1
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
García-Fernández J, Rivadulla Costa L, Pinto-Díez C, Elena Martín M, González VM, de la Fuente Freire M. Chemical conjugation of aptamer-sphingomyelin nanosystems and their potential as inhibitors of tumour cell proliferation in breast cancer cells. NANOSCALE 2023; 15:19110-19127. [PMID: 37990926 DOI: 10.1039/d3nr03022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Breast cancer is a complex and heterogeneous disease with a high mortality rate due to non-specific cytotoxicity, low intratumoral accumulation and drug resistance associated with the ineffectiveness of chemotherapy. In recent years, all efforts have been focused on finding new markers and therapeutic targets, protein kinase MNK1b being a promising candidate. Recently, an aptamer known as apMNK2F showed a highly specific interaction with this protein kinase, leading to a significant reduction in tumour cell proliferation, migration and colony formation. However, as aptamers are unable to penetrate the cell membrane and reach the target, these small biomolecules need to be conjugated to suitable vectors that can transport and protect them inside the cells. In this work, covalent conjugation between biocompatible and non-harmful nanoemulsions of vitamin E and sphingomyelin and the aptamer was performed to facilitate intracellular delivery of the therapeutic aptamer apMNK2F. All strategies employed were based on 2-step bioconjugation and optimized to get the simplest and most reproducible vehicle with the highest association efficiency (about 70% in all cases). The ability of the nanosystems to successfully deliver the conjugated therapeutic aptamer was demonstrated and compared to other commercial transfection agents such as Lipofectamine 2000, leading to an effective decrease of breast cancer cell proliferation in the MDA-MB-231 cell line. The proliferation inhibition of the aptamer nanoconjugates compared to the non-conjugated aptamer provides evidence that the antitumoral capacity derived from kinase interaction is improved in a dose-dependent manner. Furthermore, various experiments including cell migration and colony formation assays, along with apoptosis induction experiments, emphasize the significant antitumoral potential. Overall, the obtained results indicate that the developed formulation could be a promising therapy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jenifer García-Fernández
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostel (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
| | - Laura Rivadulla Costa
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostel (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
| | | | | | - Víctor M González
- Aptus Biotech S.L., Madrid, Spain
- IRYcis-Hospital Ramón y Cajal, Madrid, Spain
| | - María de la Fuente Freire
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostel (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, 15706, Spain.
- Biomedical Research Networking Centre on Oncology (CIBERONC), Madrid, Spain
- DIVERSA Technologies S.L, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Salama MM, Aborehab NM, El Mahdy NM, Zayed A, Ezzat SM. Nanotechnology in leukemia: diagnosis, efficient-targeted drug delivery, and clinical trials. Eur J Med Res 2023; 28:566. [PMID: 38053150 DOI: 10.1186/s40001-023-01539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
Leukemia is a group of malignant disorders which affect the blood and blood-forming tissues in the bone marrow, lymphatic system, and spleen. Many types of leukemia exist; thus, their diagnosis and treatment are somewhat complicated. The use of conventional strategies for treatment such as chemotherapy and radiotherapy may develop many side effects and toxicity. Hence, modern research is concerned with the development of specific nano-formulations for targeted delivery of anti-leukemic drugs avoiding toxic effects on normal cells. Nanostructures can be applied not only in treatment but also in diagnosis. In this article, types of leukemia, its causes, diagnosis as well as conventional treatment of leukemia shall be reviewed. Then, the use of nanoparticles in diagnosis of leukemia and synthesis of nanocarriers for efficient delivery of anti-leukemia drugs being investigated in in vivo and clinical studies. Therefore, it may contribute to the discovery of novel and emerging nanoparticles for targeted treatment of leukemia with less side effects and toxicities.
Collapse
Affiliation(s)
- Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Nihal M El Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
4
|
Hu X, Tan W, Cheng S, Xian Y, Zhang C. Nucleic acid and nanomaterial-assisted signal-amplified strategies in fluorescent analysis of circulating tumor cells and small extracellular vesicles. Anal Bioanal Chem 2023:10.1007/s00216-022-04509-2. [PMID: 36599923 DOI: 10.1007/s00216-022-04509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
As two main types of liquid biopsy markers, both circulating tumor cells (CTCs) and small extracellular vesicles (sEVs) play important roles in the diagnosis and prognosis of cancers. CTCs are malignant cells that detach from the original tumor tissue and enter the circulation of body fluids. sEVs are nanoscale vesicles secreted by normal cells or pathological cells. However, CTCs and sEVs in body fluids are scarce, leading to great difficulties in the accurate analysis of related diseases. For the sensitive detection of CTCs and sEVs in body fluids, various types of nucleic acid and nanomaterial-assisted signal amplification strategies have been developed. In this review, we summarize the recent advances in fluorescent detection of CTCs and sEVs in liquid biopsy based on nucleic acid and nanomaterial-assisted signal amplification strategies. We also discuss their advantages, challenges, and future prospects.
Collapse
Affiliation(s)
- Xinyu Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wenqiao Tan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Brosseau NE, Vallée I, Mayer-Scholl A, Ndao M, Karadjian G. Aptamer-Based Technologies for Parasite Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020562. [PMID: 36679358 PMCID: PMC9867382 DOI: 10.3390/s23020562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/30/2023]
Abstract
Centuries of scientific breakthroughs have brought us closer to understanding and managing the spread of parasitic diseases. Despite ongoing technological advancements in the detection, treatment, and control of parasitic illnesses, their effects on animal and human health remain a major concern worldwide. Aptamers are single-stranded oligonucleotides whose unique three-dimensional structures enable them to interact with high specificity and affinity to a wide range of targets. In recent decades, aptamers have emerged as attractive alternatives to antibodies as therapeutic and diagnostic agents. Due to their superior stability, reusability, and modifiability, aptamers have proven to be effective bioreceptors for the detection of toxins, contaminants, biomarkers, whole cells, pathogens, and others. As such, they have been integrated into a variety of electrochemical, fluorescence, and optical biosensors to effectively detect whole parasites and their proteins. This review offers a summary of the various types of parasite-specific aptamer-based biosensors, their general mechanisms and their performance.
Collapse
Affiliation(s)
- Noah Emerson Brosseau
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Isabelle Vallée
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Momar Ndao
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Grégory Karadjian
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
6
|
Shraim AS, Abdel Majeed BA, Al-Binni M, Hunaiti A. Therapeutic Potential of Aptamer-Protein Interactions. ACS Pharmacol Transl Sci 2022; 5:1211-1227. [PMID: 36524009 PMCID: PMC9745894 DOI: 10.1021/acsptsci.2c00156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Aptamers are single-stranded oligonucleotides (RNA or DNA) with a typical length between 25 and 100 nucleotides which fold into three-dimensional structures capable of binding to target molecules. Specific aptamers can be isolated against a large variety of targets through efficient and relatively cheap methods, and they demonstrate target-binding affinities that sometimes surpass those of antibodies. Consequently, interest in aptamers has surged over the past three decades, and their application has shown promise in advancing knowledge in target analysis, designing therapeutic interventions, and bioengineering. With emphasis on their therapeutic applications, aptamers are emerging as a new innovative class of therapeutic agents with promising biochemical and biological properties. Aptamers have the potential of providing a feasible alternative to antibody- and small-molecule-based therapeutics given their binding specificity, stability, low toxicity, and apparent non-immunogenicity. This Review examines the general properties of aptamers and aptamer-protein interactions that help to understand their binding characteristics and make them important therapeutic candidates.
