1
|
Mahmoud Abd-Alaziz D, Mansour M, Nasr M, Sammour O. Tailored green synthesized silymarin-selenium nanoparticles: Topical nanocarrier of promising antileishmanial activity. Int J Pharm 2024; 660:124275. [PMID: 38797252 DOI: 10.1016/j.ijpharm.2024.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Poor drug penetration, emerging drug resistance, and systemic toxicity are among the major obstacles challenging the current treatment of cutaneous leishmaniasis. Hence, developing advanced strategies for effective and targeted delivery of antileishmanial agents is crucial. Several drug delivery carriers have been developed till current date for dermal/transdermal delivery, especially those which are fabricated using eco-friendly synthesis approaches, since they protect the environment from the harmful effects of chemical waste disposal. This work describes the preparation of selenium nanoparticles loaded with silymarin via one-pot green reduction technique, for treatment of cutaneous leishmaniasis. The selected silymarin loaded selenium nanoparticles (SSNs4-0.1) displayed good loading efficiency of 58.22 ± 0.56 %, zeta potential of -30.63 ± 0.40 mV, hydrodynamic diameter of 245.77 ± 11.12 nm, and polydispersity index of 0.19 ± 0.01. It exhibited good physical stability, as well as high ex vivo deposition % in the epidermis (46.98 ± 1.51 %) and dermis (35.23 ± 1.72 %), which was further proven using confocal laser microscopy. It also exhibited significant cytocompatibility and noticeable cellular internalization of 90.02 ± 3.81 % in human fibroblasts, as well as high trypanothione reductase inhibitory effect (97.10 ± 0.30 %). Results of this study confirmed the successful green synthesis of silymarin-loaded selenium nanoparticles; delineating them as one of the promising antileishmanial topical delivery systems.
Collapse
Affiliation(s)
- Dina Mahmoud Abd-Alaziz
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Omaima Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Haji Mehdi Nouri Z, Tafvizi F, Amini K, Khandandezfully N, Kheirkhah B. Enhanced Induction of Apoptosis and Cell Cycle Arrest in MCF-7 Breast Cancer and HT-29 Colon Cancer Cell Lines via Low-Dose Biosynthesis of Selenium Nanoparticles Utilizing Lactobacillus casei. Biol Trace Elem Res 2024; 202:1288-1304. [PMID: 37392361 DOI: 10.1007/s12011-023-03738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
As a leading global cause of mortality, cancer continues to pose a significant challenge. The shortcomings of prevalent cancer treatments, such as surgery, radiation therapy, and chemotherapy, necessitate the exploration of alternative therapeutic strategies. Selenium nanoparticles (SeNPs) have emerged as a promising solution, with their synthesis being widely researched due to their potential applications. Among the diverse synthesis methods for SeNPs, the green chemistry approach holds a distinctive position within nanotechnology. This research delves into the anti-proliferative and anticancer properties of green-synthesized SeNPs via the cell-free supernatant (CFS) of Lactobacillus casei (LC-SeNPs), with a specific focus on MCF-7 and HT-29 cancer cell lines. SeNPs were synthesized employing the supernatant of L. casei. The characterization of these green-synthesized SeNPs was performed using TEM, FE-SEM, XRD, FT-IR, UV-vis, energy-dispersive X-ray spectroscopy, and DLS. The biological impact of LC-SNPs on MCF-7 and HT-29 cancer cells was examined via MTT, flow cytometry, scratch tests, and qRT-PCR. Both FE-SEM and TEM images substantiated the spherical shape of the synthesized nanoparticles. The biosynthesized LC-SNPs reduced the survival of MCF-7 (by 20%) and HT-29 (by 30%) cells at a concentration of 100 μg/mL. Flow cytometry revealed that LC-SNPs were capable of inducing 28% and 23% apoptosis in MCF-7 and HT-29 cells, respectively. In addition, it was found that LC-SNPs treated MCF-7 and HT-29 cells were arrested in the sub-G1 phase. Gene expression analysis indicated that the expression levels of the CASP3, CASP9, and BAX genes were elevated after treating MCF-7 and HT-29 cells with LC-SNPs. Further, SeNPs were observed to inhibit migration and invasion of MCF-7 and HT-29 cancer cells. The SeNPs, produced via L. casei, demonstrated strong anticancer effects on MCF-7 and HT-29 cells, suggesting their potential as biological agents in cancer treatment following additional in vivo experiments.
Collapse
Affiliation(s)
- Zahra Haji Mehdi Nouri
- Department of Cellular and Molecular Biology, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Kumarss Amini
- Department of Microbiology, School of Basic Science, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Nooshin Khandandezfully
- Faculty Member, Department of Microbiology, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Babak Kheirkhah
- Department of Microbiology, Faculty of Veterinary Medicine, Baft Branch, Islamic Azad University, Baft, Iran
| |
Collapse
|
3
|
Tomić N, Stevanović MM, Filipović N, Ganić T, Nikolić B, Gajić I, Ćulafić DM. Resveratrol/Selenium Nanocomposite with Antioxidative and Antibacterial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:368. [PMID: 38392741 PMCID: PMC10892210 DOI: 10.3390/nano14040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
In this work, we synthesized a new composite material comprised of previously formulated resveratrol nanobelt-like particles (ResNPs) and selenium nanoparticles (SeNPs), namely ResSeNPs. Characterization was provided by FESEM and optical microscopy, as well as by UV-Vis and FTIR spectroscopy, the last showing hydrogen bonds between ResNPs and SeNPs. DPPH, TBA, and FRAP assays showed excellent antioxidative abilities with ResNPs and SeNPs contributing mainly to lipid peroxidation inhibition and reducing/scavenging activity, respectively. The antibacterial effect against common medicinal implant colonizers pointed to notably higher activity against Staphylococcus isolates (minimal inhibitory concentrations 0.75-1.5%) compared to tested gram-negative species (Escherichia coli and Pseudomonas aeruginosa). Antibiofilm activity against S. aureus, S. epidermidis, and P. aeruginosa determined in a crystal violet assay was promising (up to 69%), but monitoring of selected biofilm-related gene expression (pelA and algD) indicated the necessity of the involvement of a larger number of genes in the analysis in order to further establish the underlying mechanism. Although biocompatibility screening showed some cytotoxicity and genotoxicity in MTT and alkaline comet assays, respectively, it is important to note that active antioxidative and antibacterial/antibiofilm concentrations were non-cytotoxic and non-genotoxic in normal MRC-5 cells. These results encourage further composite improvements and investigation in order to adapt it for specific biomedical purposes.
Collapse
Affiliation(s)
- Nina Tomić
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (N.T.); (N.F.)
| | - Magdalena M. Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (N.T.); (N.F.)
| | - Nenad Filipović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia; (N.T.); (N.F.)
| | - Tea Ganić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.G.); (B.N.)
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.G.); (B.N.)
| | - Ina Gajić
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dragana Mitić Ćulafić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.G.); (B.N.)
| |
Collapse
|
4
|
Yu J, Li X, Cao J, Zhu T, Liang S, Du L, Cao M, Wang H, Zhang Y, Zhou Y, Shen B, Feng J, Zhang J, Wang J, Jin J. Components of the JNK-MAPK pathway play distinct roles in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:17495-17509. [PMID: 37902853 DOI: 10.1007/s00432-023-05473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023]
Abstract
PURPOSE Mitogen-activated protein kinases (MAPK), specifically the c-Jun N-terminal kinase (JNK)-MAPK subfamily, play a crucial role in the development of various cancers, including hepatocellular carcinoma (HCC). However, the specific roles of JNK1/2 and their upstream regulators, MKK4/7, in HCC carcinogenesis remain unclear. METHODS In this study, we performed differential expression analysis of JNK-MAPK components at both the transcriptome and protein levels using TCGA and HPA databases. We utilized Kaplan-Meier survival plots and receiver operating characteristic (ROC) curve analysis to evaluate the prognostic performance of a risk scoring model based on these components in the TCGA-HCC cohort. Additionally, we conducted immunoblotting, apoptosis analysis with FACS and soft agar assays to investigate the response of JNK-MAPK pathway components to various death stimuli (TRAIL, TNF-α, anisomycin, and etoposide) in HCC cell lines. RESULTS JNK1/2 and MKK7 levels were significantly upregulated in HCC samples compared to paracarcinoma tissues, whereas MKK4 was downregulated. ROC analyses suggested that JNK2 and MKK7 may serve as suitable diagnostic genes for HCC, and high JNK2 expression correlated with significantly poorer overall survival. Knockdown of JNK1 enhanced TRAIL-induced apoptosis in hepatoma cells, while JNK2 knockdown reduced TNF-α/cycloheximide (CHX)-and anisomycin-induced apoptosis. Neither JNK1 nor JNK2 knockdown affected etoposide-induced apoptosis. Furthermore, MKK7 knockdown augmented TNF-α/CHX- and TRAIL-induced apoptosis and inhibited colony formation in hepatoma cells. CONCLUSION Targeting MKK7, rather than JNK1/2 or MKK4, may be a promising therapeutic strategy to inhibit the JNK-MAPK pathway in HCC therapy.
