1
|
Chen Z, Zhang C, Meng C, Hu Y, Niu Y, Gao B, Wang J, Liu L, Chen K, Shan Z, Teng W, Li J. Unveiling the link: anti-protein disulfide isomerase A3 autoantibody expression and polycystic ovary syndrome risk in euthyroid autoimmune thyroiditis women. J Ovarian Res 2024; 17:247. [PMID: 39702372 DOI: 10.1186/s13048-024-01569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common complication of autoimmune thyroiditis (AIT) in women, but the underlying mechanism remains unclear. Protein disulfide isomerase A3 (PDIA3) is a ubiquitous protein. We have reported that PDIA3 autoantibody (PDIA3Ab) production results from autoimmune responses against thyrocytes, resulting in its high expression in euthyroid AIT patients. This study aimed to explore potential correlations between PDIA3Ab expression and concurrent PCOS in euthyroid AIT women. METHODS This is a single-center cross-sectional study. All participants, who visited the First Hospital of China Medical University from April 2023 to May 2024, were assigned to four groups according to AIT and PCOS diagnostic criteria. The PDIA3Ab levels of total IgG and IgG subclasses were detected using ELISA. RESULTS From highest to lowest, PDIA3Ab total serum IgG levels were categorized as follows: AIT-PCOS group > AIT-non-PCOS group > non-AIT-PCOS group > non-AIT-non-PCOS group Significant differences were observed between each pair of groups, except for the non-AIT-PCOS and non-AIT-non-PCOS groups. Further analysis of the subclasses of PDIA3Ab revealed that serum IgG1 levels in the AIT-PCOS and AIT-non-PCOS groups were significantly higher than those in the non-AIT-PCOS and non-AIT-non-PCOS groups. In addition, the AIT-PCOS group had significantly higher serum IgG3 levels than the other three groups. Binary logistic regression analysis revealed that the PDIA3Ab total IgG level was an independent risk factor for concurrent PCOS in euthyroid AIT women (Q4 vs. Q1: OR, 95%CI = 5.082, 1.348-19.16). Furthermore, a trend test demonstrated a titer-dependent increase in PCOS prevalence among AIT women as the PDIA3Ab total IgG level increased. CONCLUSIONS The expression of serum PDIA3Ab may indicate an increased risk of PCOS in euthyroid AIT women and could potentially serve as new targets for markers or immune intervention.
Collapse
Affiliation(s)
- Zhaoying Chen
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chenxi Zhang
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunfeng Meng
- Department of Gynaecology and Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yadan Hu
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yazhuo Niu
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bingrui Gao
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinshuo Wang
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lu Liu
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kan Chen
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Li
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Lan H, Xi Y, Kang B, Tong Z, Peng J, Zhang W, Zhong M, Gong H, Wang Z. PDIA3 rs2788: An Independent Risk Factor for Hypertension and Its Interaction With Antihypertensive Medications. J Clin Hypertens (Greenwich) 2024. [PMID: 39686834 DOI: 10.1111/jch.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Hypertension is a multifactorial condition influenced by both genetic and environmental factors. Protein disulfide isomerase family A member 3 (PDIA3) is a key endoplasmic reticulum protein which may contribute to increased blood pressure. However, the relationship between PDIA3 polymorphisms and hypertension remain unclear. This study aims to explore the relationship between PDIA3 polymorphisms and hypertension. First, Mendelian randomization (MR) analyses were performed to assess the causal link between PDIA3 and hypertension. Second, key gene polymorphism on PDIA3 was identified using online databases and analyzed with Haploview software. Third, multivariate-adjusted logistic regression analyses were employed to evaluate the associations between PDIA3 rs2788 and hypertension. Finally, stratified analyses were conducted to further assess interactions between PDIA3 rs2788 and antihypertensive medications. MR analyses indicated a causal relationship between PDIA3 and hypertension. The rs2788 gene polymorphism locus on PDIA3 was identified using online databases and Haploview software. Multivariable-adjusted logistic regression analyses revealed that PDIA3 rs2788 was an independent risk for hypertension (OR: 4.603, 95% CI: 2.946-7.194; p < 0.001). Significant interactions were identified between PDIA3 and antihypertensive medications, particularly ACEI/ARB treatments (p = 0.013 for interaction). Similar findings were observed regarding the causal relationship between antihypertensive treatments and hypertension. PDIA3, particularly its rs2788 polymorphisms, may represent a novel biomarker for hypertension. These findings may contribute to the development of targeted screening strategies and personalized treatment approaches for hypertension management.
Collapse
Affiliation(s)
- Hongtao Lan
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Yingbin Xi
- Internal Medicine Department, the Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China
| | - Baoxu Kang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Zhoujie Tong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Peng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Huiping Gong
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhihao Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Pozzetti L, Asquith CRM. Pentathiepins are an understudied molecular prism of biological activities. Arch Pharm (Weinheim) 2024; 357:e2400646. [PMID: 39382224 PMCID: PMC11610675 DOI: 10.1002/ardp.202400646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
The pentathiepin core was first synthesized in 1971, and while synthetic techniques have progressed over subsequent decades, the biological applications of this heterocycle have received less attention and are only now becoming more apparent. The first natural product, varacin, was identified in 1991, showing cytotoxicity toward a human colon cancer cell line. More recently, the pentathiepin has acted as a surrogate to replace elemental sulfur, that was discovered as a hit in neurodegenerative animal models. A variety of other medicinal chemistry applications have recently been disclosed. Here, we summarize these indications and highlight the main synthetic pathways to access the pentathiepin core. We offer a concise summary and future perspective of this unique sulfur isosteric replacement.
Collapse
Affiliation(s)
- Luca Pozzetti
- School of Pharmacy, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | | |
Collapse
|
4
|
Zhang Y, Zhang X, Yang X, Lv L, Wang Q, Zeng S, Zhang Z, Dorf M, Li S, Zhao L, Fu B. AP3B1 facilitates PDIA3/ERP57 function to regulate rabies virus glycoprotein selective degradation and viral entry. Autophagy 2024; 20:2785-2803. [PMID: 39128851 PMCID: PMC11587837 DOI: 10.1080/15548627.2024.2390814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Rabies virus causes an estimated 59,000 annual fatalities worldwide and promising therapeutic treatments are necessary to develop. In this study, affinity tag-purification mass spectrometry was employed to delineate RABV glycoprotein and host protein interactions, and PDIA3/ERP57 was identified as a potential inhibitor of RABV infection. PDIA3 restricted RABV infection with follow mechanisms: PDIA3 mediated the degradation of RABV G protein by targeting lysine 332 via the selective macroautophagy/autophagy pathway; The PDIA3 interactor, AP3B1 (adaptor related protein complex 3 subunit beta 1) was indispensable in PDIA3-triggered selective degradation of the G protein; Furthermore, PDIA3 competitively bound with NCAM1/NCAM (neural cell adhesion molecule 1) to block RABV G, hindering viral entry into host cells. PDIA3 190-199 aa residues bound to the RABV G protein were necessary and sufficient to defend against RABV. These results demonstrated the therapeutic potential of biologics that target PDIA3 or utilize PDIA3 190-199 aa peptide to treat clinical rabies.Abbreviation: aa: amino acids; ANXA2: annexin A2; AP-MS: affinity tag purification-mass spectrometry; AP3B1: adaptor related protein complex 3 subunit beta 1; ATP6V1A: ATPase H+ transporting V1 subunit A; ATP6V1H: ATPase H+ transporting V1 subunit H; BafA1: bafilomycin A1; CHX: cycloheximide; co-IP: co-immunoprecipitation; DDX17: DEAD-box helicase 17; DmERp60: drosophila melanogaster endoplasmic reticulum p60; EBOV: Zaire ebolavirus virus; EV: empty vector; GANAB: glucosidase II alpha subunit; G protein: glycoprotein; GRM2/mGluR2: glutamate metabotropic receptor 2; HsPDIA3: homo sapiens protein disulfide isomerase family A member 3; IAV: influenza virus; ILF2: interleukin enhancer binding factor 2; KO: knockout; MAGT1: magnesium transporter 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MmPDIA3: mus musculus protein disulfide isomerase associated 3; NCAM1/NCAM: neural cell adhesion molecule 1; NGFR/p75NTR: nerve growth factor receptor; NGLY1: N-glycanase 1; OTUD4: OTU deubiquitinase 4; PDI: protein disulfide isomerase; PPIs: protein-protein interactions; RABV: rabies virus; RUVBL2: RuvB like AAA ATPase 2; SCAMP3: secretory carrier membrane protein 3; ScPdi1: Saccharomyces cerevisiae s288c protein disulfide isomerase 1; SLC25A6: solute carrier family 25 member 6; SQSTM1/p62: sequestosome 1; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Yuelan Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xinyi Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xue Yang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Linyue Lv
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Qinyang Wang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Shaowei Zeng
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zhuyou Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Martin Dorf
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Bishi Fu
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Wang CY, Lin SC, Chang KJ, Cheong HP, Wu SR, Lee CH, Chuang MW, Chiou SH, Hsu CH, Ko PS. Immunoediting in acute myeloid leukemia: Reappraising T cell exhaustion and the aberrant antigen processing machinery in leukemogenesis. Heliyon 2024; 10:e39731. [PMID: 39568858 PMCID: PMC11577197 DOI: 10.1016/j.heliyon.2024.e39731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Acute myeloid leukemia (AML) establishes an immunosuppressive microenvironment that favors leukemic proliferation. The immune-suppressive cytokines altered antigen processing, and presentation collectively assist AML cells in escaping cytotoxic T-cell surveillance. These CD8+ T cell dysfunction features are emerging therapeutic targets in relapsed/refractory AML patients. Besides, CD8+ T cell exhaustion is a hotspot in recent clinical oncology studies, but its pathophysiology has yet to be elucidated in AML. In this review, we summarize high-quality original studies encompassing the phenotypic and genomic characteristics of T cell exhaustion events in the leukemia progression, emphasize the surface immuno-peptidome that dynamically tunes the fate of T cells to function or dysfunction states, and revisit the biochemical and biophysical properties of type 1 MHC antigen processing mechanism (APM) that pivots in the phenomenon of leukemia antigen dampening.