Collapse
Affiliation(s)
- Ala’a S. Shraim
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Bayan A. Abdel Majeed
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Maysaa’
Adnan Al-Binni
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| | - Abdelrahim Hunaiti
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| |
Collapse
|
7
|
Liu Y, Chen Y, Fei W, Zheng C, Zheng Y, Tang M, Qian Y, Zhang X, Zhao M, Zhang M, Wang F. Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic. Front Bioeng Biotechnol 2021; 9:733792. [PMID: 34557478 PMCID: PMC8452863 DOI: 10.3389/fbioe.2021.733792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Silica-based nanoframeworks have been extensively studied for diagnosing and treating hepatocellular carcinoma (HCC). Several reviews have summarized the advantages and disadvantages of these nanoframeworks and their use as drug-delivery carriers. Encouragingly, these nanoframeworks, especially those with metal elements or small molecular drugs doping into the skeleton structure or modifying onto the surface of nanoparticles, could be multifunctional components participating in HCC diagnosis and treatment rather than functioning only as drug-delivery carriers. Therefore, in this work, we described the research progress of silica-based nanoframeworks involved in HCC diagnosis (plasma biomarker detection, magnetic resonance imaging, positron emission tomography, photoacoustic imaging, fluorescent imaging, ultrasonography, etc.) and treatment (chemotherapy, ferroptotic therapy, radiotherapy, phototherapy, sonodynamic therapy, immunotherapy, etc.) to clarify their roles in HCC theranostics. Further, the future expectations and challenges associated with silica-based nanoframeworks were highlighted. We believe that this review will provide a comprehensive understanding for researchers to design novel, functional silica-based nanoframeworks that can effectively overcome HCC.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Tang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Ying Qian
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. BIOSENSORS-BASEL 2021; 11:bios11080281. [PMID: 34436082 PMCID: PMC8391755 DOI: 10.3390/bios11080281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
The accurate analysis of circulating tumor cells (CTCs) holds great promise in early diagnosis and prognosis of cancers. However, the extremely low abundance of CTCs in peripheral blood samples limits the practical utility of the traditional methods for CTCs detection. Thus, novel and powerful strategies have been proposed for sensitive detection of CTCs. In particular, nanomaterials with exceptional physical and chemical properties have been used to fabricate cytosensors for amplifying the signal and enhancing the sensitivity. In this review, we summarize the recent development of nanomaterials-based optical and electrochemical analytical techniques for CTCs detection, including fluorescence, colorimetry, surface-enhanced Raman scattering, chemiluminescence, electrochemistry, electrochemiluminescence, photoelectrochemistry and so on.
Collapse
|
10
|
Singh U, Morya V, Datta B, Ghoroi C, Bhatia D. Stimuli Responsive, Programmable DNA Nanodevices for Biomedical Applications. Front Chem 2021; 9:704234. [PMID: 34277571 PMCID: PMC8278982 DOI: 10.3389/fchem.2021.704234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Of the multiple areas of applications of DNA nanotechnology, stimuli-responsive nanodevices have emerged as an elite branch of research owing to the advantages of molecular programmability of DNA structures and stimuli-responsiveness of motifs and DNA itself. These classes of devices present multiples areas to explore for basic and applied science using dynamic DNA nanotechnology. Herein, we take the stake in the recent progress of this fast-growing sub-area of DNA nanotechnology. We discuss different stimuli, motifs, scaffolds, and mechanisms of stimuli-responsive behaviours of DNA nanodevices with appropriate examples. Similarly, we present a multitude of biological applications that have been explored using DNA nanodevices, such as biosensing, in vivo pH-mapping, drug delivery, and therapy. We conclude by discussing the challenges and opportunities as well as future prospects of this emerging research area within DNA nanotechnology.
Collapse
Affiliation(s)
- Udisha Singh
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Vinod Morya
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Bhaskar Datta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Chinmay Ghoroi
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
- Chemical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
| |
Collapse
|
11
|
Applications of electrochemical biosensor of aptamers-based (APTASENSOR) for the detection of leukemia biomarker. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
12
|
Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, Wang L, Wu X, Li D, Wan Y, Zhang L, Yang Z, Zhang BT, Lu A, Zhang G. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9500-9519. [PMID: 32603135 DOI: 10.1021/acsami.0c05750] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aptamers are oligonucleotide sequences with a length of about 25-80 bases which have abilities to bind to specific target molecules that rival those of monoclonal antibodies. They are attracting great attention in diverse clinical translations on account of their various advantages, including prolonged storage life, little batch-to-batch differences, very low immunogenicity, and feasibility of chemical modifications for enhancing stability, prolonging the half-life in serum, and targeted delivery. In this Review, we demonstrate the emerging aptamer discovery technologies in developing advanced techniques for producing aptamers with high performance consistently and efficiently as well as requiring less cost and resources but offering a great chance of success. Further, the diverse modifications of aptamers for therapeutic applications including therapeutic agents, aptamer-drug conjugates, and targeted delivery materials are comprehensively summarized.
Collapse
Affiliation(s)
- Shuaijian Ni
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanyuan Yu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Fangfei Li
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Jin Liu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Luyao Wang
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Xiaoqiu Wu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Dijie Li
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Youyang Wan
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Aiping Lu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Ge Zhang
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| |
Collapse
|
13
|
Charbgoo F, Soltani F, Alibolandi M, Taghdisi SM, Abnous K, Ramezani P, Ramezani M. Ladder-like targeted and gated doxorubicin delivery using bivalent aptamer in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111618. [PMID: 33321660 DOI: 10.1016/j.msec.2020.111618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Regarding side effects of commonly used chemotherapeutic drugs on normal tissues, researchers introduced smart delivery and on-demand release systems. Herein, we applied a bivalent aptamer composed of ATP and AS1411 aptamers for separate targeting and gating of mesoporous silica nanoparticles in a ladder like structure with one bifunctional molecule. First part of the apatmer, AS1411, direct the delivery system to the desired site while the second part, ATP aptamer, opens the pores and release the drug just after penetrance to the cytoplasm ensuring delivery of DOX into the tumor cells. This approach faced the previous challenge of coincident targeting and gating with one aptamer. Our results demonstrated that the proposed nano-system remarkably accumulated in cancer tissue and released the drug in a sustained pattern in cancer cells. It was notably effective for inducing apoptosis in cancer cells and tumor growth inhibition without any significant side effect on normal cells and organs. Moreover, Si-cs-DOX-AAapt improved the mice survival time compared with free doxorubicin and there was no significant change in weight of mice administered with the targeted formulation. This report may open new insight for providing smart delivery systems for successful cancer treatment by introducing separate gating and targeting property by a bivalent aptamer to increase the control over drug release.