Collapse
Affiliation(s)
- Jijun Yu
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Junxia Cao
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ting Zhu
- Beijing No. 80 High School, Beijing, 100102, China
| | - Shuifeng Liang
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China
| | - Le Du
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China
| | - Meng Cao
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China
| | - Haitao Wang
- Department of Hematology, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100071, China
| | - Yaolin Zhang
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yinxi Zhou
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jiyan Zhang
- Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jianfeng Jin
- School of Basic Medicine, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
5
|
Hesperidin Induced HePG-2 Cell Apoptosis through ROS-Mediated p53/Bcl-2/Bax and p-mTOR Signaling Pathways. J Food Biochem 2023. [DOI: 10.1155/2023/3788655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Recently, research showed that one of the most common kinds of liver cancer is hepatocellular carcinoma (HCC), which is also the fourth main cause of cancer deaths. In studies regarding chemicals to better treat the disease, hesperidin shows a novel potential in performing anticancer activities, particularly in liver cancer. However, the specific mechanism of hesperidin that causes such activities remains a mystery. Thus, the purpose of this study is to investigate hesperidin’s effect on cell proliferation and activation of ROS-mediated signaling pathways in HePG-2 cells. Hesperidin shows a significant impact on inhibiting HePG-2 cells’ proliferation through induction of cell apoptosis by Bcl-2, Bax, and p53 pathways. Treating cells with hesperidin in a dose-dependent manner shows a significant increase in the apoptotic cell population (sub-G1). Moreover, Hesperidin’s induction of apoptotic activities shows dependence on ROS (reactive oxygen species) overproduction, further affecting the p-mTOR pathways and leading to DNA damage. Hence, the overall data demonstrate that ROS-mediated signaling pathways exhibit mechanisms that may lead to useful information for interpreting hesperidin-induced hepatocarcinoma cell apoptosis.
Collapse
|
6
|
Synthesis, characterization, and anticancer activity of protamine sulfate stabilized selenium nanoparticles. Food Res Int 2023; 164:112435. [PMID: 36738002 DOI: 10.1016/j.foodres.2022.112435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Selenium nanoparticles (SeNPs) have attracted much recent interest as nutraceuticals, while they face great challenges, such as poor stability and low cellular uptake efficiency. This study introduced a facile approach to synthesizing protamine sulfate (PS) functionalized selenium nanoparticles (PS-SeNPs) by using PS as a surface decorator. The monodisperse spherical PS-SeNPs with a particle size of 130 nm and a ζ-potential of +31 mV were ligated with PS through Se-N, Se-O bonds, and physical adsorption, which exhibits excellent physical stability against pH, temperature, and storage time. The positive surface charge of PS-SeNPs contributed to the enhancement of cellular uptake efficiency by endocytosis, which was 3-times higher than bare SeNPs. Compared to SeNPs (IC50 = 17.675 μg/mL), PS-SeNPs could dramatically inhibit the proliferation of HepG2 cells with an IC50 value of 5.507 μg/mL, as reflected by the induction of apoptosis, S phase arresting, overproduction of intracellular ROS, and depolarization of mitochondria membrane. Overall, these results demonstrated the great potential of PS-SeNPs that can be applied as a functional ingredient in foods and nutraceuticals.
Collapse
|
7
|
Stepankova H, Michalkova H, Splichal Z, Richtera L, Svec P, Vaculovic T, Pribyl J, Kormunda M, Rex S, Adam V, Heger Z. Unveiling the nanotoxicological aspects of Se nanomaterials differing in size and morphology. Bioact Mater 2023; 20:489-500. [PMID: 35800405 PMCID: PMC9237951 DOI: 10.1016/j.bioactmat.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/08/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Although the general concept of nanotechnology relies on exploitation of size-dependent properties of nanoscaled materials, the relation between the size/morphology of nanoparticles with their biological activity remains not well understood. Therefore, we aimed at investigating the biological activity of Se nanoparticles, one of the most promising candidates of nanomaterials for biomedicine, possessing the same crystal structure, but differing in morphology (nanorods vs. spherical particles) and aspect ratios (AR, 11.5 vs. 22.3 vs. 1.0) in human cells and BALB/c mice. Herein, we report that in case of nanorod-shaped Se nanomaterials, AR is a critical factor describing their cytotoxicity and biocompatibility. However, spherical nanoparticles (AR 1.0) do not fit this statement and exhibit markedly higher cytotoxicity than lower-AR Se nanorods. Beside of cytotoxicity, we also show that morphology and size substantially affect the uptake and intracellular fate of Se nanomaterials. In line with in vitro data, in vivo i.v. administration of Se nanomaterials revealed the highest toxicity for higher-AR nanorods followed by spherical nanoparticles and lower-AR nanorods. Moreover, we revealed that Se nanomaterials are able to alter intracellular redox homeostasis, and affect the acidic intracellular vesicles and cytoskeletal architecture in a size- and morphology-dependent manner. Although the tested nanoparticles were produced from the similar sources, their behavior differs markedly, since each type is promising for several various application scenarios, and the presented testing protocol could serve as a concept standardizing the biological relevance of the size and morphology of the various types of nanomaterials and nanoparticles.
Collapse
Affiliation(s)
- Hana Stepankova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Tomas Vaculovic
- Department of Chemistry, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Jan Pribyl
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martin Kormunda
- Department of Physics, Faculty of Science, J. E. Purkyne University, Pasteurova 1, Usti nad Labem, CZ-400 96, Czech Republic
| | - Simona Rex
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| |
Collapse
|
8
|
Chen W, Yang W, Zhang C, Liu T, Zhu J, Wang H, Li T, Jin A, Ding L, Xian J, Tian T, Pan B, Guo W, Wang B. Modulation of the p38 MAPK Pathway by Anisomycin Promotes Ferroptosis of Hepatocellular Carcinoma through Phosphorylation of H3S10. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6986445. [PMID: 36466092 PMCID: PMC9715334 DOI: 10.1155/2022/6986445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 07/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide. Ferroptosis is emerging as an effective target for tumor treatment as it has been shown to potentiate cell death in some malignancies. However, it remains unclear whether histone phosphorylation events, an epigenetic mechanism that regulates transcriptional expression, are involved in ferroptosis. Our study found that supplementation with anisomycin, an agonist of p38 mitogen-activated protein kinase (MAPK), induced ferroptosis in HCC cells, and the phosphorylation of histone H3 on serine 10 (p-H3S10) was participated in anisomycin-induced ferroptosis. To investigate the anticancer effects of anisomycin-activated p38 MAPK in HCC, we analyzed cell viability, colony formation, cell death, and cell migration in Hep3B and HCCLM3 cells. The results showed that anisomycin could significantly suppress HCC cell colony formation and migration and induce HCC cell death. The hallmarks of ferroptosis, such as abnormal accumulation of iron and elevated levels of lipid peroxidation and malondialdehyde, were detected to confirm the ability of anisomycin to promote ferroptosis. Furthermore, coincubation with SB203580, an inhibitor of activated p38 MAPK, partially rescued anisomycin-induced ferroptosis. And the levels of p-p38 MAPK and p-H3S10 were successively increased by anisomycin treatment. The relationship between p-H3S10 and ferroptosis was revealed by ChIP sequencing. The reverse transcription PCR and immunofluorescence results showed that NCOA4 was upregulated both in mRNA and protein levels after anisomycin treatment. And by C11-BODIPY staining, we found that anisomycin-induced lipid reactive oxygen species was reduced after NCOA4 knockdown. In conclusion, the anisomycin-activated p38 MAPK promoted ferroptosis of HCC cells through H3S10 phosphorylation.
Collapse
Affiliation(s)
- Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Te Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingrong Xian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Biogenic Selenium Nanoparticles and Their Anticancer Effects Pertaining to Probiotic Bacteria—A Review. Antioxidants (Basel) 2022; 11:antiox11101916. [PMID: 36290639 PMCID: PMC9598137 DOI: 10.3390/antiox11101916] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents.