Collapse
Affiliation(s)
- Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kao-Jung Chang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Sin-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hao Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Po-Shen Ko
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Pierre AS, Gavriel N, Guilbard M, Ogier-Denis E, Chevet E, Delom F, Igbaria A. Modulation of Protein Disulfide Isomerase Functions by Localization: The Example of the Anterior Gradient Family. Antioxid Redox Signal 2024; 41:675-692. [PMID: 38411504 DOI: 10.1089/ars.2024.0561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Significance: Oxidative folding within the endoplasmic reticulum (ER) introduces disulfide bonds into nascent polypeptides, ensuring proteins' stability and proper functioning. Consequently, this process is critical for maintaining proteome integrity and overall health. The productive folding of thousands of secretory proteins requires stringent quality control measures, such as the unfolded protein response (UPR) and ER-Associated Degradation (ERAD), which contribute significantly to maintaining ER homeostasis. ER-localized protein disulfide isomerases (PDIs) play an essential role in each of these processes, thereby contributing to various aspects of ER homeostasis, including maintaining redox balance, proper protein folding, and signaling from the ER to the nucleus. Recent Advances: Over the years, there have been increasing reports of the (re)localization of PDI family members and other ER-localized proteins to various compartments. A prime example is the anterior gradient (AGR) family of PDI proteins, which have been reported to relocate to the cytosol or the extracellular environment, acquiring gain of functions that intersect with various cellular signaling pathways. Critical Issues: Here, we summarize the functions of PDIs and their gain or loss of functions in non-ER locations. We will focus on the activity, localization, and function of the AGR proteins: AGR1, AGR2, and AGR3. Future Directions: Targeting PDIs in general and AGRs in particular is a promising strategy in different human diseases. Thus, there is a need for innovative strategies and tools aimed at targeting PDIs; those strategies should integrate the specific localization and newly acquired functions of these PDIs rather than solely focusing on their canonical roles.
Collapse
Affiliation(s)
- Arvin S Pierre
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Noa Gavriel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marianne Guilbard
- ARTiSt Group, Univ. Bordeaux, INSERM U1312, Institut Bergonié, Bordeaux, France
- Thabor Therapeutics, Paris, France
| | - Eric Ogier-Denis
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Frederic Delom
- ARTiSt Group, Univ. Bordeaux, INSERM U1312, Institut Bergonié, Bordeaux, France
| | - Aeid Igbaria
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Zhu YY, Zhang Q, Jia YC, Hou MJ, Zhu BT. Protein disulfide isomerase plays a crucial role in mediating chemically-induced, glutathione depletion-associated hepatocyte injury in vitro and in vivo. Cell Commun Signal 2024; 22:431. [PMID: 39243059 PMCID: PMC11378433 DOI: 10.1186/s12964-024-01798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024] Open
Abstract
Recently we have shown that protein disulfide isomerase (PDI or PDIA1) is involved in mediating chemically-induced, glutathione (GSH) depletion-associated ferroptotic cell death through NOS activation (dimerization) and NO accumulation. The present study aims to determine the role of PDI in mediating chemically-induced hepatocyte injury in vitro and in vivo and whether PDI inhibitors can effectively protect against chemically-induced hepatocyte injury. We show that during the development of erastin-induced ferroptotic cell death, accumulation of cellular NO, ROS and lipid-ROS follows a sequential order, i.e., cellular NO accumulation first, followed by accumulation of cellular ROS, and lastly cellular lipid-ROS. Cellular NO, ROS and lipid-ROS each play a crucial role in mediating erastin-induced ferroptosis in cultured hepatocytes. In addition, it is shown that PDI is an important upstream mediator of erastin-induced ferroptosis through PDI-mediated conversion of NOS monomer to its dimer, which then leads to accumulation of cellular NO, ROS and lipid-ROS, and ultimately ferroptotic cell death. Genetic manipulation of PDI expression or pharmacological inhibition of PDI function each can effectively abrogate erastin-induced ferroptosis. Lastly, evidence is presented to show that PDI is also involved in mediating acetaminophen-induced liver injury in vivo using both wild-type C57BL/6J mice and hepatocyte-specific PDI conditional knockout (PDIfl/fl Alb-cre) mice. Together, our work demonstrates that PDI is an important upstream mediator of chemically-induced, GSH depletion-associated hepatocyte ferroptosis, and inhibition of PDI can effectively prevent this injury.
Collapse
Affiliation(s)
- Yan-Yin Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Qi Zhang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Yi-Chen Jia
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Ming-Jie Hou
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Yuan T, Wang Y, Wang H, Lu Q, Zhang X, Li Z, Sun S. Suppressing ERp57 diminishes osteoclast activity and ameliorates ovariectomy-induced bone loss via the intervention in calcium oscillation and the calmodulin/calcineurin/Nfatc1 pathway. Heliyon 2024; 10:e35374. [PMID: 39170388 PMCID: PMC11336591 DOI: 10.1016/j.heliyon.2024.e35374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Increased osteoclast activity constitutes the primary etiology of excessive bone erosion in postmenopausal osteoporosis. ERp57, otherwise referred to as protein disulfide isomerase A3 (PDIA3), plays a crucial role in the regulation of intracellular calcium signaling. This is documented to exert a profound impact on osteoclast differentiation and functionality. Methods To ascertain the potential role of ERp57 in disease progression, prevention, and treatment, network pharmacology and bioinformatics analyses were conducted in relation to postmenopausal osteoporosis and ERp57 inhibitor (Loc14). Then, subsequent experimental verifications were employed in vitro on osteoclast and osteoblast, and in vivo on ovariectomy (OVX) mice models. Results Multiple enrichment analyses suggested that the "calcium signaling pathway" may constitute a potential avenue for therapeutic intervention by Loc14 in the treatment of postmenopausal osteoporosis. In vitro experiments demonstrated inhibition of ERp57 could block osteoclast differentiation and function by interfering with the expression of osteoclast marker genes (Traf6, Nfatc1, and Ctsk). Further mechanisms studies based on calcium imaging, qPCR, and WB established that ERp57 inhibitor (Loc14) could obstruct calcium oscillation in osteoclast precursor cells (OPCs) by limiting the entry sources of cytosolic Ca2+ and interfering with calmodulin/calcineurin/Nfatc1 pathway. Evidence from Micro-CT scanning and double calcein labeling confirmed that the application of Loc14 in vivo could alleviate bone loss and partially reversed the osteogenic impairment caused by OVX in mice. Conclusions Our findings proved the suppressive effects of Loc14 on osteoclastogenesis via attenuating calcium oscillation and associated singling pathways, providing ERp57 as a potential therapeutic target for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qizhen Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
9
|
Yang CL, Wang FX, Luo JH, Rong SJ, Lu WY, Chen QJ, Xiao J, Wang T, Song DN, Liu J, Mo Q, Li S, Chen Y, Wang YN, Liu YJ, Yan T, Gu WK, Zhang S, Xiong F, Yu QL, Zhang ZY, Yang P, Liu SW, Eizirik D, Dong LL, Sun F, Wang CY. PDIA3 orchestrates effector T cell program by serving as a chaperone to facilitate the non-canonical nuclear import of STAT1 and PKM2. Mol Ther 2024; 32:2778-2797. [PMID: 38822524 PMCID: PMC11405166 DOI: 10.1016/j.ymthe.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.