Collapse
Affiliation(s)
- Fahimeh Charbgoo
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Fatemeh Soltani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Folic Acid/Methotrexate Functionalized Mesoporous Silica Nanoflakes from Different Supports: Comparative Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we present a facile synthesis route for the mesoporous silica nanoflakes on two types of templates and evaluate their potential as potential drug delivery systems. Silica materials are attractive due to their biocompatibility, low cytotoxicity, high surface area, and tunable pores. In addition, they can be multifunctionalized. These properties were used to create multifunctional drug delivery systems combining folic acid as a target molecule and methotrexate (MTX) as an anticancer drug. The silica nanoflakes were formed using graphene oxide and double-layered hydroxide as templates, respectively. After the removal of matrices, the silica flakes were functionalized by folic acid and loaded with methotrexate. The differences in drug release performance and structural stability were analyzed with respect to the detailed physicochemical characterization of the produced silica nanoflakes.
Collapse
|
15
|
Eilers A, Witt S, Walter J. Aptamer-Modified Nanoparticles in Medical Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:161-193. [PMID: 32157319 DOI: 10.1007/10_2020_124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since aptamers have been selected against a broad range of target structures of medical interest and nanoparticles are available with diverse properties, aptamer-modified nanoparticles can be used in various diagnostic and therapeutic applications. While the aptamer is responsible for specificity and affinity of the conjugate, the nanoparticles' function varies from signal generation in diagnostic approaches to drug loading in drug delivery systems. Within this chapter different medical applications of aptamer-modified nanoparticles will be summarized and underlying principles will be described.
Collapse
Affiliation(s)
- Alina Eilers
- Institut für Technische Chemie, Hannover, Germany
| | - Sandra Witt
- Institut für Technische Chemie, Hannover, Germany
| | | |
Collapse
|
16
|
Kumar Kulabhusan P, Hussain B, Yüce M. Current Perspectives on Aptamers as Diagnostic Tools and Therapeutic Agents. Pharmaceutics 2020; 12:E646. [PMID: 32659966 PMCID: PMC7407196 DOI: 10.3390/pharmaceutics12070646] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Aptamers are synthetic single-stranded DNA or RNA sequences selected from combinatorial oligonucleotide libraries through the well-known in vitro selection and iteration process, SELEX. The last three decades have witnessed a sudden boom in aptamer research, owing to their unique characteristics, like high specificity and binding affinity, low immunogenicity and toxicity, and ease in synthesis with negligible batch-to-batch variation. Aptamers can specifically bind to the targets ranging from small molecules to complex structures, making them suitable for a myriad of diagnostic and therapeutic applications. In analytical scenarios, aptamers are used as molecular probes instead of antibodies. They have the potential in the detection of biomarkers, microorganisms, viral agents, environmental pollutants, or pathogens. For therapeutic purposes, aptamers can be further engineered with chemical stabilization and modification techniques, thus expanding their serum half-life and shelf life. A vast number of antagonistic aptamers or aptamer-based conjugates have been discovered so far through the in vitro selection procedure. However, the aptamers face several challenges for its successful clinical translation, and only particular aptamers have reached the marketplace so far. Aptamer research is still in a growing stage, and a deeper understanding of nucleic acid chemistry, target interaction, tissue distribution, and pharmacokinetics is required. In this review, we discussed aptamers in the current diagnostics and theranostics applications, while addressing the challenges associated with them. The report also sheds light on the implementation of aptamer conjugates for diagnostic purposes and, finally, the therapeutic aptamers under clinical investigation, challenges therein, and their future directions.
Collapse
Affiliation(s)
| | - Babar Hussain
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan;
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
17
|
Giudice V, Mensitieri F, Izzo V, Filippelli A, Selleri C. Aptamers and Antisense Oligonucleotides for Diagnosis and Treatment of Hematological Diseases. Int J Mol Sci 2020; 21:ijms21093252. [PMID: 32375354 PMCID: PMC7246934 DOI: 10.3390/ijms21093252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022] Open
Abstract
Aptamers or chemical antibodies are single-stranded DNA or RNA oligonucleotides that bind proteins and small molecules with high affinity and specificity by recognizing tertiary or quaternary structures as antibodies. Aptamers can be easily produced in vitro through a process known as systemic evolution of ligands by exponential enrichment (SELEX) or a cell-based SELEX procedure. Aptamers and modified aptamers, such as slow, off-rate, modified aptamers (SOMAmers), can bind to target molecules with less polar and more hydrophobic interactions showing slower dissociation rates, higher stability, and resistance to nuclease degradation. Aptamers and SOMAmers are largely employed for multiplex high-throughput proteomics analysis with high reproducibility and reliability, for tumor cell detection by flow cytometry or microscopy for research and clinical purposes. In addition, aptamers are increasingly used for novel drug delivery systems specifically targeting tumor cells, and as new anticancer molecules. In this review, we summarize current preclinical and clinical applications of aptamers in malignant and non-malignant hematological diseases.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-(0)-89965116
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| |
Collapse
|
18
|
Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. Aptamer-based approaches for in vitro molecular detection of cancer. Res Pharm Sci 2020; 15:107-122. [PMID: 32582351 PMCID: PMC7306249 DOI: 10.4103/1735-5362.283811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer is typically associated with abnormal production of various tumor-specific molecules known as tumor markers. Probing these markers by utilizing efficient approaches could be beneficial for cancer diagnosis. The current widely-used biorecognition probes, antibodies, suffer from some undeniable shortcomings. Fortunately, novel oligonucleotide-based molecular probes named aptamers are being emerged as alternative detection tools with distinctive advantages compared to antibodies. All of the existing strategies in cancer diagnostics, including those of in vitro detection, can potentially implement aptamers as the detecting moiety. Several studies have been performed in the field of in vitro cancer detection over the last decade. In order to direct future studies, it is necessary to comprehensively summarize and review the current status of the field. Most previous studies involve only a few cancer diagnostic strategies. Here, we thoroughly review recent significant advances on the applications of aptamer in various in vitro detection strategies. Furthermore, we will discuss the status of diagnostic aptamers in clinical trials.