Collapse
|
10
|
Xia Y, You P, Xu F, Liu J, Xing F. Correction to: Novel Functionalized Selenium Nanoparticles for Enhanced Anti-Hepatocarcinoma Activity In vitro. NANOSCALE RESEARCH LETTERS 2022; 17:83. [PMID: 36053393 PMCID: PMC9440175 DOI: 10.1186/s11671-022-03700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Yu Xia
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Pengtao You
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Fangfang Xu
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jing Liu
- Department of Stomatology, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Feiyue Xing
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
11
|
Anti-cancer, anti-inflammatory and antioxidant effects of Vit-A/C@SeNPs in mutual diethylnitrosamine and carbon tetrachloride induced hepatocellular damage in albino rats. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Gao X, Yao Y, Chen X, Lin X, Yang X, Ho CT, Li B, Chen Z. Lentinan-functionalized selenium nanoparticles induce apoptosis and cell cycle arrest in human colon carcinoma HCT-116 cells. Front Nutr 2022; 9:987807. [PMID: 36082027 PMCID: PMC9445625 DOI: 10.3389/fnut.2022.987807] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have gained extensive attention for their excellent biological activity and low toxicity. However, SeNPs are extremely liable to aggregate into non-bioactive or gray elemental selenium, which limits their application in the biomedicine field. This study aimed to prepare stable SeNPs by using lentinan (LNT) as a template and evaluate its anti-colon cancer activity. The average particle diameter of obtained lentinan-selenium nanoparticles (LNT-SeNPs) was approximately 59 nm and presented zero-valent, amorphous, and spherical structures. The monodisperse SeNPs were stabilized by LNT through hydrogen bonding interactions. LNT-SeNPs solution remained highly stable at 4°C for at least 8 weeks. The stability of LNT-SeNPs solution sharply decreased under high temperature and strong acidic conditions. LNT-SeNPs showed no obvious cytotoxic effect on normal cells (IEC-6) but significantly inhibited the proliferation of five colon cancer cells (HCT-116, HT-29, Caco-2, SW620, and CT26). Among them, LNT-SeNPs exhibited the highest sensitivity toward HCT-116 cells with an IC50 value of 7.65 μM. Also, LNT-SeNPs displayed better cancer cell selectivity than sodium selenite and selenomethionine. Moreover, LNT-SeNPs promoted apoptosis of HCT-116 cells through activating mitochondria-mediated apoptotic pathway. Meanwhile, LNT-SeNPs induced cell cycle arrest at G0/G1 phase in HCT-116 cells via modulation of cell cycle regulatory proteins. The results of this study indicated that LNT-SeNPs possessed strong potential application in the treatment of colorectal cancer (CRC).
Collapse
Affiliation(s)
- Xiong Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, China
| | - Yanting Yao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xujie Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaobing Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, United States
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, China
- *Correspondence: Bin Li,
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, Guangzhou, China
- Zhongzheng Chen,
| |
Collapse
|
13
|
Jiang W, He S, Su D, Ye M, Zeng Q, Yuan Y. Synthesis, characterization of tuna polypeptide selenium nanoparticle, and its immunomodulatory and antioxidant effects in vivo. Food Chem 2022; 383:132405. [DOI: 10.1016/j.foodchem.2022.132405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
|
14
|
Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. NANOMATERIALS 2022; 12:nano12071102. [PMID: 35407220 PMCID: PMC9000429 DOI: 10.3390/nano12071102] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles are currently used for cancer theranostics in the clinical field. Among nanoparticles, gold nanoparticles (AuNPs) attract much attention due to their usability and high performance in imaging techniques. The wide availability of biological precursors used in plant-based synthesized AuNPs allows for the development of large-scale production in a greener manner. Conventional cancer therapies, such as surgery and chemotherapy, have significant limitations and frequently fail to produce satisfying results. AuNPs have a prolonged circulation time, allow easy modification with ligands detected via cancer cell surface receptors, and increase uptake through receptor-mediated endocytosis. To exploit these unique features, studies have been carried out on the use of AuNPs as contrast agents for X-ray-based imaging techniques (i.e., computed tomography). As nanocarriers, AuNPs synthesized by nontoxic and biocompatible plants to deliver therapeutic biomolecules could be a significant stride forward in the effective treatment of various cancers. Fluorescent-plant-based markers, including AuNPs, fabricated using Medicago sativa, Olax Scandens, H. ambavilla, and H. lanceolatum, have been used in detecting cancers. Moreover, green synthesized AuNPs using various extracts have been applied for the treatment of different types of solid tumors. However, the cytotoxicity of AuNPs primarily depends on their size, surface reactivity, and surface area. In this review, the benefits of plant-based materials in cancer therapy are firstly explained. Then, considering the valuable position of AuNPs in medicine, the application of AuNPs in cancer therapy and detection is highlighted with an emphasis on limitations faced by the application of such NPs in drug delivery platforms.
Collapse
|
15
|
Staroverov SA, Kozlov SV, Fomin AS, Gabalov KP, Khanadeev VA, Soldatov DA, Domnitsky IY, Dykman LA, Akchurin SV, Guliy OI. Synthesis of silymarin-selenium nanoparticle conjugate and examination of its biological activity in vitro. ADMET AND DMPK 2022; 9:255-266. [PMID: 35300372 PMCID: PMC8920099 DOI: 10.5599/admet.1023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/21/2021] [Indexed: 12/29/2022] Open
Abstract
Silymarin (Sil) was conjugated to selenium nanoparticles (SeNPs) to increase Sil bioavailability. The conjugates were monodisperse; the average diameter of the native SeNPs was ~ 20-50 ± 1.5 nm, whereas that of the conjugates was 30-50 ± 0.5 nm. The use of SeNPs to increase the bioavailability of Sil was examined with the MH-22a, EPNT-5, HeLa, Hep-2, and SPEV-2 cell lines. The EPNT-5 (glioblastoma) cells were the most sensitive to the conjugates compared to the conjugate-free control. The conjugates increased the activity of cellular dehydrogenases and promoted the penetration of Sil into the intracellular space. Possibly, SeNPs play the main part in Sil penetration of cells and Sil penetration is not associated with phagocytosis. Thus, SeNPs are promising for use as a Sil carrier and as protective antigens.
Collapse
Affiliation(s)
- Sergey A Staroverov
- Saratov State Agrarian University, Saratov, Russian Federation.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | - Sergey V Kozlov
- Saratov State Agrarian University, Saratov, Russian Federation
| | - Alexander S Fomin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | - Konstantin P Gabalov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | - Vitaliy A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | | | | | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | - Sergey V Akchurin
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Olga I Guliy
- Saratov State Agrarian University, Saratov, Russian Federation.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| |
Collapse
|
16
|
Iron Oxide Nanoparticles: Preparation, Characterization, and Assessment of Antimicrobial and Anticancer Activity. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/1562051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology and nanoparticles (NPs) have increasingly been studied as an alternative for antibiotics because of the feasibility to be used in implantable devices both for bacterial detection and infection prevention. The low rate of resistance development against NPs because of its multiple mode of action has contributed to its increased acceptance in clinical setting. Further development of NPs and their anticancer activity against many human cancer cell lines including breast and ovarian have been documented. Fe2O3-NPs could be used for antibacterial and anticancer activity assessment. Iron oxide, apart from being available extensively and cheap, also plays a role in multiple biological processes, making it an interesting metal for NPs. The aim of the present study revolves around generation and characterization of iron oxide Fe2O3-NPs, followed by assessment of its antimicrobial and anticancer activities. Synthesis of Fe2O3-NPs was performed by hydrothermal approach, and its characterization was done by UV-visible, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) analyses, and transmission electron microscopy (TEM). Antimicrobial activity was checked by agar diffusion assay against Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Candida albicans. Anticancer activity of the NPs was assessed using the human cancer cell lines including cervical carcinoma cell line (HeLa) and MCF7. The developed Fe2O3-NPs exhibited a characteristic absorption curve in the 500-600 nm wavelength range by UV-visible analysis, the XRD peaks were found to index the rhombohedral shape, and the FTIR analysis ascertained the bonds and functional groups at wavenumber from 400 to 4000 cm-1. Antimicrobial assay detected significant effect against Staphylococcus aureus and Bacillus subtilis with zones of inhibition: 21 and 22 mm, respectively. Likewise, Fe2O3-NPs show good activity towards tested fungal strain Candida albicans with zone of inhibition of 24 mm. The 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay identified significant anticancer activity of the NPs against both cell lines. Our study documents the successful generation and characterization of Fe2O3-NPs having excellent antimicrobial and anticancer activities.
Collapse
|
17
|
Ou X, Karmakar B, Awwad NS, Ibrahium HA, Osman HEH, El-kott AF, Abdel-Daim MM. Au nanoparticles adorned chitosan-modified magnetic nanocomposite: An investigation towards its antioxidant and anti-hepatocarcinoma activity in vitro. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Hosny M, Eltaweil AS, Mostafa M, El-Badry YA, Hussein EE, Omer AM, Fawzy M. Facile Synthesis of Gold Nanoparticles for Anticancer, Antioxidant Applications, and Photocatalytic Degradation of Toxic Organic Pollutants. ACS OMEGA 2022; 7:3121-3133. [PMID: 35097307 PMCID: PMC8793085 DOI: 10.1021/acsomega.1c06714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/31/2021] [Indexed: 05/12/2023]
Abstract
In the current study, a facile, rapid, and ecologically safe photosynthesis of gold nanoparticles (AuNPs) that remained stable for 3 months is reported to advocate the main aspects of green chemistry, such as safer solvents and auxiliaries, and the use of renewable feedstock. Zi-AuNPs were phytosynthesized by the aqueous extract of Ziziphus spina-christi leaves, and numerous techniques were employed for their characterization. The results demonstrated the successful phytofabrication of crystalline AuNPs with brownish-black color, spherical nanoparticles with a size between 0 and 10 nm, a plasmon peak at 540 nm, and a surface charge of -25.7 mV. Zi-AuNPs showed an effective photodegradation efficiency (81.14%) against malachite green and a good recycling capacity of 69.2% after five cycles of regeneration. The cytotoxicity test by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay signified a high anticancer efficiency for both Zi-AuNPs and Z. spina-christi extract against human breast cancer cells (MCF7 cell line) with IC50's of 48 and 40.25 μg/mL, respectively. Highly efficient antioxidant capabilities were proven with 2,2-diphenyl-1-picrylhydrazyl (DPPH) removal percentages of 67.5% for Zi-AuNPs and 92.34% for Z. spina-christi extract.