Collapse
Affiliation(s)
- Chun-Liang Yang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fa-Xi Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jia-Hui Luo
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wan-Ying Lu
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi-Jie Chen
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Xiao
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan-Ni Song
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Liu
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Mo
- Department of Rheumatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuo Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Chen
- Department of Rheumatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya-Nan Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan-Jun Liu
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiao-tong University, the Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Tong Yan
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiao-tong University, the Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Wei-Kuan Gu
- Research Service, Memphis VA Medical Center, Memphis, TN 38105, USA
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Xiong
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi-Lin Yu
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi-Yun Zhang
- Department of Rheumatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Yang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan 030032, China
| | - Decio Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Ling-Li Dong
- Department of Rheumatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan 030032, China.
| |
Collapse
|
10
|
Parakh S, Perri ER, Vidal M, Takalloo Z, Jagaraj CJ, Mehta P, Yang S, Thomas CJ, Blair IP, Hong Y, Atkin JD. Protein Disulfide Isomerase Endoplasmic Reticulum Protein 57 (ERp57) is Protective Against ALS-Associated Mutant TDP-43 in Neuronal Cells. Neuromolecular Med 2024; 26:23. [PMID: 38861223 PMCID: PMC11166824 DOI: 10.1007/s12017-024-08787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/09/2024] [Indexed: 06/12/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disease affecting motor neurons. Pathological forms of Tar-DNA binding protein-43 (TDP-43), involving its mislocalisation to the cytoplasm and the formation of misfolded inclusions, are present in almost all ALS cases (97%), and ~ 50% cases of the related condition, frontotemporal dementia (FTD), highlighting its importance in neurodegeneration. Previous studies have shown that endoplasmic reticulum protein 57 (ERp57), a member of the protein disulphide isomerase (PDI) family of redox chaperones, is protective against ALS-linked mutant superoxide dismutase (SOD1) in neuronal cells and transgenic SOD1G93A mouse models. However, it remains unclear whether ERp57 is protective against pathological TDP-43 in ALS. Here, we demonstrate that ERp57 is protective against key features of TDP-43 pathology in neuronal cells. ERp57 inhibited the mislocalisation of TDP-43M337V from the nucleus to the cytoplasm. In addition, ERp57 inhibited the number of inclusions formed by ALS-associated variant TDP-43M337V and reduced the size of these inclusions. ERp57 was also protective against ER stress and induction of apoptosis. Furthermore, ERp57 modulated the steady-state expression levels of TDP-43. This study therefore demonstrates a novel mechanism of action of ERp57 in ALS. It also implies that ERp57 may have potential as a novel therapeutic target to prevent the TDP-43 pathology associated with neurodegeneration.
Collapse
Affiliation(s)
- Sonam Parakh
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, Australia
| | - Emma R Perri
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, Australia
| | - Marta Vidal
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, Australia
| | - Zeinab Takalloo
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, Australia
| | - Cyril J Jagaraj
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, Australia
| | - Prachi Mehta
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, Australia
| | - Shu Yang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, Australia
| | - Colleen J Thomas
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, 3086, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ian P Blair
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, Australia
| | - Yuning Hong
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Julie D Atkin
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
11
|
Kermpatsou D, Olsson F, Wåhlén E, Söderberg O, Lennartsson J, Norlin M. Cellular responses to silencing of PDIA3 (protein disulphide-isomerase A3): Effects on proliferation, migration, and genes in control of active vitamin D. J Steroid Biochem Mol Biol 2024; 240:106497. [PMID: 38460707 DOI: 10.1016/j.jsbmb.2024.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
The active form of vitamin D, 1,25-dihydroxyvitamin D3, is known to act via VDR (vitamin D receptor), affecting several physiological processes. In addition, PDIA3 (protein disulphide-isomerase A3) has been associated with some of the functions of 1,25-dihydroxyvitamin D3. In the present study we used siRNA-mediated silencing of PDIA3 in osteosarcoma and prostate carcinoma cell lines to examine the role(s) of PDIA3 for 1,25-dihydroxyvitamin D3-dependent responses. PDIA3 silencing affected VDR target genes and significantly altered the 1,25-dihydroxyvitamin D3-dependent induction of CYP24A1, essential for elimination of excess 1,25-dihydroxyvitamin D3. Also, PDIA3 silencing significantly altered migration and proliferation in prostate PC3 cells, independently of 1,25-dihydroxyvitamin D3. 1,25-Dihydroxyvitamin D3 increased thermostability of PDIA3 in cellular thermal shift assay, supporting functional interaction between PDIA3 and 1,25-dihydroxyvitamin D3-dependent pathways. In summary, our data link PDIA3 to 1,25-dihydroxyvitamin D3-mediated signalling, underline and extend its role in proliferation and reveal a novel function in maintenance of 1,25-dihydroxyvitamin D3 levels.
Collapse
Affiliation(s)
- Despoina Kermpatsou
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden
| | - Frida Olsson
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden
| | - Erik Wåhlén
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden
| | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden
| | - Maria Norlin
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala Biomedical Centre, Box 591, Uppsala S-751 24, Sweden.
| |
Collapse
|
12
|
Yuan SHC, Wu CC, Wang YC, Chan XY, Chu HW, Yang Y, Liu HP. AGR2-mediated unconventional secretion of 14-3-3ε and α-actinin-4, responsive to ER stress and autophagy, drives chemotaxis in canine mammary tumor cells. Cell Mol Biol Lett 2024; 29:84. [PMID: 38822246 PMCID: PMC11140979 DOI: 10.1186/s11658-024-00601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Canine mammary tumors (CMTs) in intact female dogs provide a natural model for investigating metastatic human cancers. Our prior research identified elevated expression of Anterior Gradient 2 (AGR2), a protein disulfide isomerase (PDI) primarily found in the endoplasmic reticulum (ER), in CMT tissues, highly associated with CMT progression. We further demonstrated that increased AGR2 expression actively influences the extracellular microenvironment, promoting chemotaxis in CMT cells. Unraveling the underlying mechanisms is crucial for assessing the potential of therapeutically targeting AGR2 as a strategy to inhibit a pro-metastatic microenvironment and impede tumor metastasis. METHODS To identify the AGR2-modulated secretome, we employed proteomics analysis of the conditioned media (CM) from two CMT cell lines ectopically expressing AGR2, compared with corresponding vector-expressing controls. AGR2-regulated release of 14-3-3ε (gene: YWHAE) and α-actinin 4 (gene: ACTN4) was validated through ectopic expression, knockdown, and knockout of the AGR2 gene in CMT cells. Extracellular vesicles derived from CMT cells were isolated using either differential ultracentrifugation or size exclusion chromatography. The roles of 14-3-3ε and α-actinin 4 in the chemotaxis driven by the AGR2-modulated CM were investigated through gene knockdown, antibody-mediated interference, and recombinant protein supplement. Furthermore, the clinical relevance of the release of 14-3-3ε and α-actinin 4 was assessed using CMT tissue-immersed saline and sera from CMT-afflicted dogs. RESULTS Proteomics analysis of the AGR2-modulated secretome revealed increased abundance in 14-3-3ε and α-actinin 4. Ectopic expression of AGR2 significantly increased the release of 14-3-3ε and α-actinin 4 in the CM. Conversely, knockdown or knockout of AGR2 expression remarkably reduced their release. Silencing 14-3-3ε or α-actinin 4 expression diminished the chemotaxis driven by AGR2-modulated CM. Furthermore, AGR2 controls the release of 14-3-3ε and α-actinin 4 primarily via non-vesicular routes, responding to the endoplasmic reticulum (ER) stress and autophagy activation. Knockout of AGR2 resulted in increased α-actinin 4 accumulation and impaired 14-3-3ε translocation in autophagosomes. Depletion of extracellular 14-3-3ε or α-actinin 4 reduced the chemotaxis driven by AGR2-modulated CM, whereas supplement with recombinant 14-3-3ε in the CM enhanced the CM-driven chemotaxis. Notably, elevated levels of 14-3-3ε or α-actinin 4 were observed in CMT tissue-immersed saline compared with paired non-tumor samples and in the sera of CMT dogs compared with healthy dogs. CONCLUSION This study elucidates AGR2's pivotal role in orchestrating unconventional secretion of 14-3-3ε and α-actinin 4 from CMT cells, thereby contributing to paracrine-mediated chemotaxis. The insight into the intricate interplay between AGR2-involved ER stress, autophagy, and unconventional secretion provides a foundation for refining strategies aimed at impeding metastasis in both canine mammary tumors and potentially human cancers.
Collapse
Affiliation(s)
- Stephen Hsien-Chi Yuan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Ching Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chih Wang
- Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Xiu-Ya Chan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Wei Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Youngsen Yang
- Department of Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
13
|
Saidjalolov S, Coelho F, Mercier V, Moreau D, Matile S. Inclusive Pattern Generation Protocols to Decode Thiol-Mediated Uptake. ACS CENTRAL SCIENCE 2024; 10:1033-1043. [PMID: 38799667 PMCID: PMC11117725 DOI: 10.1021/acscentsci.3c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024]
Abstract
Thiol-mediated uptake (TMU) is an intriguing enigma in current chemistry and biology. While the appearance of cell-penetrating activity upon attachment of cascade exchangers (CAXs) has been observed by many and is increasingly being used in practice, the molecular basis of TMU is essentially unknown. The objective of this study was to develop a general protocol to decode the dynamic covalent networks that presumably account for TMU. Uptake inhibition patterns obtained from the removal of exchange partners by either protein knockdown or alternative inhibitors are aligned with original patterns generated by CAX transporters and inhibitors and patterns from alternative functions (here cell motility). These inclusive TMU patterns reveal that the four most significant CAXs known today enter cells along three almost orthogonal pathways. Epidithiodiketopiperazines (ETP) exchange preferably with integrins and protein disulfide isomerases (PDIs), benzopolysulfanes (BPS) with different PDIs, presumably PDIA3, and asparagusic acid (AspA), and antisense oligonucleotide phosphorothioates (OPS) exchange with the transferrin receptor and can be activated by the removal of PDIs with their respective inhibitors. These findings provide a solid basis to understand and use TMU to enable and prevent entry into cells.