Collapse
Affiliation(s)
- Hadi Bakhtiari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| | - Abbas Ali Palizban
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I. R. Iran
| |
Collapse
|
19
|
Guan B, Zhang X. Aptamers as Versatile Ligands for Biomedical and Pharmaceutical Applications. Int J Nanomedicine 2020; 15:1059-1071. [PMID: 32110008 PMCID: PMC7035142 DOI: 10.2147/ijn.s237544] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Aptamers are a class of targeting ligands that bind exclusively to biomarkers of interest. Aptamers have been identified as candidates for the construction of various smart systems for therapy, diagnosis, bioimaging, and drug delivery due to their high target affinity and specificity. Aptamers are accounted as chemical antibodies that can be readily linked to drugs, sensors, signal enhancers, or nanocarriers for functionalization. Use of aptamer-guided medications, especially nanomedicines, has resulted in encouraging outcomes compared to those use of aptamer-free counterparts. This article reviews recent advances in the use of aptamers as targeting ligands for various biomedical and pharmaceutical purposes. Special interests focus on aptamer-based theranostics, biosensing, bioimaging, drug potentiation, and targeted drug delivery.
Collapse
Affiliation(s)
- Baozhang Guan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
20
|
Grechkin YA, Grechkina SL, Zaripov EA, Fedorenko SV, Mustafina AR, Berezovski MV. Aptamer-Conjugated Tb(III)-Doped Silica Nanoparticles for Luminescent Detection of Leukemia Cells. Biomedicines 2020; 8:biomedicines8010014. [PMID: 31941078 PMCID: PMC7168109 DOI: 10.3390/biomedicines8010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
DNA aptamers have many benefits for cell imaging, such as high affinity and specificity, easiness of chemical functionalization, and low cost of production. Among known aptamers, Sgc8-aptamer was selected against acute lymphoblastic leukemia cells with a dissociation constant in a nanomolar range. The aptamer was previously used for the covalent coupling with fluorescent and magnetic nanoparticles, as well as for the fabrication of aptamer-based biosensors. Among commonly used fluorescent tags, lanthanide nanoparticles offer stable luminescence with narrow, well-resolved emission peaks and the absence of photoblinking. In other words, lanthanide nanoparticles could serve as luminescence reporters and be used in biosensing. In our study, we conjugated amino- and carboxyl-modified silica-coated terbium (III) thiacalix[4]arenesulfonate luminescent nanoparticles with Sgc8-aptamer and showed the ability of the aptamer-conjugated nanoparticles to detect leukemia cells using fluorescence microscopy. In addition, we conducted a cell viability assay and confirmed that the nanoparticles do not induce spontaneous cell apoptosis or necrosis and could be potentially used for bioimaging applications.
Collapse
Affiliation(s)
- Yaroslav A. Grechkin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.A.G.); (E.A.Z.)
| | - Svetlana L. Grechkina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (S.L.G.); (S.V.F.); (A.R.M.)
| | - Emil A. Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.A.G.); (E.A.Z.)
| | - Svetlana V. Fedorenko
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (S.L.G.); (S.V.F.); (A.R.M.)
| | - Asiya R. Mustafina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (S.L.G.); (S.V.F.); (A.R.M.)
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Y.A.G.); (E.A.Z.)
- Correspondence:
| |
Collapse
|
21
|
Yang Y, Zhao W, Tan W, Lai Z, Fang D, Jiang L, Zuo C, Yang N, Lai Y. An Efficient Cell-Targeting Drug Delivery System Based on Aptamer-Modified Mesoporous Silica Nanoparticles. NANOSCALE RESEARCH LETTERS 2019; 14:390. [PMID: 31872318 PMCID: PMC6928176 DOI: 10.1186/s11671-019-3208-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 11/12/2019] [Indexed: 05/05/2023]
Abstract
How to deliver chemotherapeutic drugs efficiently and selectively to tumor cells to improve therapeutic efficacy remains a difficult problem. We herein construct an efficient cell-targeting drug delivery system (Sgc8-MSN/Dox) based on aptamer-modified mesoporous silica nanoparticles that relies on the tumor-targeting ability of the aptamer Sgc8 to deliver doxorubicin (Dox) to leukemia cells in a targeted way, thereby improving therapeutic efficacy and reducing toxicity. In this work, Sgc8-MSN/Dox showed sustained Dox release, and they targeted and efficiently killed CCRF-CEM human acute T lymphocyte leukemia cells, suggesting potential as a cancer therapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weihua Zhao
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenwen Tan
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Zongqiang Lai
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Dong Fang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lei Jiang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuantian Zuo
- Department of Surgery Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Nuo Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Yongrong Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
22
|
Tan Y, Li Y, Tang F. Nucleic Acid Aptamer: A Novel Potential Diagnostic and Therapeutic Tool for Leukemia. Onco Targets Ther 2019; 12:10597-10613. [PMID: 31824168 PMCID: PMC6900352 DOI: 10.2147/ott.s223946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022] Open
Abstract
Leukemia immunotherapy has been dominant via using synthetic antibodies to target cluster of differentiation (CD) molecules, nevertheless inevitable cytotoxicity and immunogenicity would limit its development. Recently, increasing reports have focused on nucleic acid aptamers, a class of high-affinity nucleic acid ligands. Aptamers purportedly serve as “chemical antibodies”, have negligible cytotoxicity and low immunogenicity, and would be widely applied for the therapy and diagnosis of various diseases, especially leukemia. In the preclinical applications, nucleic acid aptamers have displayed the augmented specificity and selectivity via recognizing targets on leukemia cells based on unique three-dimensional conformations. As small molecules with nucleic acid characteristics, aptamers need to be chemically modified to resist nuclease degradation, renal clearance and improve binding affinities. Moreover, aptamers can be linked with neoteric detection techniques to enhance sensitivity and selectivity of diagnosis and therapy. In this review, we summarized aptamers’ preparation, chemical modification and conjugation, and discussed the application of aptamers in diagnosis and treatment of leukemia through highly specifically recognizing target molecules. Significantly, the application prospect of aptamers in fusion genes would be introduced.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, People's Republic of China
| | - Yuejin Li
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, People's Republic of China
| | - Faqing Tang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, People's Republic of China
| |
Collapse
|
23
|
Limongi T, Susa F, Cauda V. Nanoparticles for hematologic diseases detection and treatment. HEMATOLOGY & MEDICAL ONCOLOGY 2019; 4:1000183. [PMID: 33860108 PMCID: PMC7610588 DOI: 10.15761/hmo.1000183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanotechnology, as an interdisciplinary science, combines engineering, physics, material sciences, and chemistry with the biomedicine knowhow, trying the management of a wide range of diseases. Nanoparticle-based devices holding tumor imaging, targeting and therapy capabilities are formerly under study. Since conventional hematological therapies are sometimes defined by reduced selectivity, low therapeutic efficacy and many side effects, in this review we discuss the potential advantages of the NPs' use in alternative/combined strategies. In the introduction the basic notion of nanomedicine and nanoparticles' classification are described, while in the main text nanodiagnostics, nanotherapeutics and theranostics solutions coming out from the use of a wide-ranging NPs availability are listed and discussed.