Collapse
Affiliation(s)
- Mohamed Hosny
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- ,
| | - Abdelazeem S. Eltaweil
- Department
of Chemistry, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Mohamed Mostafa
- Department
of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Yaser A. El-Badry
- Chemistry
Department, Faculty of Science, Taif University, Khurma, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Enas E. Hussein
- National
Water Research Center, P.O. Box 74, Shubra El-Kheima 13411, Egypt
| | - Ahmed M. Omer
- Polymer Materials
Research Department, Advanced Technology and New Materials Research
Institute, City of Scientific Research and
Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Manal Fawzy
- Green
Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- National
Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, El Sayeda Zeinab, Cairo 33516, Cairo Governorate, Egypt
| |
Collapse
|
19
|
Hosny M, Fawzy M, El-Badry YA, Hussein EE, Eltaweil AS. Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Aljuhr SA, Abdelaziz G, Essa BM, Zaghary WA, Sakr TM. Hepatoprotective, antioxidant and anti-inflammatory potentials of Vit-E/C@SeNPs in rats: Synthesis, characterization, biochemical, radio-biodistribution, molecular and histopathological studies. Bioorg Chem 2021; 117:105412. [PMID: 34649153 DOI: 10.1016/j.bioorg.2021.105412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
This study aimed to synthesize a nano-structure between selenium, Vit. C, and Vit. E (Vit-E/C@SeNPs) as a promising protective and therapeutic agent for hepatocellular carcinoma. Vit-E/C@SeNPs were characterized using TEM and DLS and its zetapotential was measured to evaluate its stability. DPPH assay and SRB test were performed to estimate its antioxidant capacity and cytotoxicity, respectively. A radiosynthesis of 99mTc-Vit-E/C@SeNPs was done for further in-vivo pharmacokinetic studies on normal and solid tumor induced mice. Further, in-vivo studies were conducted to investigate Vit-E/C@SeNPs efficacy against hepatocellular damage in Wistar albino rats induced by diethylnitrosamine (DEN) / Carbon Tetra chloride (CCl4). The synthesis results showed spherical Vit-E/C@SeNPs with core size of 50 nm, radical scavenging activity (%RSC) of 75.9%, and IC50 of 27.9 µg/ml. The biochemical analysis results showed that the lower liver function biomarker values (ALT, AST, ALP, total bilirubin and GGT) has gone for the Vit-E/C@SeNPs prevention and treated group, which also showed significant depletion of liver tissue l-MDA, and obvious increase in GSH concentration and CAT activity and marked improvement in the histological feature of liver tissue. Additionally, a significant up-regulation of mRNA gene expression levels of inflammatory gene (TGFβ1, NFκB, iNOS, PPAR-γ and TNFα) and Apoptotic gene (P53) were determined by using Quantitative real-time PCR (qPCR). The values down regulate and tend to normal in prevention and control group. All of these introduce Vit-E/C@SeNPs as a promising agent as protective and therapeutic agent against DEN/ CCl4-induced hepatocellular damage (Hepatocellular carcinoma).
Collapse
Affiliation(s)
- Safa A Aljuhr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Gamal Abdelaziz
- Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Basma M Essa
- Radioactive Isotopes and Generators Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Wafaa A Zaghary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Tamer M Sakr
- Radioactive Isotopes and Generators Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt.
| |
Collapse
|
21
|
Martínez-Esquivias F, Gutiérrez-Angulo M, Pérez-Larios A, Sánchez-Burgos J, Becerra-Ruiz J, Guzmán-Flores JM. Anticancer Activity of Selenium Nanoparticles In Vitro Studies. Anticancer Agents Med Chem 2021; 22:1658-1673. [PMID: 34515010 DOI: 10.2174/1871520621666210910084216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
Health systems worldwide consider cancer a disease that causes the highest number of deaths per year. The low efficacy of current cancer therapies has led other areas of science to search for new alternatives, including nanomaterial sciences. Selenium nanoparticles have anticancer activity, as revealed by in vitro tests performed on prostate, breast, cervical, lung, colorectal, and liver cancer cell lines. Studies attribute anticancer activity to the anti-metastatic effect due to the inhibition of migration and invasion processes. The antiproliferative effect is the low expression of molecules such as cyclin D1, cyclin E, and CDK2. In addition to the activation of cell apoptosis by caspase-dependent mechanisms, there is a low expression of anti-apoptotic proteins such as Bcl-2 and a high expression of the apoptotic proteins like Bax and Bad. Other studies attribute anticancer activity to the activation of cell necroptosis, where molecules such as TNF and IRF1 participate. The pharmacological potential of selenium nanoparticles depends primarily on the administered dose, particle size, and chemical composition. Furthermore, several studies have shown that the administration of these nanoparticles is safe due to their low toxicity in non-cancerous cells. In this review, the most relevant antecedents on the anticancer potential of selenium nanoparticles in prostate, breast, cervical, lung, liver, and colorectal cancer cell lines are discussed.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Melva Gutiérrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Alejandro Pérez-Larios
- Laboratorio de Materiales, Agua y Energía, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | | | - Julieta Becerra-Ruiz
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| |
Collapse
|
22
|
Hosny M, Fawzy M, Abdelfatah AM, Fawzy EE, Eltaweil AS. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021; 167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is considered a serious malignancy which affects a large number of people worldwide. Despite the presence of some diagnostic techniques for HCC, the fact that its symptoms somehow overlap with other diseases causes it to be diagnosed at a late stage, hence negatively affecting the prognosis of the disease. The currently available treatment strategies have many shortcomings such as high cost, induction of serious side effects as well as multiple drug resistance, hence resulting in therapeutic failure. Accordingly, nanoformulations have been developed in order to overcome the clinical challenges, enhance the therapeutic efficacy, and elicit chemotherapy tailor-ability. Hybrid nanoparticulate carriers in particular, which are composed of two or more drug vehicles with different physicochemical characteristics combined together in one system, have been recently reported to advance nanotechnology-based therapies. Therefore, this review sheds the light on HCC, and the role of nanotechnology and hybrid nanoparticulate carriers as well as the latest developments in the use of conventional nanoparticles in combating this disease.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt.
| |
Collapse
|
24
|
Li X, Wang X, Liu G, Xu Y, Wu X, Yi R, Jin F, Sa C, Su X. Antioxidant stress and anticancer activity of peptide‑chelated selenium in vitro. Int J Mol Med 2021; 48:153. [PMID: 34165159 PMCID: PMC8219521 DOI: 10.3892/ijmm.2021.4986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The association between selenium and peptide in gastric cancer is an important research topic. The present study reported the facile synthesis of anticancer bioactive peptide (ACBP)-functionalized selenium (ACBP-S-Se) particles with enhanced anticancer activities and a detailed mechanistic evaluation of their ability to regulate oxidative stress in vitro. Structural and chemical characterizations were revealed by ultraviolet absorption, Fourier transform infrared, X-ray photoelectron, nuclear magnetic resonance carbon and hydrogen, energy dispersive X-ray spectroscopy and inductively coupled plasma mass spectrometry, as well as scanning electron microscopy. Sulfhydrylation modifications of ACBP were achieved with Sacetylmercaptosuccinic anhydride via chemical absorption. After the polypeptide was modified by sulfhydrylation, the ACBP chain was linked to sulfhydryl groups by amide bonds to form the ACBP-chelated selenium complex. Two gastric cancer cell lines (MKN-45 and MKN-74 cells) demonstrated high susceptibility to ACBP-S-Se particles and displayed significantly decreased proliferation ability following treatment. The results suggested that the bioactive peptide-chelated selenium particles effectively inhibited the proliferation of MKN-45 and MKN-74 cells in vitro. The genes encoding CDK inhibitor 1A (CDKN1A), cyclin B1, thioredoxin (TXN) and mitogen-activated protein kinase kinase kinase 5 are associated with regulation of oxidative stress, while CDKN1A and TXN protect cells by decreasing oxidative stress and promoting cell growth arrest. Therefore, ACBP-S-Se may be an ideal chemotherapeutic candidate for human cancer, especially gastric cancer.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xianjue Wang
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yanan Xu
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xinlin Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Ru Yi
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Feng Jin
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Chula Sa
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010059, P.R. China
| | - Xiulan Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
25
|
Tsivileva O, Pozdnyakov A, Ivanova A. Polymer Nanocomposites of Selenium Biofabricated Using Fungi. Molecules 2021; 26:3657. [PMID: 34203966 PMCID: PMC8232642 DOI: 10.3390/molecules26123657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle-reinforced polymer-based materials effectively combine the functional properties of polymers and unique characteristic features of NPs. Biopolymers have attained great attention, with perspective multifunctional and high-performance nanocomposites exhibiting a low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Nanocomposites of biopolymers are termed green biocomposites. Different biocomposites are reported with numerous inorganic nanofillers, which include selenium. Selenium is a micronutrient that can potentially be used in the prevention and treatment of diseases and has been extensively studied for its biological activity. SeNPs have attracted increasing attention due to their high bioavailability, low toxicity, and novel therapeutic properties. One of the best routes to take advantage of SeNPs' properties is by mixing these NPs with polymers to obtain nanocomposites with functionalities associated with the NPs together with the main characteristics of the polymer matrix. These nanocomposite materials have markedly improved properties achieved at low SeNP concentrations. Composites based on polysaccharides, including fungal beta-glucans, are bioactive, biocompatible, biodegradable, and have exhibited an innovative potential. Mushrooms meet certain obvious requirements for the green entity applied to the SeNP manufacturing. Fungal-matrixed selenium nanoparticles are a new promising biocomposite material. This review aims to give a summary of what is known by now about the mycosynthesized selenium polymeric nanocomposites with the impact on fungal-assisted manufactured ones, the mechanisms of the involved processes at the chemical reaction level, and problems and challenges posed in this area.