Collapse
Affiliation(s)
| | - Filipe Coelho
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Vincent Mercier
- Department
of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dimitri Moreau
- Department
of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
14
|
Abdullatif A, Abdelrahman AE, Bakry A, Gharieb SA, Ramadan MS, Wasfy MA, Abdelwanis AH, Fouad EM. Clinicopathological significance of protein disulphide isomerase A3 and phosphorylated signal transducer and activator of transcription 3 in cervical carcinoma. Contemp Oncol (Pozn) 2024; 28:51-62. [PMID: 38800530 PMCID: PMC11117164 DOI: 10.5114/wo.2024.139368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Death in cervical cancer patients is usually due to invasion and metastasis due to the aggressive nature of the tumour. Therefore, it is critical to identify potent therapeutic targets and prognostic markers to detect high-risk patients. Material and methods We assessed the immunohistochemical expression of protein disulphide isomerase A3 (PDIA3) and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in 50 cases of cervical carcinoma, and we investigated their association with clinicopathological characteristics. Results High PDIA3 was detected in 50% of cases, and statistical analysis revealed a positive correlation between high PDAI3 expression and tumour grade (p < 0.001) and large tumour size (p = 0.010), depth of stromal invasion (p = 0.017), lymph-vascular invasion (p = 0.005), parametrial invasion (p < 0.001), nodal metastasis (p < 0.001), and higher International Federation of Gynaecology and Obstetrics stages (p < 0.001). Positive nuclear expression of p-STAT3 was detected in 44% of cases and showed significant association with histological grade (p = 0.036), tumour stage (p = 0.021), nodal metastasis (p = 0.020), and parametrial invasion (p = 0.045); statistical analysis of the patient's survival data revealed that shorter overall survival and disease-free survival, S, were associated with high PDIA3 expression and positive p-STAT3 immunoexpression. Conclusions The high expression of PDIA3 and p-STAT3 was related to highly aggressive cervical carcinoma with poor prognosis, and high risk of recurrence after the standardised protocol of treatment. Hence, both PDIA3 and p-STAT3 could be considered as novel biomarkers for tumour progression and promising targets in the management of cervical carcinoma patients.
Collapse
Affiliation(s)
| | | | - Adel Bakry
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | | | | | - Enas M. Fouad
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Xu J, Zhang X, Yang G, Sun W, Wang W, Mi C. Analysis of differentially expressed proteins in lymph fluids related to lymphatic metastasis in a breast cancer rabbit model guided by contrast‑enhanced ultrasound. Oncol Lett 2024; 27:143. [PMID: 38385114 PMCID: PMC10879953 DOI: 10.3892/ol.2024.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/13/2023] [Indexed: 02/23/2024] Open
Abstract
The aim of the present study was to identify differentially expressed proteins in the lymph fluid of rabbits with breast cancer lymphatic metastasis compared with healthy rabbits and to analyze and verify these proteins using proteomics technologies. In the process of breast cancer metastasis, the composition of the lymph fluid will also change. Rabbits with breast cancer lymph node metastasis and normal rabbits were selected for analysis. Lymph fluid was extracted under the guidance of percutaneous contrast-enhanced ultrasound. Label-free quantitative proteomics was used to detect and compare differences between the rabbit cancer model and healthy rabbits and differential protein expression results were obtained. Bioinformatics analysis was performed using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis software, selecting the most significantly differentially expressed proteins. Finally, parallel reaction monitoring technology was applied for validation. A total of 547 significantly differentially expressed proteins were found in the present study, which included 371 upregulated proteins and 176 downregulated proteins. The aforementioned genes were mainly involved in various cellular and metabolic pathways, including upregulated proteins, such as biliverdin reductase A and isocitrate dehydrogenase 2 and downregulated proteins, such as pyridoxal kinase. The upregulated proteins protein disulfide-isomerase 3, protein kinase cAMP-dependent type I regulatory subunit α and ATP-binding cassette sub-family C member 4 participated in immune regulation, endocrine regulation and anti-tumor drug resistance regulation, respectively. Compared with healthy rabbits, rabbits with breast cancer metastasis differentially expressed of a number of different proteins in their lymph, which participate in the pathophysiological process of tumor occurrence and metastasis. Through further research, these differential proteins can be used as predictive indicators of breast cancer metastasis and new therapeutic targets.
Collapse
Affiliation(s)
- Jiachao Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| | - Xin Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| | - Guangfei Yang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| | - Wei Sun
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| | - Wen Wang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| | - Chengrong Mi
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750003, P.R. China
| |
Collapse
|
16
|
Yang M, Li Q, Yang H, Li Y, Lu L, Wu X, Liu Y, Li W, Shen J, Xiao Z, Zhao Y, Du F, Chen Y, Deng S, Cho CH, Li X, Li M. Downregulation of PDIA3 inhibits gastric cancer cell growth through cell cycle regulation. Biomed Pharmacother 2024; 173:116336. [PMID: 38412717 DOI: 10.1016/j.biopha.2024.116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE Protein disulfide isomerase A3 (PDIA3) promotes the correct folding of newly synthesized glycoproteins in the endoplasmic reticulum. PDIA3 is overexpressed in most tumors, and it may become a biomarker of cancer prognosis and immunotherapy. Our study aims to detect the expression level of PDIA3 in gastric cancer (GC) and its association with GC development as wells as the underlying mechanisms. METHODS GC cell lines with PDIA3 knockdown by siRNA, CRISPR-cas9 sgRNAs or a pharmacological inhibitor of LOC14 were prepared and used. PDIA3 knockout GC cells were established by CRISPR-cas9-PDIA3 system. The proliferation, migration, invasion and cell cycle of GC cells were analyzed by cell counting kit-8 assay, wound healing assay, transwell assay and flow cytometry, respectively. Immunodeficient nude mice was used to evaluate the role of PDIA3 in tumor formation. Quantitative PCR and western blot were used for examining gene and protein expressions. RNA sequencing was performed to see the altered gene expression. RESULTS The expressions of PDIA3 in GC tissues and cells were increased significantly, and its expression was negatively correlated with the three-year survival rate of GC patients. Down-regulation of PDIA3 by siRNA, LOC14 or CRISPR-cas9 significantly inhibited proliferation, invasion and migration of GC cells TMK1 and AGS, with cell cycle arrested at G2/M phase. Meanwhile, decreased PDIA3 significantly inhibited growth of tumor xenograft in vivo. It was found that cyclin G1 (encoded by CCNG1 gene) expression was decreased by downregulation of PDIA3 in GC cells both in vitro and in vivo. In addition, protein levels of other cell cycle related factors including cyclin D1, CDK2, and CDK6 were also significantly decreased. Further study showed that STAT3 was associated with PDIA3-mediated cyclin G1 regulation. CONCLUSION PDIA3 plays an oncogenic role in GC. Our findings unfolded the functional role of PDIA3 in GC development and highlighted a novel target for cancer therapeutic strategy.
Collapse
Affiliation(s)
- Min Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Nanbu people's Hospital, Ministry of Pharmacy, Nanchong, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Yifan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yubin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| |
Collapse
|
17
|
Di Giuseppe F, Ricci-Vitiani L, Pallini R, Di Pietro R, Di Iorio P, Ascani G, Ciccarelli R, Angelucci S. Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome. Cells 2024; 13:571. [PMID: 38607010 PMCID: PMC11011151 DOI: 10.3390/cells13070571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness. P2X7R stimulation of GSCs caused significant changes in the EV content, mostly ex novo inducing or upregulating the expression of proteins related to cytoskeleton reorganization, cell motility/spreading, energy supply, protection against oxidative stress, chromatin remodeling, and transcriptional regulation. Most of the induced/upregulated proteins have already been identified as GBM diagnostic/prognostic factors, while others have only been reported in peripheral tumors. Our findings indicate that P2X7R stimulation enhances the transport and, therefore, possible intercellular exchange of GBM aggressiveness-increasing proteins by GSC-derived EVs. Thus, P2X7Rs could be considered a new druggable target of human GBM, although these data need to be confirmed in larger experimental sets.
Collapse
Affiliation(s)
- Fabrizio Di Giuseppe
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| | - Lucia Ricci-Vitiani
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Roberto Pallini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy;
| | - Roberta Di Pietro
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy;
| | - Patrizia Di Iorio
- Department of Medicine and Aging Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Giuliano Ascani
- UOSD Maxillofacial Surgery, Azienda Sanitaria Locale di Pescara, Via Renato Paolini 47, 65124 Pescara, Italy;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
| | - Stefania Angelucci
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| |
Collapse
|
18
|
Law ME, Dulloo ZM, Eggleston SR, Takacs GP, Alexandrow GM, Wang M, Su H, Forsyth B, Chiang CW, Sharma A, Kanumuri SRR, Guryanova OA, Harrison JK, Tirosh B, Castellano RK, Law BK. DR5 disulfide bonding as a sensor and effector of protein folding stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583390. [PMID: 38496520 PMCID: PMC10942403 DOI: 10.1101/2024.03.04.583390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
New agents are needed that selectively kill cancer cells without harming normal tissues. The TRAIL ligand and its receptors, DR5 and DR4, exhibit cancer-selective toxicity, but TRAIL analogs or agonistic antibodies targeting these receptors have not received FDA approval for cancer therapy. Small molecules for activating DR5 or DR4 independently of protein ligands may bypass some of the pharmacological limitations of these protein drugs. Previously described Disulfide bond Disrupting Agents (DDAs) activate DR5 by altering its disulfide bonding through inhibition of the Protein Disulfide Isomerases (PDIs) ERp44, AGR2, and PDIA1. Work presented here extends these findings by showing that disruption of single DR5 disulfide bonds causes high-level DR5 expression, disulfide-mediated clustering, and activation of Caspase 8-Caspase 3 mediated pro-apoptotic signaling. Recognition of the extracellular domain of DR5 by various antibodies is strongly influenced by the pattern of DR5 disulfide bonding, which has important implications for the use of agonistic DR5 antibodies for cancer therapy. Disulfide-defective DR5 mutants do not activate the ER stress response or stimulate autophagy, indicating that these DDA-mediated responses are separable from DR5 activation and pro-apoptotic signaling. Importantly, other ER stressors, including Thapsigargin and Tunicamycin also alter DR5 disulfide bonding in various cancer cell lines and in some instances, DR5 mis-disulfide bonding is potentiated by overriding the Integrated Stress Response (ISR) with inhibitors of the PERK kinase or the ISR inhibitor ISRIB. These observations indicate that the pattern of DR5 disulfide bonding functions as a sensor of ER stress and serves as an effector of proteotoxic stress by driving extrinsic apoptosis independently of extracellular ligands.