Collapse
Affiliation(s)
- Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
24
|
Huang Y, Huang Y, He J, Wang H, Luo Y, Li Y, Liu J, Zhong L, Zhao Y. PEGylated immunoliposome-loaded endoglin single-chain antibody enhances anti-tumor capacity of porcine α1,3GT gene. Biomaterials 2019; 217:119231. [PMID: 31254933 DOI: 10.1016/j.biomaterials.2019.119231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Tumor could not be completely removed due to the absence of immune storm against tumor. The porcine α1,3 galactosyltransferase (α1,3 GT) induce the hyperacute rejection by synthesizing Galα1-3Galβ1-(3)4GlcNAc-R (αGal) on the surface of graft endothelial cells (ECs) during xeno-transplantation. This study aimed to develop anti-endoglin single-chain Fv fragments (ENG-scFv) conjugated PEGylated immunoliposomes (iLPs) to induce immune storm against tumor. Immune fluorescence was performed to detect the binding of ENG-scFv to human ENG, the endosomal/lysosomal escape of ENG-scFv-iLPs/α1,3 GT, and αGal expression in hENG-HEK293 cells. In vitro MTT assay was performed to measure ENG-scFv-iLPs/α1,3 GT cytotoxicity. NOD/SCID mouse born A549 tumor model was used to evaluate the therapeutic potency of ENG-scFv-iLPs/α1,3 GT. ENG-scFv-iLPs enabled efficient targeting delivery of α1,3 GT plasmid to ENG + tumors neovascular endothelial cells (TnECs), promoted endosomal/lysosomal escape due to the pH-sensitive ability, then synthesized carbohydrate epitope αGal on the surface of these cells to achieve the purpose of destroying the tumor. The mechanism of uptake for nanoparticles was energy driven, the clathrin-mediated endocytosis was the main endocytic pathway of the ENG-mAb-iLPs/α1,3 GT and lipid-raft-mediated of the ENG-scFv-iLPs/α1,3 GT, and macropinocytosis was also involved in intracellular entry. The inhibition of tumor angiogenesis and proliferation by ENG-scFv-iLPs/α1,3 GT was closely related to down-regulation of VEGF. Our findings establish an alternative therapeutic paradigm for scFv-conjugated nanoparticles to induce tumor cell apoptosis and inhibit tumor growth early. Such iLPs nanocarrier could efficiently release α1,3 GT to their distinct sites of action, where the endoglin + tumor neovascular endothelial cells (ENG + TnECs) exist, in a site-specific manner. Therefore, we believe that these scFv-targeted core-shell immunocomplexes are an important potential α1,3 GT delivery system for various solid tumor-targeted therapy.
Collapse
Affiliation(s)
- Yingying Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huiling Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yiqun Luo
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yanmei Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Junjie Liu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
25
|
Gribko A, Künzel J, Wünsch D, Lu Q, Nagel SM, Knauer SK, Stauber RH, Ding GB. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives. Int J Nanomedicine 2019; 14:4187-4209. [PMID: 31289440 PMCID: PMC6560927 DOI: 10.2147/ijn.s198319] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are disseminated cancer cells. The occurrence and circulation of CTCs seem key for metastasis, still the major cause of cancer-associated deaths. As such, CTCs are investigated as predictive biomarkers. However, due to their rarity and heterogeneous biology, CTCs’ practical use has not made it into the clinical routine. Clearly, methods for the effective isolation and reliable detection of CTCs are urgently needed. With the development of nanotechnology, various nanosystems for CTC isolation and enrichment and CTC-targeted cancer therapy have been designed. Here, we summarize the relationship between CTCs and tumor metastasis, and describe CTCs’ unique properties hampering their effective enrichment. We comment on nanotechnology-based systems for CTC isolation and recent achievements in microfluidics and lab-on-a-chip technologies. We discuss recent advances in CTC-targeted cancer therapy exploiting the unique properties of nanomaterials. We conclude by introducing developments in CTC-directed nanosystems and other advanced technologies currently in (pre)clinical research.
Collapse
Affiliation(s)
- Alena Gribko
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Julian Künzel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Désirée Wünsch
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Qiang Lu
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Sophie Madeleine Nagel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Shirley K Knauer
- Department of Molecular Biology II, Center for Medical Biotechnology (ZMB)/Center for Nanointegration (CENIDE), University Duisburg-Essen, Essen 45117, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Guo-Bin Ding
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ; .,Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China,
| |
Collapse
|
26
|
Tuna BG, Atalay PB, Kuku G, Acar EE, Kara HK, Yilmaz MD, Ozalp VC. Enhanced antitumor activity of carbendazim on HeLa cervical cancer cells by aptamer mediated controlled release. RSC Adv 2019; 9:36005-36010. [PMID: 35540590 PMCID: PMC9074919 DOI: 10.1039/c9ra07974b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/28/2019] [Indexed: 01/13/2023] Open
Abstract
Carbendazim, is a broad-spectrum fungicide and also a promising experimental antitumor drug as reproduction and developmental toxicant, which is currently under phase II preclinical trials. In this study, an approach based on controlled and targeted release with aptamers and mesoporous silica nanoparticles was investigated to improve the antitumor activity of carbendazim. To this end, we synthesized aptamer conjugated silica nanoparticles for testing cytotoxicity properties in vitro with human cervical adenocarcinoma (HeLa) cultured cells. Nucleolin (AS1411) binding aptamers were used to entrap carbendazim molecules inside nanopores of MCM-41 type silica nanoparticles to obtain a stimuli-dependent release system. The effect of carbendazim loaded aptamer silica complex was tested and compared to free carbendazim treatment on HeLa cells, demonstrating 3.3 fold increase of toxicity on targeted cells with our delivery system. In addition, cytotoxicity of the complex was determined to be mostly due to increased apoptosis and to a less extend necrosis related pathways. Carbendazim doped and aptamer-gate functionalized mesoporous silica nanoparticles targeted nucleolin on HeLa cell surface for specific delivery. This delivery system improved antitumor activity of carbendazim by about 3 folds increase of EC50 values.![]()
Collapse
Affiliation(s)
- Bilge G. Tuna
- Department of Biophysics
- Yeditepe University School of Medicine
- Yeditepe University
- Istanbul
- Turkey
| | - Pinar B. Atalay
- Department of Medical Biology and Genetics
- Maltepe University Faculty of Medicine
- Maltepe University
- Istanbul
- Turkey
| | - Gamze Kuku
- Department of Genetics and Engineering
- Faculty of Engineering and Architecture
- Yeditepe University
- Istanbul
- Turkey
| | - E. Esma Acar
- Research and Development Center for Diagnostic Kits (KIT-ARGEM)
- Department of Bioengineering
- Konya Food and Agriculture University
- Konya
- Turkey
| | - H. Kubra Kara
- Research and Development Center for Diagnostic Kits (KIT-ARGEM)
- Department of Bioengineering
- Konya Food and Agriculture University
- Konya
- Turkey
| | - M. Deniz Yilmaz
- Research and Development Center for Diagnostic Kits (KIT-ARGEM)
- Department of Bioengineering
- Konya Food and Agriculture University