Collapse
Affiliation(s)
- Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Alexander Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| | - Anastasiya Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| |
Collapse
|
26
|
Al-Maqdi KA, Bilal M, Alzamly A, Iqbal HMN, Shah I, Ashraf SS. Enzyme-Loaded Flower-Shaped Nanomaterials: A Versatile Platform with Biosensing, Biocatalytic, and Environmental Promise. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1460. [PMID: 34072882 PMCID: PMC8227841 DOI: 10.3390/nano11061460] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
As a result of their unique structural and multifunctional characteristics, organic-inorganic hybrid nanoflowers (hNFs), a newly developed class of flower-like, well-structured and well-oriented materials has gained significant attention. The structural attributes along with the surface-engineered functional entities of hNFs, e.g., their size, shape, surface orientation, structural integrity, stability under reactive environments, enzyme stabilizing capability, and organic-inorganic ratio, all significantly contribute to and determine their applications. Although hNFs are still in their infancy and in the early stage of robust development, the recent hike in biotechnology at large and nanotechnology in particular is making hNFs a versatile platform for constructing enzyme-loaded/immobilized structures for different applications. For instance, detection- and sensing-based applications, environmental- and sustainability-based applications, and biocatalytic and biotransformation applications are of supreme interest. Considering the above points, herein we reviewed current advances in multifunctional hNFs, with particular emphasis on (1) critical factors, (2) different metal/non-metal-based synthesizing processes (i.e., (i) copper-based hNFs, (ii) calcium-based hNFs, (iii) manganese-based hNFs, (iv) zinc-based hNFs, (v) cobalt-based hNFs, (vi) iron-based hNFs, (vii) multi-metal-based hNFs, and (viii) non-metal-based hNFs), and (3) their applications. Moreover, the interfacial mechanism involved in hNF development is also discussed considering the following three critical points: (1) the combination of metal ions and organic matter, (2) petal formation, and (3) the generation of hNFs. In summary, the literature given herein could be used to engineer hNFs for multipurpose applications in the biosensing, biocatalysis, and other environmental sectors.
Collapse
Affiliation(s)
- Khadega A. Al-Maqdi
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Ahmed Alzamly
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| | - Iltaf Shah
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi P. O. Box 127788, United Arab Emirates
| |
Collapse
|
27
|
Green Synthesis of Selenium Nanoparticles by Cyanobacterium Spirulina platensis (abdf2224): Cultivation Condition Quality Controls. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6635297. [PMID: 34195275 PMCID: PMC8181098 DOI: 10.1155/2021/6635297] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/05/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
Selenium nanoparticles (SeNPs) are well-known bioactive compounds. Various chemical and biological methods have been applied to SeNP synthesis. Spirulina platensis is a widely used blue-green microalgae in various industries. In this study, the biosynthesis of SeNPs using sodium selenite and Spirulina platens has been developed. The SeNP synthesis was performed at different cultivation condition including pH and illumination schedule variation. The SeNPs were characterized by FT-IR, XRD, size, and zeta potential measurements, and the antioxidant activities of selected SeNPs were evaluated by DPPH and FRAP assays. FT-IR analysis showed the production of SeNPs. The 12 h dark/12 h light cycles and continuous light exposure at pH 5 led to the production of stable SeNPs with sizes of 145 ± 6 and 171 ± 13 nm, respectively. Antioxidant activity of selected SeNPs was higher than sodium selenite. It seems that green synthesis is a safe method to produce SeNPs as well as a convenient method to scale-up this production.
Collapse
|
28
|
Filipović N, Ušjak D, Milenković MT, Zheng K, Liverani L, Boccaccini AR, Stevanović MM. Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure. Front Bioeng Biotechnol 2021; 8:624621. [PMID: 33569376 PMCID: PMC7869925 DOI: 10.3389/fbioe.2020.624621] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/30/2020] [Indexed: 01/02/2023] Open
Abstract
Although selenium nanoparticles (SeNPs) have gained attention in the scientific community mostly through investigation of their anticancer activity, a great potential of this nanomaterial was recognized recently regarding its antimicrobial activity. The particle form, size, and surface chemistry have been recognized as crucial parameters determining the interaction of nanomaterials with biological entities. Furthermore, considering a narrow boundary between beneficial and toxic effects for selenium per se, it is clear that investigations of biomedical applications of SeNPs are very demanding and must be done with great precautions. The goal of this work is to evaluate the effects of SeNPs surface chemistry and structure on antimicrobial activity against several common bacterial strains, including Staphylococcus aureus (ATCC 6538), Enterococcus faecalis (ATCC 29212), Bacillus subtilis (ATCC 6633), and Kocuria rhizophila (ATCC 9341), as well as Escherichia coli (ATCC 8739), Salmonella Abony (NCTC 6017), Klebsiella pneumoniae (NCIMB 9111) and Pseudomonas aeruginosa (ATCC 9027), and the standard yeast strain Candida albicans (ATCC 10231). Three types of SeNPs were synthesized by chemical reduction approach using different stabilizers and reducing agents: (i) bovine serum albumin (BSA) + ascorbic acid, (ii) chitosan + ascorbic acid, and (iii) with glucose. A thorough physicochemical characterization of the obtained SeNPs was performed to determine the effects of varying synthesis parameters on their morphology, size, structure, and surface chemistry. All SeNPs were amorphous, with spherical morphology and size in the range 70–300 nm. However, the SeNPs obtained under different synthesis conditions, i.e. by using different stabilizers as well as reducing agents, exhibited different antimicrobial activity as well as cytotoxicity which are crucial for their applications. In this paper, the antimicrobial screening of the selected systems is presented, which was determined by the broth microdilution method, and inhibitory influence on the production of monomicrobial and dual-species biofilm was evaluated. The potential mechanism of action of different systems is proposed. Additionally, the cytotoxicity of SeNPs was examined on the MRC-5 cell line, in the same concentration interval as for antimicrobial testing. It was shown that formulation SeNPs-BSA expressed a significantly lower cytotoxic effect than the other two formulations.
Collapse
Affiliation(s)
- Nenad Filipović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Dušan Ušjak
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Marina T Milenković
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Kai Zheng
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Magdalena M Stevanović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
29
|
Selenium nanostructure: Progress towards green synthesis and functionalization for biomedicine. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-020-00510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Wei QY, Xu YM, Lau ATY. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers (Basel) 2020; 12:E2783. [PMID: 32998391 PMCID: PMC7600685 DOI: 10.3390/cancers12102783] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023] Open
Abstract
Conventional chemotherapy is still an important option of cancer treatment, but it has poor cell selectivity, severe side effects, and drug resistance. Utilizing nanoparticles (NPs) to improve the therapeutic effect of chemotherapeutic drugs has been highlighted in recent years. Nanotechnology dramatically changed the face of oncology by high loading capacity, less toxicity, targeted delivery of drugs, increased uptake to target sites, and optimized pharmacokinetic patterns of traditional drugs. At present, research is being envisaged in the field of novel nano-pharmaceutical design, such as liposome, polymer NPs, bio-NPs, and inorganic NPs, so as to make chemotherapy effective and long-lasting. Till now, a number of studies have been conducted using a wide range of nanocarriers for the treatment of solid tumors including lung, breast, pancreas, brain, and liver. To provide a reference for the further application of chemodrug-loaded nanoformulations, this review gives an overview of the recent development of nanocarriers, and the updated status of their use in the treatment of several solid tumors.