Collapse
|
19
|
Ichiki N, Saigo C, Hanamatsu Y, Iwata H, Takeuchi T. Inducing Melanoma Cell Apoptosis by ERp57/PDIA3 Antibody in the Presence of CPI-613 and Hydroxychloroquine. J Cancer 2024; 15:1779-1785. [PMID: 38434963 PMCID: PMC10905412 DOI: 10.7150/jca.92252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024] Open
Abstract
The combination of the cancer mitochondrial metabolic inhibitor CPI-613 and hydroxychloroquine has tumor-suppressive effects on clear cell sarcoma, which shares pathobiological properties with melanoma. Therefore, we intended to examine the effects of a combination of CPI-613 and hydroxychloroquine on the growth of melanoma cells in the present study. However, cell death was not induced in melanoma cells. Therefore, a monoclonal antibody, ICT, that induced apoptosis in melanoma cells in combination with CPI-613 and hydroxychloroquine was developed. Immunoprecipitation, mass spectrometry, and small interfering RNA (siRNA)-mediated gene silencing demonstrated that ICT targeted Endoplasmic Reticulum Resident Protein 57/ Protein Disulfide Isomerase Family A Member 3 (ERp57/PDIA3), which was first identified as being upregulated by metabolic depletion stress and is localized on the cell surface during immunogenic cell death. The combination of CPI-613 and hydroxychloroquine enhanced the localization of ERp57/PDIA3 to the surface of melanoma cells. siRNA-mediated downregulation of ERp57/PDIA3 did not significantly induce ICT-mediated apoptosis in melanoma cells in the presence of CPI-613 and hydroxychloroquine. Therefore, the ICT antibody acts as a tumor suppressor in melanoma cells by targeting the cell membrane ERp57/PDIA3, expression of which was enhanced by the combination of CPI-613 and hydroxychloroquine.
Collapse
Affiliation(s)
- Naohisa Ichiki
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research; COMIT, Gifu University, Gifu, Japan
| | - Yuki Hanamatsu
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research; COMIT, Gifu University, Gifu, Japan
| |
Collapse
|
20
|
Jánosa G, Pandur E, Pap R, Horváth A, Sipos K. Interplay of Vitamin D, Unfolded Protein Response, and Iron Metabolism in Neuroblastoma Cells: A Therapeutic Approach in Neurodegenerative Conditions. Int J Mol Sci 2023; 24:16883. [PMID: 38069206 PMCID: PMC10706223 DOI: 10.3390/ijms242316883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Vitamin D3 (VD) is crucial for various cell functions, including gene regulation, antioxidant defense, and neural health. Neurodegenerative conditions are closely linked to the unfolded protein response (UPR), a mechanism reacting to endoplasmic reticulum (ER) stress. Iron metabolism is intricately associated with UPR and neurodegeneration. This study used SH-SY5Y neuroblastoma cells to investigate the relationship between UPR, iron metabolism, and VD. Different sequences of treatments (pre- and post-treatments) were applied using VD and thapsigargin (Tg), and various methods were used for evaluation, including real-time qPCR, Western blotting, ELISA, and iron content analysis. The findings indicate that VD affects UPR pathways, cytokine release, and iron-related genes, potentially offering anti-inflammatory benefits. It also influences iron transporters and storage proteins, helping to maintain cellular iron balance. Furthermore, pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα) were impacting UPR activation in cells. VD also influenced fractalkine (CX3CL1) gene expression and secretion, suggesting its potential as a therapeutic agent for addressing neuroinflammation and iron dysregulation. This research provides insights into the intricate connections among VD, UPR, and iron metabolism in SH-SY5Y neuroblastoma cells, with implications for future investigations and potential therapeutic approaches in neurodegenerative diseases characterized by UPR dysregulation and iron accumulation.
Collapse
Affiliation(s)
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (G.J.); (R.P.); (A.H.); (K.S.)
| | | | | | | |
Collapse
|
21
|
Pant A, Dakal TC, Moar K, Dhabhai B, Arora TK, Sharma NK, Ranga V, Maurya PK. Assessment of MMP14, CAV2, CLU and SPARCL1 expression profiles in endometriosis. Pathol Res Pract 2023; 251:154892. [PMID: 37898038 DOI: 10.1016/j.prp.2023.154892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Endometriotic cells exhibit a notable degree of invasiveness and some characteristics of tissue remodeling underlying lesion formation. In this regard, do matrix metalloproteinases 14 (MMP14) and other related genes such as SPARC-like protein 1 (SPARCL1), caveolin 2 (CAV2), and clusterin (CLU) exert any significant influence in the processes of endometriosis development and pathophysiology is not apparent. We aim to assess whether these genes could serve as potential diagnostic biomarkers in endometriosis. Microarray-based gene expression analysis was performed on total RNA extracted from endometriotic tissue samples treated with and without gonadotropin-releasing hormone agonist (GnRHa). The GnRHa untreated patients were considered the control group. The validation of genes was performed using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis showed significant downregulation in the expression of MMP14 (p = 0.024), CAV2 (p = 0.017), and upregulation of CLU (p = 0.005) in endometriosis patients treated with GnRHa. SPARCL1 did not show any significant (p = 0.30) change in the expression compared to the control group. These data have the potential to contribute to the comprehension of the molecular pathways implicated in the remodeling of the extracellular matrix, which is a vital step for the physiology of the endometrium. Based on the result, it is concluded that changes in the expression of MMP14, CAV2, and CLU post-treatment imply their role in the pathophysiology of endometriosis and may serve as a potential diagnostic biomarker of endometriosis in response to GnRHa treatment in patients with ovarian endometrioma.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Taruna K Arora
- Reproductive Biology and Maternal Child Health Division, Indian Council of Medical Research, New Delhi 110029, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vipin Ranga
- Department of Biotechnology-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat 785013, Assam, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
22
|
Nowak JI, Olszewska AM, Piotrowska A, Myszczyński K, Domżalski P, Żmijewski MA. PDIA3 modulates genomic response to 1,25-dihydroxyvitamin D 3 in squamous cell carcinoma of the skin. Steroids 2023; 199:109288. [PMID: 37549780 DOI: 10.1016/j.steroids.2023.109288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
An active form of vitamin D3 (1,25-dihydroxyvitamin D3) acts through vitamin D receptor (VDR) initiating genomic response, but several studies described also non-genomic actions of 1,25-dihydroxyvitamin D3, implying the role of PDIA3 in the process. PDIA3 is a membrane-associated disulfide isomerase involved in disulfide bond formation, protein folding, and remodeling. Here, we used a transcriptome-based approach to identify changes in expression profiles in PDIA3-deficient squamous cell carcinoma line A431 after 1,25-dihydroxyvitamin D3 treatment. PDIA3 knockout led to changes in the expression of more than 2000 genes and modulated proliferation, cell cycle, and mobility of cells; suggesting an important regulatory role of PDIA3. PDIA3-deficient cells showed increased sensitivity to 1,25-dihydroxyvitamin D3, which led to decrease migration. 1,25-dihydroxyvitamin D3 treatment altered also genes expression profile of A431ΔPDIA3 in comparison to A431WT cells, indicating the existence of PDIA3-dependent genes. Interestingly, classic targets of VDR, including CAMP (Cathelicidin Antimicrobial Peptide), TRPV6 (Transient Receptor Potential Cation Channel Subfamily V Member 6), were regulated differently by 1,25-dihydroxyvitamin D3, in A431ΔPDIA3. Deletion of PDIA3 impaired 1,25-dihydroxyvitamin D3-response of genes, such as PTGS2, MMP12, and FOCAD, which were identified as PDIA3-dependent. Additionally, response to 1,25-dihydroxyvitamin D3 in cancerous A431 cells differed from immortalized HaCaT keratinocytes, used as non-cancerous control. Finally, silencing of PDIA3 and 1,25-dihydroxyvitamin D3, at least partially reverse the expression of cancer-related genes in A431 cells, thus targeting PDIA3 and use of 1,25-dihydroxyvitamin D3 could be considered in a prevention and therapy of the skin cancer. Taken together, PDIA3 has a strong impact on gene expression and physiology, including genomic response to 1,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
- Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Anna Piotrowska
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| | - Paweł Domżalski
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Dębinki, 80-211 Gdansk, Poland.