- Konya
- Turkey
| | - V. Cengiz Ozalp
- Research and Development Center for Diagnostic Kits (KIT-ARGEM)
- Department of Bioengineering
- Konya Food and Agriculture University
- Konya
- Turkey
| |
Collapse
|
27
|
Huang L, Yang S, Chen J, Tian J, Huang Q, Huang H, Wen Y, Deng F, Zhang X, Wei Y. A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:270-278. [PMID: 30423709 DOI: 10.1016/j.msec.2018.09.042] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/21/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022]
Abstract
Fluorescent silica nanoparticles (FSNPs) have attracted great interest for potential applications in biological and biomedical fields because they possess higher fluorescence quantum yield and better fluorescence stability as comparison with small organic fluorescent molecules. The encapsulation of covalent linkage with fluorescent organic dyes or fluorescent metal complexes has demonstrated to be the commonly adopted strategies for fabrication of FSNPs previously. However, it is still challengeable to obtain FSNPs based polymer composites with intensive fluorescence and good water dispersibility through a one-pot surface modification strategy. In this paper, we developed a facile method to fabricate novel FSNPs based polymer composites (PhE@MSNs-PEtOx) through introducing the aggregation-induced emission (AIE) dye (PhE-OH) and poly(2-ethyl-2-oxazoline) (PEtOx) onto mesoporous silica nanoparticles (MSNs) based on cationic ring opening polymerization (CROP). The resulting PhE@MSNs-PEtOx composites possess strong fluorescence emission, excellent hydrophilicity and biocompatibility. These features make the final FSNPs based polymer composites great potential for biomedical applications. Taken together, we have developed for the first time that FSNPs based polymer composites can be facilely prepared through the one-pot introduction of AIE dyes and hydrophilic PEtOx on MSNs. Moreover, the novel FSNPs based composites could also be utilized for other biomedical applications considered their properties.
Collapse
Affiliation(s)
- Long Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Saijiao Yang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Jianwen Tian
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Qiang Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China; Department of Chemistry and Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
28
|
Aptamers as Diagnostic Tools in Cancer. Pharmaceuticals (Basel) 2018; 11:ph11030086. [PMID: 30208607 PMCID: PMC6160954 DOI: 10.3390/ph11030086] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/08/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Researchers have been working hard on investigating not only improved therapeutics but also on early detection methods, both critical to increasing treatment efficacy, and developing methods for disease prevention. The use of nucleic acids, or aptamers, has emerged as more specific and accurate cancer diagnostic and therapeutic tools. Aptamers are single-stranded DNA or RNA molecules that recognize specific targets based on unique three-dimensional conformations. Despite the fact aptamer development has been mainly restricted to laboratory settings, the unique attributes of these molecules suggest their high potential for clinical advances in cancer detection. Aptamers can be selected for a wide range of targets, and also linked with an extensive variety of diagnostic agents, via physical or chemical conjugation, to improve previously-established detection methods or to be used as novel biosensors for cancer diagnosis. Consequently, herein we review the principal considerations and recent updates in cancer detection and imaging through aptamer-based molecules.
Collapse
|
29
|
Ghasemi A, Rabiee N, Ahmadi S, Hashemzadeh S, Lolasi F, Bozorgomid M, Kalbasi A, Nasseri B, Shiralizadeh Dezfuli A, Aref AR, Karimi M, Hamblin MR. Optical assays based on colloidal inorganic nanoparticles. Analyst 2018; 143:3249-3283. [PMID: 29924108 PMCID: PMC6042520 DOI: 10.1039/c8an00731d] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Colloidal inorganic nanoparticles have wide applications in the detection of analytes and in biological assays. A large number of these assays rely on the ability of gold nanoparticles (AuNPs, in the 20 nm diameter size range) to undergo a color change from red to blue upon aggregation. AuNP assays can be based on cross-linking, non-cross linking or unmodified charge-based aggregation. Nucleic acid-based probes, monoclonal antibodies, and molecular-affinity agents can be attached by covalent or non-covalent means. Surface plasmon resonance and SERS techniques can be utilized. Silver NPs also have attractive optical properties (higher extinction coefficient). Combinations of AuNPs and AgNPs in nanocomposites can have additional advantages. Magnetic NPs and ZnO, TiO2 and ZnS as well as insulator NPs including SiO2 can be employed in colorimetric assays, and some can act as peroxidase mimics in catalytic applications. This review covers the synthesis and stabilization of inorganic NPs and their diverse applications in colorimetric and optical assays for analytes related to environmental contamination (metal ions and pesticides), and for early diagnosis and monitoring of diseases, using medically important biomarkers.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran and Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Sepideh Ahmadi
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Shabnam Hashemzadeh
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran and Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Farshad Lolasi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran and Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mahnaz Bozorgomid
- Department of Pharmaceutical Chemistry, Islamic Azad University of Pharmaceutical Sciences Branch, Tehran, Iran
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Behzad Nasseri
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran and Chemical Engineering Deptartment and Bioengineeing Division, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Amin Shiralizadeh Dezfuli
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. and Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Coglitore D, Merenda A, Giamblanco N, Dumée LF, Janot JM, Balme S. Metal alloy solid-state nanopores for single nanoparticle detection. Phys Chem Chem Phys 2018; 20:12799-12807. [PMID: 29697724 DOI: 10.1039/c8cp01787e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Solid-state nanopore technology for nanoparticle sensing is considered for the development of analytical tools to characterise their size, shape or zeta potential. In this field, it is crucial to understand how the nanopore inner surface influences the dynamic of nanoparticle translocation. Here, three single nanopores directly drilled in metal alloys (titanium nitride, titanium-tantalum and tantalum) are considered. The translocation of polystyrene nanoparticles coated with ssDNA is investigated by the resistive pulse method at different concentrations and voltages. The results show that the nanoparticle energy barrier for entrance into the pore decreases for nanopores that exhibits a higher surface energy and hydrophilicity, while the dwell time is found to depend on the nanopore surface state. Overall, this study demonstrates that the control of nanopore surface state must be taken into account for the resistive pulse experiments for nanoparticle detection.