Collapse
Affiliation(s)
| | | | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China; (Q.-Y.W.); (Y.-M.X.)
| |
Collapse
|
31
|
Exhibiting the diagnostic face of selenium nanoparticles as a radio-platform for tumor imaging. Bioorg Chem 2020; 100:103910. [DOI: 10.1016/j.bioorg.2020.103910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/28/2020] [Accepted: 05/02/2020] [Indexed: 12/23/2022]
|
32
|
Zou J, Su S, Chen Z, Liang F, Zeng Y, Cen W, Zhang X, Xia Y, Huang D. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3456-3464. [PMID: 31469318 DOI: 10.1080/21691401.2019.1626863] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Targeted delivery of chemotherapeutics by functionalized nanoparticles exhibits a wonderful prospect for cancer treatment. In this paper, selenium nanoparticles (SeNPs) was linked with hyaluronic acid (HA) to prepare tumor-targeted delivery vehicle HA-SeNPs, and HA-SeNPs was loaded with paclitaxel (PTX) to fabricate functionalized selenium nanoparticles HA-Se@PTX. HA-Se@PTX showed greater uptake in A549 cells in comparison with that in HUVEC, verifying HA-mediated specific uptake of HA-Se@PTX. HA-Se@PTX was capable of entering A549 cells via clathrin-associated endocytosis and showed faster drug release in cancer cell microenvironment in comparison with normal physiological environment. HA-Se@PTX could obviously inhibit the proliferation, migration and invasion of A549 cells and trigger A549 cells apoptosis. Moreover, active targeting functionalized selenium nanoparticles HA-Se@PTX showed greater in vivo antitumor activity compared with free PTX or passive targeting delivery system Se@PTX. In addition, HA-Se@PTX exhibited negligible toxicity on the major organs of mice. In a word, HA-Se@PTX may develop into a valuable nanoscale antitumor drug agent for lung cancer treatment.
Collapse
Affiliation(s)
- Jianjun Zou
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Shan Su
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Zhuohong Chen
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Feng Liang
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Yunyun Zeng
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Wenchang Cen
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Xianlan Zhang
- Department of Oncology, Guangzhou Chest Hospital , Guangzhou , P.R. China
| | - Yu Xia
- Central Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou , , P.R. China
| | - Donglan Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , P.R. China
| |
Collapse
|
33
|
Bilal M, Asgher M, Shah SZH, Iqbal HMN. Engineering enzyme-coupled hybrid nanoflowers: The quest for optimum performance to meet biocatalytic challenges and opportunities. Int J Biol Macromol 2019; 135:677-690. [PMID: 31152838 DOI: 10.1016/j.ijbiomac.2019.05.206] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023]
Abstract
The current industrial revolution signifies the high-value of biocatalysis engineering. Over the past decade, multiple micro- and nanostructured materials have been attempted for immobilization of enzymes to improve their catalytic properties. Conventional immobilization strategies result in improved stability, while insolubilized enzymes generally lost their activity compared to free counterparts. Recently, a new generation organic-inorganic hybrid nanoflowers with unique properties have received great attention as a novel and incentive immobilization approach owing to their simple fabrication, high biocatalytic efficiency, and enzyme stabilizing capability. The hybrid nanoflowers biocatalytic system implicates metal ions and biomolecules (enzymes). In contrast to free or conventionally immobilized enzymes, single enzyme or multi enzyme-incorporated flowers-like hybrid nanoconstructs demonstrated elevated catalytic activities and stabilities over a very broader range of experimental conditions, i.e., pHs, temperatures and salt concentration. This review discusses the recent developments in the fabrication strategies to diversifying nanoflowers, types, characteristics, and applications of organic-inorganic hybrid nanoflowers as a host platform to engineer different kinds of enzymes with requisite functionalities for biocatalysis applications in different sectors of the modern world. Based on experimental and theoretical literature data, the review is wrapped up with concluding remarks and an outlook in terms of upcoming challenges and prospects for their scale-up applications.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Muhammad Asgher
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
34
|
Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 2019; 111:802-812. [DOI: 10.1016/j.biopha.2018.12.146] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/12/2022] Open
|
35
|
Nanostructured biomedical selenium at the biological interface (Review). Biointerphases 2018; 13:06D301. [DOI: 10.1116/1.5042693] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Xia Y, Chen Y, Hua L, Zhao M, Xu T, Wang C, Li Y, Zhu B. Functionalized selenium nanoparticles for targeted delivery of doxorubicin to improve non-small-cell lung cancer therapy. Int J Nanomedicine 2018; 13:6929-6939. [PMID: 30464451 PMCID: PMC6214589 DOI: 10.2147/ijn.s174909] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Selenium nanoparticles (SeNPs) loaded with chemotherapeutic drugs provided a novel perspective for cancer therapy. MATERIALS AND METHODS Here, SeNPs were modified with cyclic peptide (Arg-Gly-Asp-d-Phe-Cys [RGDfC]) to fabricate tumor-targeting delivery carrier RGDfC-SeNPs and, then, doxorubicin (DOX) was loaded to the surface of RGDfC-SeNPs for improving the antitumor efficacy of DOX in non-small-cell lung carcinoma therapy. RESULTS The chemical structure characterization of RGDfC-Se@DOX showed that DOX was successfully loaded to the surface of RGDfC-SeNPs to prepare functionalized antitumor drug delivery system RGDfC-Se@DOX. RGDfC-Se@DOX exhibited effective cellular uptake in A549 cells and entered A549 cells mainly by clathrin-mediated endocytosis pathway. Compared to free DOX or Se@DOX at the equivalent dose of DOX, RGDfC-Se@DOX showed greater activity to inhibit A549 cells' proliferation and migration/invasion and induce A549 cells' apoptosis. More importantly, compared with passive targeting delivery system Se@DOX, active targeting delivery system RGDfC-Se@DOX exhibited more significant antitumor efficacy in vivo. CONCLUSION Taken together, RGDfC-Se@DOX may be a novel promising drug candidate for the lung carcinoma therapy.
Collapse
Affiliation(s)
- Yu Xia
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China,
| | - Yi Chen
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China,
| | - Liang Hua
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China,
| | - Mingqi Zhao
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China,
| | - Tiantian Xu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China,
| | - Changbing Wang
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China,
| | - Yinghua Li
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China,
| | - Bing Zhu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China,
| |
Collapse
|
37
|
Menon S, KS SD, R S, S R, S VK. Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B Biointerfaces 2018; 170:280-292. [DOI: 10.1016/j.colsurfb.2018.06.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
|
38
|
Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydr Polym 2018; 195:576-585. [DOI: 10.1016/j.carbpol.2018.04.110] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/21/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
|
39
|
Selenium nanomaterials in biomedicine—An overview of new opportunities in nanomedicine of selenium. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Xu C, Guo Y, Qiao L, Ma L, Cheng Y, Roman A. Biogenic Synthesis of Novel Functionalized Selenium Nanoparticles by Lactobacillus casei ATCC 393 and Its Protective Effects on Intestinal Barrier Dysfunction Caused by Enterotoxigenic Escherichia coli K88. Front Microbiol 2018; 9:1129. [PMID: 29967593 PMCID: PMC6015882 DOI: 10.3389/fmicb.2018.01129] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Selenium (Se) is an essential element for human and animal health. Biogenic selenium nanoparticles (SeNPs) by microorganism possess unique physical and chemical properties and biological activities compared with inorganic Se and organic Se. The study was conducted to investigate the mainly biological activities of SeNPs by Lactobacillus casei ATCC 393 (L. casei 393). The results showed that L. casei 393 transformed sodium selenite to red SeNPs with the size of 50–80 nm, and accumulated them intracellularly. L. casei 393-SeNPs promoted the growth and proliferation of porcine intestinal epithelial cells (IPEC-J2), human colonic epithelial cells (NCM460), and human acute monocytic leukemia cell (THP-1)-derived macrophagocyte. L. casei 393-SeNPs significantly inhibited the growth of human liver tumor cell line-HepG2, and alleviated diquat-induced IPEC-J2 oxidative damage. Moreover, in vivo and in vitro experimental results showed that administration with L. casei 393-SeNPs protected against Enterotoxigenic Escherichia coli K88 (ETEC K88)-caused intestinal barrier dysfunction. ETEC K88 infection-associated oxidative stress (glutathione peroxidase activity, total superoxide dismutase activity, total antioxidant capacity, and malondialdehyde) was ameliorated in L. casei 393-SeNPs-treated mice. These findings suggest that L. casei 393-SeNPs with no cytotoxicity play a key role in maintaining intestinal epithelial integrity and intestinal microflora balance in response to oxidative stress and infection.