| |
Collapse
|
23
|
Yu F, Liu X, Li M, Liu X, Wang X, Guo M. Protein disulfide isomerase A3 as novel biomarker for endometrial cancer. Front Oncol 2023; 13:1247446. [PMID: 37909009 PMCID: PMC10614013 DOI: 10.3389/fonc.2023.1247446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Objective This study aims to investigate the potential of PDIA3 as a novel prognostic biomarker and therapeutic target for Endometrial Cancer (EC) with the ultimate goal of improving survival rates in EC patients. Methods This study employed a combination of public database analysis and clinical tissue sample assays. The analysis included comparing the gene expression of PDIA3 between EC and adjacent paracancerous tissues, investigating this expression status using qPCR and immunohistochemistry (IHC) assays, studying the correlation of expression with different parameters using Chi-square test, Cox Regression, and log-rank test, as well as exploring the PDIA3-related immune infiltration and metabolic pathway using TIMER and GSEA. Results The analysis of public datasets revealed that PDIA3 mRNA and protein expression was significantly higher in EC tissues compared to adjacent tissues (P = 4.1e-03, P = 1.95e-14, and P = 1.6e-27, respectively). The qPCR analysis supported this finding (P = 0.029). IHC analysis revealed a significant increase in PDIA3 expression in endometrial cancer (EC) tissues compared to adjacent normal tissues (P = 0.01). Furthermore, PDIA3 expression showed significant correlations with cancer stage and tumor grade. Multivariate Cox regression analysis suggested that the PDIA3 gene holds promise as a prognostic factor for EC patients (HR = 0.47, 95% CI [0.27, 0.82], P = 0.008). The results from TIMER demonstrated a positive correlation between PDIA3 and tumor-infiltrating CD8 T cells and macrophages, and a negative correlation with tumor-infiltrating CD4 T cells. Additionally, the GSEA results indicated that PDIA3 overexpression was associated with various metabolic processes in EC patients. Conclusion PDIA3 has been validated as a potential biomarker for EC, and its expression is further associated with pathological staging and prognosis.
Collapse
Affiliation(s)
- Fanrong Yu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Xin Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Min Li
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Xiufen Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Xintai Wang
- School of Information Science and Technology, Dalian Maritime University, Dalian, China
- 2D Material Lab, Zhejiang Mashang Technology Research Institute, Cangnan, Wenzhou, Zhejiang, China
| | - Meixiang Guo
- Department of General Practice, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| |
Collapse
|
24
|
Paglia G, Minacori M, Meschiari G, Fiorini S, Chichiarelli S, Eufemi M, Altieri F. Protein Disulfide Isomerase A3 (PDIA3): A Pharmacological Target in Glioblastoma? Int J Mol Sci 2023; 24:13279. [PMID: 37686085 PMCID: PMC10488224 DOI: 10.3390/ijms241713279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The protein disulfide isomerase A3 (PDIA3) is directly or indirectly involved in various physiopathological processes and participates in cancer initiation, progression and chemosensitivity. However, little is known about its involvement in glioblastoma. To obtain specific information, we performed cellular experiments in the T98G and U-87 MG glioblastoma cell lines to evaluate the role of PDIA3. The loss of PDIA3 functions, either through inhibition or silencing, reduced glioblastoma cells spreading by triggering cytotoxic phenomena. PDIA3 inhibition led to a redistribution of PDIA3, resulting in the formation of protein aggregates visualized through immunofluorescence staining. Concurrently, cell cycle progression underwent arrest at the G1/S checkpoint. After PDIA3 inhibition, ROS-independent DNA damage and the activation of the repair system occurred, as evidenced by the phosphorylation of H2A.X and the overexpression of the Ku70 protein. We also demonstrated through a clonogenic assay that PDIA3 inhibition could increase the chemosensitivity of T98G and U-87 MG cells to the approved glioblastoma drug temozolomide (TMZ). Overall, PDIA3 inhibition induced cytotoxic effects in the analyzed glioblastoma cell lines. Although further in vivo studies are needed, the results suggested PDIA3 as a novel therapeutic target that could also be included in already approved therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fabio Altieri
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (G.P.); (M.M.); (G.M.); (S.F.); (S.C.); (M.E.)
| |
Collapse
|
25
|
Griswold-Prenner I, Kashyap AK, Mazhar S, Hall ZW, Fazelinia H, Ischiropoulos H. Unveiling the human nitroproteome: Protein tyrosine nitration in cell signaling and cancer. J Biol Chem 2023; 299:105038. [PMID: 37442231 PMCID: PMC10413360 DOI: 10.1016/j.jbc.2023.105038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Covalent amino acid modification significantly expands protein functional capability in regulating biological processes. Tyrosine residues can undergo phosphorylation, sulfation, adenylation, halogenation, and nitration. These posttranslational modifications (PTMs) result from the actions of specific enzymes: tyrosine kinases, tyrosyl-protein sulfotransferase(s), adenylate transferase(s), oxidoreductases, peroxidases, and metal-heme containing proteins. Whereas phosphorylation, sulfation, and adenylation modify the hydroxyl group of tyrosine, tyrosine halogenation and nitration target the adjacent carbon residues. Because aberrant tyrosine nitration has been associated with human disorders and with animal models of disease, we have created an updated and curated database of 908 human nitrated proteins. We have also analyzed this new resource to provide insight into the role of tyrosine nitration in cancer biology, an area that has not previously been considered in detail. Unexpectedly, we have found that 879 of the 1971 known sites of tyrosine nitration are also sites of phosphorylation suggesting an extensive role for nitration in cell signaling. Overall, the review offers several forward-looking opportunities for future research and new perspectives for understanding the role of tyrosine nitration in cancer biology.
Collapse
Affiliation(s)
| | | | | | - Zach W Hall
- Nitrase Therapeutics, Brisbane, California, USA
| | - Hossein Fazelinia
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Matafora V, Gorb A, Yang F, Noble W, Bachi A, Perez‐Nievas BG, Jimenez‐Sanchez M. Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ. J Neurochem 2023; 166:346-366. [PMID: 37303123 PMCID: PMC10952722 DOI: 10.1111/jnc.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-β (Aβ). However, the precise response of astrocytes to soluble small Aβ oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aβ oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.
Collapse
Affiliation(s)
| | - Alena Gorb
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Fangjia Yang
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Wendy Noble
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Angela Bachi
- IFOM ETS‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Beatriz Gomez Perez‐Nievas
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Maria Jimenez‐Sanchez
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
27
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
28
|
Liu Y, Zhao X, Jian J, Hasan S, Liu C. Interaction with ERp57 is required for progranulin protection against Type 2 Gaucher disease. Biosci Trends 2023; 17:126-135. [PMID: 36889696 PMCID: PMC10514708 DOI: 10.5582/bst.2023.01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Gaucher disease (GD), one of the most common lysosomal storage diseases, is caused by GBA1 mutations resulting in defective glucocerebrosidase (GCase) and consequent accumulation of its substrates β-glucosylceramide (β-GlcCer). We reported progranulin (PGRN), a secretary growth factor-like molecule and an intracellular lysosomal protein was a crucial co-factor of GCase. PGRN binds to GCase and recruits Heat Shock Protein 70 (Hsp70) to GCase through its C-terminal Granulin (Grn) E domain, termed as ND7. In addition, both PGRN and ND7 are therapeutic against GD. Herein we found that both PGRN and its derived ND7 still displayed significant protective effects against GD in Hsp70 deficient cells. To delineate the molecular mechanisms underlying PGRN's Hsp70-independent regulation of GD, we performed a biochemical co-purification and mass spectrometry with His-tagged PGRN and His-tagged ND7 in Hsp70 deficient cells, which led to the identification of ERp57, also referred to as protein disulfide isomerase A3 (PDIA3), as a protein that binds to both PGRN and ND7. Within type 2 neuropathic GD patient fibroblasts L444P, bearing GBA1 L444P mutation, deletion of ERp57 largely abolished the therapeutic effects of PGRN and ND7, as manifested by loss of effects on lysosomal storage, GCase activity, and β-GlcCer accumulation. Additionally, recombinant ERp57 effectively restored the therapeutic effects of PGRN and ND7 in ERp57 knockout L444P fibroblasts. Collectively, this study reports ERp57 as a previously unrecognized binding partner of PGRN that contributes to PGRN regulation of GD.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Jinlong Jian
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Sadaf Hasan
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
29
|
Panny L, Akrhymuk I, Bracci N, Woodson C, Flor R, Elliott I, Zhou W, Narayanan A, Campbell C, Kehn-Hall K. Venezuelan equine encephalitis virus E1 protein interacts with PDIA6 and PDI inhibition reduces alphavirus production. Antiviral Res 2023; 212:105560. [PMID: 36822370 DOI: 10.1016/j.antiviral.2023.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus transmitted by mosquitos that can cause a febrile illness and induce severe neurological complications in humans and equine populations. Currently there are no FDA approved vaccines or antiviral treatments to combat VEEV. Proteomic techniques were utilized to create an interactome of the E1 fusion glycoprotein of VEEV. VEEV E1 interacted with a number of cellular chaperone proteins including protein disulfide isomerase family A member 6 (PDIA6). PDI inhibition through LOC14 and/or nitazoxanide treatment effectively decreased production of VEEV and other alphaviruses in vitro, including eastern equine encephalitis virus, Sindbis virus, and chikungunya virus. Decreased oxidoreductive capabilities of PDIs through LOC14 or nitazoxanide treatment impacted both early and late events in viral replication, including the production of non-infectious virions and decreased VEEV E1 disulfide bond formation. Results from this study identified PDIs as critical regulators of alphavirus replication and potential therapeutic targets.