Collapse
Affiliation(s)
- Diego Coglitore
- Institut Européen des Membranes, UMR5635, Université de Montpellier CNRS ENSCM, Place Eugène Bataillon, 34090 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
31
|
Mukhametshina AR, Fedorenko SV, Petrov AM, Zakyrjanova GF, Petrov KA, Nurullin LF, Nizameev IR, Mustafina AR, Sinyashin OG. Targeted Nanoparticles for Selective Marking of Neuromuscular Junctions and ex Vivo Monitoring of Endogenous Acetylcholine Hydrolysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14948-14955. [PMID: 29652477 DOI: 10.1021/acsami.8b04471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present work for the first time introduces nanosensors for luminescent monitoring of acetylcholinesterase (AChE)-catalyzed hydrolysis of endogenous acetylcholine (ACh) released in neuromuscular junctions of isolated muscles. The sensing function results from the quenching of Tb(III)-centered luminescence due to proton-induced degradation of luminescent Tb(III) complexes doped into silica nanoparticles (SNs, 23 nm), when acetic acid is produced from the enzymatic hydrolysis of ACh. The targeting of the silica nanoparticles by α-bungarotoxin was used for selective staining of the synaptic space in the isolated muscles by the nanosensors. The targeting procedure was optimized for the high sensing sensitivity. The measuring of the Tb(III)-centered luminescence intensity of the targeted SNs by fluorescent microscopy enables us to sense a release of endogenous ACh in neuromuscular junctions of the isolated muscles under their stimulation by a high-frequency train (20 Hz, for 3 min). The ability of the targeted SNs to sense an inhibiting effect of paraoxon on enzymatic activity of AChE in ex vivo conditions provides a way of mimicking external stimuli effects on enzymatic processes in the isolated muscles.
Collapse
Affiliation(s)
- Alsu R Mukhametshina
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| | - Svetlana V Fedorenko
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| | - Alexey M Petrov
- Kazan State Medial University , Butlerov Str. 49 , 420012 Kazan , Russian Federation
- Kazan Institute of Biochemistry and Biophysics , Federal Research Center "Kazan Scientific Center of RAS" , P.O. Box 30 , 420111 Kazan , Russian Federation
| | - Guzel F Zakyrjanova
- Kazan Institute of Biochemistry and Biophysics , Federal Research Center "Kazan Scientific Center of RAS" , P.O. Box 30 , 420111 Kazan , Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| | - Leniz F Nurullin
- Kazan Institute of Biochemistry and Biophysics , Federal Research Center "Kazan Scientific Center of RAS" , P.O. Box 30 , 420111 Kazan , Russian Federation
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| | - Asiya R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , Arbuzov Str. 8 , 420088 Kazan , Russian Federation
| |
Collapse
|
32
|
Zhang YB, Wang YP, Liu J. [Research advances in the role of aptamers in the diagnosis and targeted therapy of pediatric cancer]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:421-427. [PMID: 29764582 PMCID: PMC7389069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/29/2018] [Indexed: 11/12/2023]
Abstract
Aptamers are single-stranded DNA or RNA which are isolated from synthesized random oligonucleotide library in vitro via systematic evolution of ligands by exponential enrichment (SELEX) and can bind to metal ions, small molecules, carbohydrates, lipids, proteins, and others targets with high affinity and specificity. Aptamers have the advantages of simple preparation, good thermal stability, and low immunogenicity and have great potential in the medical fields such as molecular imaging, biosensing, early diagnosis of diseases, and targeted therapy. Aptamer technology may be useful for early diagnosis and targeted therapy of pediatric cancer, and may avoid the side effects of conventional chemotherapy, such as growth and development disorders and long-term organ dysfunction. This article reviews the latest research advances in the selection and application of aptamers for pediatric cancer.
Collapse
Affiliation(s)
- Yi-Bin Zhang
- Molecular Research Center, School of Life Sciences, Central South University, Changsha 410078, China.
| | | | | |
Collapse
|
33
|
Zhang YB, Wang YP, Liu J. [Research advances in the role of aptamers in the diagnosis and targeted therapy of pediatric cancer]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:421-427. [PMID: 29764582 PMCID: PMC7389069 DOI: 10.7499/j.issn.1008-8830.2018.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Aptamers are single-stranded DNA or RNA which are isolated from synthesized random oligonucleotide library in vitro via systematic evolution of ligands by exponential enrichment (SELEX) and can bind to metal ions, small molecules, carbohydrates, lipids, proteins, and others targets with high affinity and specificity. Aptamers have the advantages of simple preparation, good thermal stability, and low immunogenicity and have great potential in the medical fields such as molecular imaging, biosensing, early diagnosis of diseases, and targeted therapy. Aptamer technology may be useful for early diagnosis and targeted therapy of pediatric cancer, and may avoid the side effects of conventional chemotherapy, such as growth and development disorders and long-term organ dysfunction. This article reviews the latest research advances in the selection and application of aptamers for pediatric cancer.
Collapse
Affiliation(s)
- Yi-Bin Zhang
- Molecular Research Center, School of Life Sciences, Central South University, Changsha 410078, China.
| | | | | |
Collapse
|
34
|
Tan J, Lai Z, Zhong L, Zhang Z, Zheng R, Su J, Huang Y, Huang P, Song H, Yang N, Zhou S, Zhao Y. A Graphene Oxide-Based Fluorescent Aptasensor for the Turn-on Detection of CCRF-CEM. NANOSCALE RESEARCH LETTERS 2018; 13:66. [PMID: 29605867 PMCID: PMC5878827 DOI: 10.1186/s11671-017-2403-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
A convenient, low-cost, and highly sensitive fluorescent aptasensor for detection of leukemia has been developed based on graphene oxide-aptamer complex (GO-apt). Graphene oxide (GO) can absorb carboxyfluorescein-labeled Sgc8 aptamer (FAM-apt) by π-π stacking and quench the fluorescence through fluorescence resonance energy transfer (FRET). In the absence of Sgc8 target cell CCRF-CEM, the fluorescence is almost all quenched. Conversely, when the CCRF-CEM cells are added, the quenched fluorescence can be recovered rapidly and significantly. Therefore, based on the change of fluorescence signals, we can detect the number of CCRF-CEM cells in a wide range from 1 × 102 to 1 × 107 cells/mL with a limit of detection (LOD) of 10 cells/mL. Therefore, this strategy of graphene oxide-based fluorescent aptasensor may be promising for the detection of cancer.