Collapse
Affiliation(s)
- Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yu Guo
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Li Ma
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yiyi Cheng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Alexandra Roman
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
41
|
Selenium nanocomposites as multifunctional nanoplatform for imaging guiding synergistic chemo-photothermal therapy. Colloids Surf B Biointerfaces 2018; 166:161-169. [DOI: 10.1016/j.colsurfb.2018.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 02/15/2018] [Accepted: 03/14/2018] [Indexed: 01/13/2023]
|
42
|
Xia Y, Guo M, Xu T, Li Y, Wang C, Lin Z, Zhao M, Zhu B. siRNA-loaded selenium nanoparticle modified with hyaluronic acid for enhanced hepatocellular carcinoma therapy. Int J Nanomedicine 2018; 13:1539-1552. [PMID: 29588583 PMCID: PMC5858822 DOI: 10.2147/ijn.s157519] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Small interfering RNA (siRNA) as a new therapeutic modality holds promise for cancer treatment. However, the traditional viral carriers are prone to immunogenicity and risk of insertional mutagenesis. METHODS In order to provide a tumor-targeted delivery carrier of siRNA in cancer therapy, the hyaluronic acid (HA)-selenium (Se)-polyethylenimine (PEI) nanoparticle (NP) was fabricated by decorating SeNP with HA as a tumor-targeting moiety and by linking the polycationic polymers polyethylenimine PEI onto the surface of SeNP. The siRNA was loaded to the surface of SeNP HA-Se-PEI via the electrostatic interaction between siRNA and PEI to prepare the functionalized SeNP HA-Se-PEI@siRNA. RESULTS The HA-Se-PEI@siRNA was internalized into the HepG2 cell mainly in a clathrin-mediated endocytosis manner. Owing to the active tumor-targeted effect mediated by HA, HA-Se-PEI@siRNA achieved the obvious higher transfection efficiency, greater gene silencing ability, and stronger cytotoxicity in the HepG2 cell compared with the passive tumor-targeted NP Se-PEI@siRNA. The knockdown of hairy and enhancer of split 5 by HA-Se-PEI@siRNA induced the HepG2 cell cycle arrest at the G0/G1 phase and apoptosis. Furthermore, the treatment with HA-Se-PEI@siRNA resulted in greater antitumor efficacy compared with the Se-PEI@siRNA in vitro and in vivo. In addition, the HA-Se-PEI@siRNA was almost no toxic to the key organs of mice. CONCLUSION These findings provided an alternative therapeutic route for targeted cancer treatments.
Collapse
Affiliation(s)
- Yu Xia
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Min Guo
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Tiantian Xu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yinghua Li
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Changbing Wang
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhengfang Lin
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Mingqi Zhao
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Bing Zhu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
43
|
Shi X, Zhou K, Huang F, Zhang J, Wang C. Endocytic mechanisms and osteoinductive profile of hydroxyapatite nanoparticles in human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Int J Nanomedicine 2018; 13:1457-1470. [PMID: 29559775 PMCID: PMC5856024 DOI: 10.2147/ijn.s155814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background As a potentially bioactive material, the widespread application of nanosized hydroxyapatite (nano-HAP) in the field of bone regeneration has increased the risk of human exposure. However, our understanding of the interaction between nano-HAP and stem cells implicated in bone repair remains incomplete. Methods Here, we characterized the adhesion and cellular internalization of HAP nanoparticles (HANPs) with different sizes (20 nm np20 and 80 nm np80) and highlighted the involved pathway in their uptake using human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). In addition, the effects of HANPs on cell viability, apoptosis response, osteogenic differentiation, and underlying related mechanisms were explored. Results It was shown that both types of HANPs readily adhered to the cellular membrane and were transported into the cells compared to micro-sized HAP particles (m-HAP; 12 μm). Interestingly, the endocytic routes of np20 and np80 differed, although they exhibited similar kinetics of adhesion and uptake. Our study revealed involvement of clathrin- and caveolin-mediated endocytosis as well as macropinocytosis in the np20 uptake. However, for np80, clathrin-mediated endocytosis and some as-yet-unidentified important uptake routes play central roles in their internalization. HANPs displayed a higher preference to accumulate in the cytoplasm compared to m-HAP, and HANPs were not detected in the nucleolus. Exposure to np20 for 24 h caused a decrease in cell viability, while cells completely recovered with an exposure time of 72 h. Furthermore, HANPs did not influence apoptosis and necrosis of hWJ-MSCs. Strikingly, HANPs enhanced mRNA levels of osteoblast-related genes and stimulated calcium mineral deposition, and this directly correlated with the activation in c-Jun N-terminal kinases and p38 pathways. Conclusion Our data provide additional insight about the interactions of HANPs with MSCs and suggest their application potential in hard tissue regeneration.
Collapse
Affiliation(s)
- Xingxing Shi
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Kai Zhou
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Huang
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Juan Zhang
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chen Wang
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Xia Y, Zhao M, Chen Y, Hua L, Xu T, Wang C, Li Y, Zhu B. Folate-targeted selenium nanoparticles deliver therapeutic siRNA to improve hepatocellular carcinoma therapy. RSC Adv 2018; 8:25932-25940. [PMID: 35541982 PMCID: PMC9082925 DOI: 10.1039/c8ra04204g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/05/2018] [Indexed: 12/02/2022] Open
Abstract
To obtain a tumor targeting siRNA delivery vehicle for hepatocellular carcinoma treatments, functionalized selenium nanoparticles, Se–PEI–FA, were first prepared by decorating selenium nanoparticles with polycationic polymers, polyethylenimine (PEI), linked with folic acid (FA). FA functions as the tumor-targeted molecule to enhance tumor targeting activity, and PEI conjugates FA and siRNA. Se–PEI–FA@siRNA entered HepG2 cells principally via clathrin-mediated endocytosis. Due to the active tumor targeting effectiveness of FA, Se–PEI–FA@siRNA has significantly higher cellular uptake and gene silencing efficiency, and more apparent cytotoxicity, in HepG2 cells compared with Se–PEI@siRNA. The silencing of HES5 by Se–PEI–FA@siRNA could induce HepG2 cells arrest at G0/G1 phase possibly via inhibiting protein expression of CDK2, cyclinE, and cyclinD1, and up-regulating the protein expression of p21. More importantly, Se–PEI–FA@siRNA exhibits more significant antitumor efficacy compared with Se–PEI@siRNA in vivo. Additionally, Se–PEI–FA@siRNA exhibits low toxicity to the important organs of tumor-bearing mice. This research provides an effective strategy for the design of tumor-targeted nanodrugs against hepatocellular carcinoma. We provide an effective strategy for the design of tumor-targeted nanodrugs against hepatocellular carcinoma by functionalising Se nanoparticles with polyethylenimine linked with folic acid and siRNA.![]()
Collapse
Affiliation(s)
- Yu Xia
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Mingqi Zhao
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Yi Chen
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Liang Hua
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Tiantian Xu
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Changbing Wang
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Yinghua Li
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Bing Zhu
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| |
Collapse
|
45
|
Xia Y, Wang C, Xu T, Li Y, Guo M, Lin Z, Zhao M, Zhu B. Targeted delivery of HES5-siRNA with novel polypeptide-modified nanoparticles for hepatocellular carcinoma therapy. RSC Adv 2018; 8:1917-1926. [PMID: 35542585 PMCID: PMC9077277 DOI: 10.1039/c7ra12461a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
For actively targeted delivery of small interfering RNA (siRNA) to solid tumors, we fabricated functionalized selenium nanoparticles (SeNPs) decorated with the polypeptide RGDfC. Herein, RGDfC was used as tumor-targeted moiety and installed onto the surface of SeNPs to enhance the cellular uptake. RGDfC-SeNPs@siRNA were internalized into the HepG2 cell mainly through clathrin-mediated endocytosis. The active efficacy of the RGDfC-SeNPs@siRNA was confirmed via gene silencing assay, MTT assay and flow cytometry analysis. Owing to the tumor-targeting effect of RGDfC, RGDfC-SeNPs@siRNA achieved an obvious improvement in gene silencing ability, which led to significant growth inhibition of HepG2 cells. Furthermore, treatment with RGDfC-SeNPs@siRNA resulted in greater antitumor efficacy than lipofectamine 2000@siRNA in vitro and in vivo. In addition, the RGDfC-SeNPs@siRNA was almost non-toxic to the key organs of mice. In sum, these findings provide an alternative therapeutic route for targeted cancer treatments. A novel polypeptide RGDfC-modified selenium nanoparticle was fabricated to selectively deliver HES5-siRNA to tumors for hepatocellular carcinoma therapy.![]()
Collapse
Affiliation(s)
- Yu Xia
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Changbing Wang
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Tiantian Xu
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Yinghua Li
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Min Guo
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Zhengfang Lin
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Mingqi Zhao
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Bing Zhu
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| |
Collapse
|
46
|
Xia Y, Xu T, Wang C, Li Y, Lin Z, Zhao M, Zhu B. Novel functionalized nanoparticles for tumor-targeting co-delivery of doxorubicin and siRNA to enhance cancer therapy. Int J Nanomedicine 2017; 13:143-159. [PMID: 29317822 PMCID: PMC5743186 DOI: 10.2147/ijn.s148960] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human homeobox protein (Nanog) is highly expressed in most cancer cells and has gradually emerged as an excellent target in cancer therapy, owing to its regulation of cancer cell proliferation, metastasis and apoptosis. In this study, we prepared tumor-targeting functionalized selenium nanoparticles (RGDfC-SeNPs) to load chemotherapeutic doxorubicin (DOX) and Nanog siRNA. Herein, RGDfC peptide was used as a tumor-targeting moiety which could specifically bind to αvβ3 integrins overexpressed on various cancer cells. The sizes of RGDfC-SeNPs@DOX nanoparticles (~12 nm) were confirmed by both dynamic light scattering and transmission electron microscopy. The chemical structure of RGDfC-SeNPs@DOX was characterized via Fourier-transform infrared spectroscopy. The RGDfC-SeNPs@DOX was compacted with siRNA (anti-Nanog) by electrostatic interaction to fabricate the RGDfC-SeNPs@DOX/siRNA complex. The RGDfC-SeNPs@DOX/siRNA complex nanoparticles could efficiently enter into HepG2 cells via clathrin-associated endocytosis, and showed high gene transfection efficiency that resulted in enhanced gene silencing. The in vivo biodistribution experiment indicated that RGDfC-SeNPs@DOX/siRNA nanoparticles were capable of specifically accumulating in the tumor site. Furthermore, treatment with RGDfC-SeNPs@DOX/siRNA resulted in a more significant anticancer activity than the free DOX, RGDfC-SeNPs@DOX or RGDfC-SeNPs/siRNA in vitro and in vivo. In summary, this study shows a novel type of DOX and siRNA co-delivery system, thereby providing an alternative route for cancer treatment.