Collapse
Affiliation(s)
- Lauren Panny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Ivan Akrhymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Caitlin Woodson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Rafaela Flor
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Isaac Elliott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Aarthi Narayanan
- Department of Biology, George Mason University, Fairfax, VA, 22030, USA
| | | | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA.
| |
Collapse
|
30
|
Cassano T, Giamogante F, Calcagnini S, Romano A, Lavecchia AM, Inglese F, Paglia G, Bukke VN, Romano AD, Friuli M, Altieri F, Gaetani S. PDIA3 Expression Is Altered in the Limbic Brain Regions of Triple-Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24033005. [PMID: 36769334 PMCID: PMC9918299 DOI: 10.3390/ijms24033005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In the present study, we used a mouse model of Alzheimer's disease (AD) (3×Tg-AD mice) to longitudinally analyse the expression level of PDIA3, a protein disulfide isomerase and endoplasmic reticulum (ER) chaperone, in selected brain limbic areas strongly affected by AD-pathology (amygdala, entorhinal cortex, dorsal and ventral hippocampus). Our results suggest that, while in Non-Tg mice PDIA3 levels gradually reduce with aging in all brain regions analyzed, 3×Tg-AD mice showed an age-dependent increase in PDIA3 levels in the amygdala, entorhinal cortex, and ventral hippocampus. A significant reduction of PDIA3 was observed in 3×Tg-AD mice already at 6 months of age, as compared to age-matched Non-Tg mice. A comparative immunohistochemistry analysis performed on 3×Tg-AD mice at 6 (mild AD-like pathology) and 18 (severe AD-like pathology) months of age showed a direct correlation between the cellular level of Aβ and PDIA3 proteins in all the brain regions analysed, even if with different magnitudes. Additionally, an immunohistochemistry analysis showed the presence of PDIA3 in all post-mitotic neurons and astrocytes. Overall, altered PDIA3 levels appear to be age- and/or pathology-dependent, corroborating the ER chaperone's involvement in AD pathology, and supporting the PDIA3 protein as a potential novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Flavia Giamogante
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Angelo Michele Lavecchia
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Inglese
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giuliano Paglia
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vidyasagar Naik Bukke
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, Via L. Pinto 1, 71122 Foggia, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| | - Silvana Gaetani
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
31
|
Pedre B, Talwar D, Barayeu U, Schilling D, Luzarowski M, Sokolowski M, Glatt S, Dick TP. 3-Mercaptopyruvate sulfur transferase is a protein persulfidase. Nat Chem Biol 2023; 19:507-517. [PMID: 36732619 PMCID: PMC10060159 DOI: 10.1038/s41589-022-01244-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023]
Abstract
Protein S-persulfidation (P-SSH) is recognized as a common posttranslational modification. It occurs under basal conditions and is often observed to be elevated under stress conditions. However, the mechanism(s) by which proteins are persulfidated inside cells have remained unclear. Here we report that 3-mercaptopyruvate sulfur transferase (MPST) engages in direct protein-to-protein transpersulfidation reactions beyond its previously known protein substrates thioredoxin and MOCS3/Uba4, associated with H2S generation and transfer RNA thiolation, respectively. We observe that depletion of MPST in human cells lowers overall intracellular protein persulfidation levels and identify a subset of proteins whose persulfidation depends on MPST. The predicted involvement of these proteins in the adaptation to stress responses supports the notion that MPST-dependent protein persulfidation promotes cytoprotective functions. The observation of MPST-independent protein persulfidation suggests that other protein persulfidases remain to be identified.
Collapse
Affiliation(s)
- Brandán Pedre
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Deepti Talwar
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Danny Schilling
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry and Proteomics, Centre for Molecular Biology at Heidelberg University (ZMBH), Heidelberg, Germany
| | - Mikolaj Sokolowski
- Max Planck Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Sebastian Glatt
- Max Planck Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
32
|
Gezen-Ak D, Dursun E. Vitamin D, a Secosteroid Hormone and Its Multifunctional Receptor, Vitamin D Receptor, in Alzheimer's Type Neurodegeneration. J Alzheimers Dis 2023; 95:1273-1299. [PMID: 37661883 DOI: 10.3233/jad-230214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Vitamin D is a secosteroid hormone exerting neurosteroid-like properties. Its well-known nuclear hormone receptor, and recently proposed as a mitochondrial transcription factor, vitamin D receptor, acts for its primary functions. The second receptor is an endoplasmic reticulum protein, protein disulfide isomerase A3 (PDIA3), suggested to act as a rapid response. Vitamin D has effects on various systems, particularly through calcium metabolism. Among them, the nervous system has an important place in the context of our subject. Recent studies have shown that vitamin D and its receptors have numerous effects on the nervous system. Neurodegeneration is a long-term process. Throughout a human life span, so is vitamin D deficiency. Our previous studies and others have suggested that the out-come of long-term vitamin D deficiency (hypovitaminosis D or inefficient utilization of vitamin D), may lead neurons to be vulnerable to aging and neurodegeneration. We suggest that keeping vitamin D levels at adequate levels at all stages of life, considering new approaches such as agonists that can activate vitamin D receptors, and utilizing other derivatives produced in the synthesis process with UVB are crucial when considering vitamin D-based intervention studies. Given most aspects of vitamin D, this review outlines how vitamin D and its receptors work and are involved in neurodegeneration, emphasizing Alzheimer's disease.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinc Dursun
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
33
|
Karanwal S, Pal A, Chera JS, Batra V, Kumaresan A, Datta TK, Kumar R. Identification of protein candidates in spermatozoa of water buffalo ( Bubalus bubalis) bulls helps in predicting their fertility status. Front Cell Dev Biol 2023; 11:1119220. [PMID: 36891514 PMCID: PMC9986327 DOI: 10.3389/fcell.2023.1119220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The water buffalo (Bubalus bubalis) is an indispensable part of the Indian dairy sector and in several instances, the farmers incur economic losses due to failed pregnancy after artificial insemination (AI). One of the key factors for the failure of conception is the use of semen from the bulls of low fertilizing potential and hence, it becomes important to predict the fertility status before performing AI. In this study, the global proteomic profile of high fertile (HF) and low fertile (LF) buffalo bull spermatozoa was established using a high-throughput LC-MS/MS technique. A total of 1,385 proteins (≥1 high-quality PSM/s, ≥1 unique peptides, p < 0.05, FDR < 0.01) were identified out of which, 1,002 were common between both the HF and LF groups while 288 and 95 proteins were unique to HF and LF groups respectively. We observed 211 and 342 proteins were significantly high (log Fc ≥ 2) and low abundant (log Fc ≤ 0.5) in HF spermatozoa (p < 0.05). Gene ontology analysis revealed that the fertility associated high abundant proteins in HF were involved in spermatogenesis, sperm motility, acrosome integrity, zona pellucida binding and other associated sperm functions. Besides this, the low abundant proteins in HF were involved in glycolysis, fatty acid degradation and inflammation. Furthermore, fertility related differentially abundant proteins (DAPs) on sperm viz., AKAP3, Sp17, and DLD were validated through Western blotting and immunocytochemistry which was in coherence with the LC-MS/MS data. The DAPs identified in this study may be used as potential protein candidates for predicting fertility in buffaloes. Our findings provide an opportunity in mitigating the economic losses that farmers incur due to male infertility.
Collapse
Affiliation(s)
- Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Vipul Batra
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Theriogenelogy Laboratory, SRS of National Dairy Research Institute, Bengaluru, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
34
|
Pellegrini F, Padovano V, Biscarini S, Santini T, Setti A, Galfrè SG, Silenzi V, Vitiello E, Mariani D, Nicoletti C, Torromino G, De Leonibus E, Martone J, Bozzoni I. A KO mouse model for the lncRNA Lhx1os produces motor neuron alterations and locomotor impairment. iScience 2022; 26:105891. [PMID: 36647387 PMCID: PMC9840152 DOI: 10.1016/j.isci.2022.105891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Here, we describe a conserved motor neuron-specific long non-coding RNA, Lhx1os, whose knockout in mice produces motor impairment and postnatal reduction of mature motor neurons (MNs). The ER stress-response pathway result specifically altered with the downregulation of factors involved in the unfolded protein response (UPR). Lhx1os was found to bind the ER-associated PDIA3 disulfide isomerase and to affect the expression of the same set of genes controlled by this protein, indicating that the two factors act in conjunction to modulate the UPR. Altogether, the observed phenotype and function of Lhx1os indicate its important role in the control of MN homeostasis and function.
