 36209059 PMCID: PMC9548120 DOI: 10.1186/s11658-022-00389-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background Research on aging is growing as the elderly make up a greater share of the population, focusing on reversing and inhibiting the aging process. The exhaustion and senescence of stem cells are the fundamental drivers behind aging. β-Carotene has been depicted to have many biological functions, and we speculate that it may have an anti-aging effect. Methods Firstly, the anti-aging property of β-carotene was investigated in vitro using mesenchymal stem cells (MSCs) induced by H2O2. The anti-aging effect was characterized using Western-bloting, confocal laser scanning microscopy, indirect immunofluorescence, and immunohistochemistry. The anti-aging property was also tested in vivo using aged mice. Results The in vitro experiment revealed that β-carotene could relieve the aging of MSCs, as evidenced by a series of aging marker molecules such as p16 and p21. β-Carotene appeared to inhibit aging by regulating the KAT7-P15 signaling axis. The in vivo experiment revealed that β-carotene treatment has significantly down-regulated the aging level of tissues and organs. Conclusions In this work, we explored the anti-aging effect of β-carotene in vivo and in vitro. The experimental results indicate that β-carotene may be an important potential anti-aging molecule, which can be used as a drug or in functional food to treat aging in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00389-7.
Collapse
Affiliation(s)
- Wei V Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Wang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Jie Qin
- Scientific and Resaerch Dept., Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Yanwei Xu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China.,Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Yu Xiong
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China.,Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China
| | - Zaizhong Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China. .,Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, People's Republic of China.
| |
Collapse
|
23
|
Bianconi E, Tassinari R, Alessandrini A, Ragazzini G, Cavallini C, Abruzzo PM, Petrocelli G, Pampanella L, Casadei R, Maioli M, Canaider S, Facchin F, Ventura C. Cytochalasin B Modulates Nanomechanical Patterning and Fate in Human Adipose-Derived Stem Cells. Cells 2022; 11:cells11101629. [PMID: 35626666 PMCID: PMC9139657 DOI: 10.3390/cells11101629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoskeletal proteins provide architectural and signaling cues within cells. They are able to reorganize themselves in response to mechanical forces, converting the stimuli received into specific cellular responses. Thus, the cytoskeleton influences cell shape, proliferation, and even differentiation. In particular, the cytoskeleton affects the fate of mesenchymal stem cells (MSCs), which are highly attractive candidates for cell therapy approaches due to their capacity for self-renewal and multi-lineage differentiation. Cytochalasin B (CB), a cyto-permeable mycotoxin, is able to inhibit the formation of actin microfilaments, resulting in direct effects on cell biological properties. Here, we investigated for the first time the effects of different concentrations of CB (0.1–10 μM) on human adipose-derived stem cells (hASCs) both after 24 h (h) of CB treatment and 24 h after CB wash-out. CB influenced the metabolism, proliferation, and morphology of hASCs in a dose-dependent manner, in association with progressive disorganization of actin microfilaments. Furthermore, the removal of CB highlighted the ability of cells to restore their cytoskeletal organization. Finally, atomic force microscopy (AFM) revealed that cytoskeletal changes induced by CB modulated the viscoelastic properties of hASCs, influencing their stiffness and viscosity, thereby affecting adipogenic fate.
Collapse
Affiliation(s)
- Eva Bianconi
- Laboratory of Cardiovascular Biology, IRCCS Ospedale Policlinico San Martino, Viale Rosanna Benzi 10, 16132 Genova, Italy;
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (C.V.)
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (C.V.)
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy; (A.A.); (G.R.)
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy; (A.A.); (G.R.)
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (C.V.)
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
| | - Giovannamaria Petrocelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
| | - Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
- Correspondence: (S.C.); (F.F.); Tel.: +39-051-2094114 (S.C.); +39-051-2094104 (F.F.)
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
- Correspondence: (S.C.); (F.F.); Tel.: +39-051-2094114 (S.C.); +39-051-2094104 (F.F.)
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (R.T.); (C.C.); (C.V.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (P.M.A.); (G.P.); (L.P.)
| |
Collapse
|