Collapse
Affiliation(s)
- Yu Xia
- Central Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Tiantian Xu
- Central Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Changbing Wang
- Central Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yinghua Li
- Central Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhengfang Lin
- Central Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Mingqi Zhao
- Central Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Bing Zhu
- Central Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
47
|
Nonsuwan P, Puthong S, Palaga T, Muangsin N. Novel organic/inorganic hybrid flower-like structure of selenium nanoparticles stabilized by pullulan derivatives. Carbohydr Polym 2017; 184:9-19. [PMID: 29352947 DOI: 10.1016/j.carbpol.2017.12.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/23/2017] [Accepted: 12/12/2017] [Indexed: 01/16/2023]
Abstract
We proudly present the first organic/inorganic hybrid pullulan/SeNPs hybrid microflower material obtained using a simple and bio-inspired strategy. The chemical structures of pullulan, folic acid decorated cationic pullulan (FA-CP) were designed for stabilizing selenium nanoparticles (SeNPs). SeNPs stabilized by FA-CP hybrid microflowers were observed after the addition of a cysteine hydrochloride solution into the solution mixture of Na2SeO3 and FA-CP. We suggested that the concentrations of cysteine and FA-CP were the key factors for the formation of flower-like structure. In addition, the formation mechanism of the microflowers was tentatively identified as anisotropic hierarchical growth. The microflowers exhibited effective drug adsorption with the loading capacity of 142.2 mg g-1 for doxorubicin which was three times higher than that for the doxorubicin-loaded spherical SeNPs and showed more potent activity against cancer cells while showing less toxicity against normal cells. These data demonstrated that the microflower-like FA-CP/SeNPs structure could be a candidate anticancer drug template in drug delivery systems.
Collapse
Affiliation(s)
- Punnida Nonsuwan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Antibody Production Research Unit, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nongnuj Muangsin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Nanotec-CU Center of Excellence on Food and Agriculture, Bangkok, 10330, Thailand.
| |
Collapse
|
48
|
Jalalian SH, Ramezani M, Abnous K, Taghdisi SM. Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett 2017; 416:87-93. [PMID: 29253524 DOI: 10.1016/j.canlet.2017.12.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022]
Abstract
Chemotherapy is a commonly used cancer treatment strategy that causes severe side effects by damaging normal tissue. Therefore, targeted drug delivery systems have attracted great attention for the treatment of cancer in recent years. In this study, epirubicin (EPI)-loaded-NAS-24-functionalized PEI-PEG-5TR1 aptamer coated selenium nanoparticles (SeNPs), known as the ENPPASe complex, were developed and used for targeted delivery of both EPI (anticancer drug) and NAS-24 aptamer (apoptosis induction agent) to MCF7 (human breast carcinoma cell) and C26 (murine colon carcinoma cell) cancer cells using 5TR1 aptamer as the target agent. The ENPPASe complex could significantly reduce the toxicity in non-target cells (HEPG2, hepatocellular carcinoma cell). As with the EPI alone, the ENPPASe complex could significantly reduce cell viability in the target cancer cells (MCF-7 and C26). In addition, the complex significantly reduced the tumor growth in cancer-bearing mice compared to EPI treatment alone.
Collapse
Affiliation(s)
- Seyed Hamid Jalalian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Students Research Committee, Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Academic Center for Education, Culture and Research (ACECR)-Mashhad Branch, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Wadhwani SA, Gorain M, Banerjee P, Shedbalkar UU, Singh R, Kundu GC, Chopade BA. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. Int J Nanomedicine 2017; 12:6841-6855. [PMID: 28979122 PMCID: PMC5602452 DOI: 10.2147/ijn.s139212] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to synthesize selenium nanoparticles (SeNPs) using cell suspension and total cell protein of Acinetobacter sp. SW30 and optimize its synthesis by studying the influence of physiological and physicochemical parameters. Also, we aimed to compare its anticancer activity with that of chemically synthesized SeNPs in breast cancer cells. Cell suspension of Acinetobacter sp. SW30 was exposed to various physiological and physicochemical conditions in the presence of sodium selenite to study their effects on the synthesis and morphology of SeNPs. Breast cancer cells (4T1, MCF-7) and noncancer cells (NIH/3T3, HEK293) were exposed to different concentrations of SeNPs. The 18 h grown culture with 2.7×109 cfu/mL could synthesize amorphous nanospheres of size 78 nm at 1.5 mM and crystalline nanorods at above 2.0 mM Na2SeO3 concentration. Polygonal-shaped SeNPs of average size 79 nm were obtained in the supernatant of 4 mg/mL of total cell protein of Acinetobacter sp. SW30. Chemical SeNPs showed more anticancer activity than SeNPs synthesized by Acinetobacter sp. SW30 (BSeNPs), but they were found to be toxic to noncancer cells also. However, BSeNPs were selective against breast cancer cells than chemical ones. Results suggest that BSeNPs are a good choice of selection as anticancer agents.
Collapse
Affiliation(s)
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune
| | - Pinaki Banerjee
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune
| | | | - Richa Singh
- Department of Microbiology, Savitribai Phule Pune University
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Center for Cell Science, Savitribai Phule Pune University Campus, Pune
| | - Balu A Chopade
- Department of Microbiology, Savitribai Phule Pune University.,Dr Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
50
|
Kumari M, Ray L, Purohit MP, Patnaik S, Pant AB, Shukla Y, Kumar P, Gupta KC. Curcumin loading potentiates the chemotherapeutic efficacy of selenium nanoparticles in HCT116 cells and Ehrlich's ascites carcinoma bearing mice. Eur J Pharm Biopharm 2017; 117:346-362. [PMID: 28499854 DOI: 10.1016/j.ejpb.2017.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 12/20/2022]
Abstract
The anticancer properties of selenium (Se) and curcumin nanoparticles in solo formulations as well as in combination with other therapeutic agents have been proved time and again. Exploiting this facet of the two, we clubbed their tumoricidal characteristics and designed curcumin loaded Se nanoparticles (Se-CurNPs) to achieve an enhanced therapeutic effect. We evaluated their therapeutic effects on different cancer cell lines and Ehrlich's ascites carcinoma mouse model. In vitro results showed that Se-CurNPs were most effective on colorectal carcinoma cells (HCT116) compared to the other cancer cell lines used and possessed pleiotropic anticancer effects. The therapeutic effect on HCT116 was primarily attributed to an elevated level of autophagy and apoptosis as evident from significant up-regulation of autophagy associated (LC3B-II) and pro-apoptotic (Bax) proteins, down-regulation of anti-apoptotic (Bcl-2) protein and Cytochrome c (cyt c) release from mitochondria along with reduced NFκB signaling and EMT based machineries marked by downregulation of inflammation (NFκB, phospho-NFκB) and epithelial-mesenchymal transition (CD44, N-cadherin) associated proteins. In vivo studies on Ehrlich's ascites carcinoma (EAC) mice model indicated that Se-CurNPs significantly reduced the tumor load and enhanced the mean survival time (days) of tumor-bearing EAC mice.
Collapse
Affiliation(s)
- Manisha Kumari
- CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - L Ray
- CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow 226 001, Uttar Pradesh, India
| | - M P Purohit
- CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - S Patnaik
- CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow 226 001, Uttar Pradesh, India
| | - A B Pant
- CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Y Shukla
- CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow 226 001, Uttar Pradesh, India
| | - P Kumar
- CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - K C Gupta
- CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India; CSIR-Indian Institute of Toxicology Research, M.G. Marg, Lucknow 226 001, Uttar Pradesh, India; Department of Biological Sciences and Bioengineering (BSBE) and Centre for Environmental Science and Engineering (CESE), Indian Institute of Technology, Kanpur, India.
| |
Collapse
|