Collapse
Affiliation(s)
- Flaminia Pellegrini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Vittorio Padovano
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Silvia Biscarini
- Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Giulia Galfrè
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Valentina Silenzi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Erika Vitiello
- Center for Human Technologies (CHT) Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Davide Mariani
- Center for Human Technologies (CHT) Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Carmine Nicoletti
- DAHFMO - Section of Histology and Medical Embryology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Torromino
- Institute of Cellular Biology and Neurobiology "ABT", CNR, Monterotondo, 00015 Rome, Italy
| | - Elvira De Leonibus
- Institute of Cellular Biology and Neurobiology "ABT", CNR, Monterotondo, 00015 Rome, Italy,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, 80078 Naples, Italy
| | - Julie Martone
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy,Corresponding author
| | - Irene Bozzoni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy,Center for Human Technologies (CHT) Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy,Corresponding author
| |
Collapse
|
35
|
Zhan Y, Chen Z, Qiu Y, Deng Q, Huang W, Wen S, Shen J. DEXMEDETOMIDINE PREVENTS PDIA3 DECREASE BY ACTIVATING α2-ADRENERGIC RECEPTOR TO ALLEVIATE INTESTINAL I/R IN MICE. Shock 2022; 58:556-564. [PMID: 36374735 PMCID: PMC9803385 DOI: 10.1097/shk.0000000000002011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Background: Dexmedetomidine (DEX) attenuates intestinal I/R injury, but its mechanism of action remains to be further elucidated. Protein disulfide isomerase A3 (PDIA3) has been reported as a therapeutic protein for the prevention and treatment of intestinal I/R injury. This study was to investigate whether PDIA3 is involved in intestinal protection of DEX and explore the underlying mechanisms. Methods: The potential involvement of PDIA3 in DEX attenuation of intestinal I/R injury was tested in PDIA3 Flox/Flox mice and PDIA3 conditional knockout (cKO) in intestinal epithelium mice subjected to 45 min of superior mesenteric artery occlusion followed by 4 h of reperfusion. Furthermore, the α2-adrenergic receptor (α2-AR) antagonist, yohimbine, was administered in wild-type C57BL/6N mice intestinal I/R model to investigate the role of α2-AR in the intestinal protection conferred by DEX. Results: In the present study, we identified intestinal I/R-induced obvious inflammation, endoplasmic reticulum (ER) stress-dependent apoptosis, and oxidative stress, and all the aforementioned changes were improved by the administration of DEX. PDIA3 cKO in the intestinal epithelium have reversed the protective effects of DEX. Moreover, yohimbine also reversed the intestinal protection of DEX and downregulated the messenger RNA and protein levels of PDIA3. Conclusion: DEX prevents PDIA3 decrease by activating α2-AR to inhibit intestinal I/R-induced inflammation, ER stress-dependent apoptosis, and oxidative stress in mice.
Collapse
|
36
|
Żmijewski MA. Nongenomic Activities of Vitamin D. Nutrients 2022; 14:nu14235104. [PMID: 36501134 PMCID: PMC9737885 DOI: 10.3390/nu14235104] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin D shows a variety of pleiotropic activities which cannot be fully explained by the stimulation of classic pathway- and vitamin D receptor (VDR)-dependent transcriptional modulation. Thus, existence of rapid and nongenomic responses to vitamin D was suggested. An active form of vitamin D (calcitriol, 1,25(OH)2D3) is an essential regulator of calcium-phosphate homeostasis, and this process is tightly regulated by VDR genomic activity. However, it seems that early in evolution, the production of secosteroids (vitamin-D-like steroids) and their subsequent photodegradation served as a protective mechanism against ultraviolet radiation and oxidative stress. Consequently, direct cell-protective activities of vitamin D were proven. Furthermore, calcitriol triggers rapid calcium influx through epithelia and its uptake by a variety of cells. Subsequently, protein disulfide-isomerase A3 (PDIA3) was described as a membrane vitamin D receptor responsible for rapid nongenomic responses. Vitamin D was also found to stimulate a release of secondary massagers and modulate several intracellular processes-including cell cycle, proliferation, or immune responses-through wingless (WNT), sonic hedgehog (SSH), STAT1-3, or NF-kappaB pathways. Megalin and its coreceptor, cubilin, facilitate the import of vitamin D complex with vitamin-D-binding protein (DBP), and its involvement in rapid membrane responses was suggested. Vitamin D also directly and indirectly influences mitochondrial function, including fusion-fission, energy production, mitochondrial membrane potential, activity of ion channels, and apoptosis. Although mechanisms of the nongenomic responses to vitamin D are still not fully understood, in this review, their impact on physiology, pathology, and potential clinical applications will be discussed.
Collapse
Affiliation(s)
- Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, PL-80211 Gdańsk, Poland
| |
Collapse
|
37
|
Caillet C, Stofberg ML, Muleya V, Shonhai A, Zininga T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front Mol Biosci 2022; 9:938099. [PMID: 36032680 PMCID: PMC9411049 DOI: 10.3389/fmolb.2022.938099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) caused by a coronavirus identified in December 2019 has caused a global pandemic. COVID-19 was declared a pandemic in March 2020 and has led to more than 6.3 million deaths. The pandemic has disrupted world travel, economies, and lifestyles worldwide. Although vaccination has been an effective tool to reduce the severity and spread of the disease there is a need for more concerted approaches to fighting the disease. COVID-19 is characterised as a severe acute respiratory syndrome . The severity of the disease is associated with a battery of comorbidities such as cardiovascular diseases, cancer, chronic lung disease, and renal disease. These underlying diseases are associated with general cellular stress. Thus, COVID-19 exacerbates outcomes of the underlying conditions. Consequently, coronavirus infection and the various underlying conditions converge to present a combined strain on the cellular response. While the host response to the stress is primarily intended to be of benefit, the outcomes are occasionally unpredictable because the cellular stress response is a function of complex factors. This review discusses the role of the host stress response as a convergent point for COVID-19 and several non-communicable diseases. We further discuss the merits of targeting the host stress response to manage the clinical outcomes of COVID-19.
Collapse
Affiliation(s)
- Celine Caillet
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Victor Muleya
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
38
|
Fabarius A, Samra V, Drews O, Mörz H, Bierbaum M, Darwich A, Weiss C, Brendel S, Kleiner H, Seifarth W, Greffrath W, Hofmann WK, Schmitt CA, Popp HD. Evidence for Recombinant GRP78, CALR, PDIA3 and GPI as Mediators of Genetic Instability in Human CD34+ Cells. Cancers (Basel) 2022; 14:2883. [PMID: 35740549 PMCID: PMC9221337 DOI: 10.3390/cancers14122883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Soluble factors released from irradiated human mesenchymal stromal cells (MSC) may induce genetic instability in human CD34+ cells, potentially mediating hematologic disorders. Recently, we identified four key proteins in the secretome of X-ray-irradiated MSC, among them three endoplasmic reticulum proteins, the 78 kDa glucose-related protein (GRP78), calreticulin (CALR), and protein disulfide-isomerase A3 (PDIA3), as well as the glycolytic enzyme glucose-6-phosphate isomerase (GPI). Here, we demonstrate that exposition of CD34+ cells to recombinant GRP78, CALR, PDIA3 and GPI induces substantial genetic instability. Increased numbers of γH2AX foci (p < 0.0001), centrosome anomalies (p = 0.1000) and aberrant metaphases (p = 0.0022) were detected in CD34+ cells upon incubation with these factors. Specifically, γH2AX foci were found to be induced 4−5-fold in response to any individual of the four factors, and centrosome anomalies by 3−4 fold compared to control medium, which contained none of the recombinant proteins. Aberrant metaphases, not seen in the context of control medium, were detected to a similar extent than centrosome anomalies across the four factors. Notably, the strongest effects were observed when all four factors were collectively provided. In summary, our data suggest that specific components of the secretome from irradiated MSC act as mediators of genetic instability in CD34+ cells, thereby possibly contributing to the pathogenesis of radiation-induced hematologic disorders beyond direct radiation-evoked DNA strand breaks.
Collapse
Affiliation(s)
- Alice Fabarius
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Vanessa Samra
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Oliver Drews
- Biomedical Mass Spectrometry, Center for Medical Research, Johannes Kepler University, 4020 Linz, Austria;
| | - Handan Mörz
- Department of Neurophysiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.M.); (W.G.)
| | - Miriam Bierbaum
- Department of Radiation Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Ali Darwich
- Department of Orthopedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Susanne Brendel
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Helga Kleiner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Wolfgang Greffrath
- Department of Neurophysiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (H.M.); (W.G.)
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.F.); (V.S.); (S.B.); (H.K.); (W.S.); (W.-K.H.)
| | - Clemens A. Schmitt
- Department of Hematology and Oncology, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria;
- Medical Department, Division of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, Helmholtz Association, 13125 Berlin, Germany
| | - Henning D. Popp
- Department of Hematology and Oncology, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria;
| |
Collapse
|
39
|
Gkotinakou IM, Mylonis I, Tsakalof A. Vitamin D and Hypoxia: Points of Interplay in Cancer. Cancers (Basel) 2022; 14:cancers14071791. [PMID: 35406562 PMCID: PMC8997790 DOI: 10.3390/cancers14071791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D is a hormone that, through its action, elicits a broad spectrum of physiological responses ranging from classic to nonclassical actions such as bone morphogenesis and immune function. In parallel, many studies describe the antiproliferative, proapoptotic, antiangiogenic effects of calcitriol (the active hormonal form) that contribute to its anticancer activity. Additionally, epidemiological data signify the inverse correlation between vitamin D levels and cancer risk. On the contrary, tumors possess several adaptive mechanisms that enable them to evade the anticancer effects of calcitriol. Such maladaptive processes are often a characteristic of the cancer microenvironment, which in solid tumors is frequently hypoxic and elicits the overexpression of Hypoxia-Inducible Factors (HIFs). HIF-mediated signaling not only contributes to cancer cell survival and proliferation but also confers resistance to anticancer agents. Taking into consideration that calcitriol intertwines with signaling events elicited by the hypoxic status cells, this review examines their interplay in cellular signaling to give the opportunity to better understand their relationship in cancer development and their prospect for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ilias Mylonis
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| | - Andreas Tsakalof
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| |
Collapse
|