Collapse
Affiliation(s)
- Jie Tan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Zongqiang Lai
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Liping Zhong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Zhenghua Zhang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Rong Zheng
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Jing Su
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Yong Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Panpan Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Hui Song
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Sufang Zhou
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021 China
| |
Collapse
|
35
|
Castillo RR, Baeza A, Vallet-Regí M. Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors. Biomater Sci 2018; 5:353-377. [PMID: 28105473 DOI: 10.1039/c6bm00872k] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The discovery and control of the biological roles mediated by nucleic acids have turned them into a powerful tool for the development of advanced biotechnological materials. Such is the importance of these gene-keeping biomacromolecules that even nanomaterials have succumbed to the claimed benefits of DNA and RNA. Currently, there could be found in the literature a practically intractable number of examples reporting the use of combination of nanoparticles with nucleic acids, so boundaries are demanded. Following this premise, this review will only cover the most recent and powerful strategies developed to exploit the possibilities of nucleic acids as biotechnological materials when in combination with mesoporous silica nanoparticles. The extensive research done on nucleic acids has significantly incremented the technological possibilities for those biomacromolecules, which could be employed in many different applications, where substrate or sequence recognition or modulation of biological pathways due to its coding role in living cells are the most promising. In the present review, the chosen counterpart, mesoporous silica nanoparticles, also with unique properties, became a reference material for drug delivery and biomedical applications due to their high biocompatibility and porous structure suitable for hosting and delivering small molecules. Although most of the reviews dealt with significant advances in the use of nucleic acid and mesoporous silica nanoparticles in biotechnological applications, a rational classification of these new generation hybrid materials is still uncovered. In this review, there will be covered promising strategies for the development of living cell and biological sensors, DNA-based molecular gates with targeting, transfection or silencing properties, which could provide a significant advance in current nanomedicine.
Collapse
Affiliation(s)
- Rafael R Castillo
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - Alejandro Baeza
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - María Vallet-Regí
- Dpto. Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid. Plaza Ramon y Cajal s/n. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
36
|
Zhao X, Wei Z, Zhao Z, Miao Y, Qiu Y, Yang W, Jia X, Liu Z, Hou H. Design and Development of Graphene Oxide Nanoparticle/Chitosan Hybrids Showing pH-Sensitive Surface Charge-Reversible Ability for Efficient Intracellular Doxorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6608-6617. [PMID: 29368916 DOI: 10.1021/acsami.7b16910] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A novel graphene oxide nanoparticle (GON)-based drug delivery system containing GONs as carriers of anticancer drugs and chitosan/dimethylmaleic anhydride-modified chitosan (CS/CS-DMMA) as surface charge-reversible shells is fabricated via the classic self-assembly of the deprotonated carboxyl of GONs and the protonated amine of the CS backbone by electrostatic interaction, and CS-DMMA serves as the outmost layer. In this GON-based drug delivery system, the GON cores as desired carriers might adsorb doxorubicin hydrochloride (DOX) via the π-π stacking interaction between the large π conjugated structures of GO and the aromatic structure of DOX. Meanwhile, the chitosan-based polyelectrolyte shells served as a smart protection screen to evade the premature release of the as-loaded DOX in normal extracellular condition, and then, the release of DOX was accelerated because of the detachment of chitosan coating at low pH. Furthermore, the re-exposure of amino groups after hydrolysis of CS-DMMA endowed the drug delivery system with positive surface charge by taking advantage of the pH difference between physiological conditions and the tumor microenvironment to enhance the cellular uptake. Then, the pH-dependent site-specific drug release was realized. The in vitro investigations confirmed that these promising GON/CS/CS-DMMA hybrids with the charge-reversible character possessed various merits including excellent encapsulation efficiency, high stability under physiological conditions, enhanced cellular uptake by HepG2 cells, and tunable intracellular chemotherapeutic agent release profiles, proving its capability as an intelligent anticancer agent nanocarrier with enhanced therapeutic effects. This smart GON/CS/CS-DMMA vehicle with the surface charge-reversible character may be used as a significant drug delivery system for cancer treatment.
Collapse
Affiliation(s)
- Xubo Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Zhihong Wei
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Zhipeng Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Yalei Miao
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Yudian Qiu
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Wenjing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450002, China
| | - Xu Jia
- School of Materials and Chemical Engineering, Zhongyuan University of Technology , Zhengzhou 450007, China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Hongwei Hou
- College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| |
Collapse
|
37
|
Vinhas R, Mendes R, Fernandes AR, Baptista PV. Nanoparticles-Emerging Potential for Managing Leukemia and Lymphoma. Front Bioeng Biotechnol 2017; 5:79. [PMID: 29326927 PMCID: PMC5741836 DOI: 10.3389/fbioe.2017.00079] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology has become a powerful approach to improve the way we diagnose and treat cancer. In particular, nanoparticles (NPs) possess unique features for enhanced sensitivity and selectivity for earlier detection of circulating cancer biomarkers. In vivo, NPs enhance the therapeutic efficacy of anticancer agents when compared with conventional chemotherapy, improving vectorization and delivery, and helping to overcome drug resistance. Nanomedicine has been mostly focused on solid cancers due to take advantage from the enhanced permeability and retention (EPR) effect experienced by tissues in the close vicinity of tumors, which enhance nanomedicine's accumulation and, consequently, improve efficacy. Nanomedicines for leukemia and lymphoma, where EPR effect is not a factor, are addressed differently from solid tumors. Nevertheless, NPs have provided innovative approaches to simple and non-invasive methodologies for diagnosis and treatment in liquid tumors. In this review, we consider the state of the art on different types of nanoconstructs for the management of liquid tumors, from preclinical studies to clinical trials. We also discuss the advantages of nanoplatforms for theranostics and the central role played by NPs in this combined strategy.
Collapse
Affiliation(s)
- Raquel Vinhas
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Mendes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
38
|
Hu Z, Tan J, Lai Z, Zheng R, Zhong J, Wang Y, Li X, Yang N, Li J, Yang W, Huang Y, Zhao Y, Lu X. Aptamer Combined with Fluorescent Silica Nanoparticles for Detection of Hepatoma Cells. NANOSCALE RESEARCH LETTERS 2017; 12:96. [PMID: 28176286 PMCID: PMC5296265 DOI: 10.1186/s11671-017-1890-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/12/2017] [Indexed: 05/23/2023]
Abstract
PURPOSE The purpose of this study is to develop a simple, effective method to label hepatoma cells with aptamers and then detect them using fluorescent silica nanoparticles (FSNPs). METHOD Streptavidin was conjugated to carboxyl-modified fluorescein isothiocyanate (FITC)-doped silica nanoparticles which were prepared by the reverse microemulsion method. The resulting streptavidin-conjugated fluorescent silica nanoparticles (SA-FSNPs) were mixed with hepatoma cells that had been labeled with biotin-conjugated aptamer TLS11a (Bio-TLS11a). The specificity and sensitivity of the nanoprobes were assessed using flow cytometry and fluorescence microscopy. Their toxicity was assessed in normal human liver cell cultures using the MTT assay, as well as in nude mice using immunohistochemistry. RESULTS SA-FSNPs showed uniform size and shape, and fluorescence properties of them was similar to the free FITC dye. SA-FSNPs were able to detect aptamer-labeled hepatoma cells with excellent specificity and good sensitivity, and they emitted strong, photobleach-resistant fluorescent signal. SA-FSNPs showed no significant toxic effects in vitro or in vivo. CONCLUSION The combination of biotin-conjugated aptamers and SA-FSNPs shows promise for sensitive detection of hepatoma cells, and potentially of other tumor cell types as well.
Collapse
Affiliation(s)
- Zixi Hu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Juntao Tan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zongqiang Lai
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Rong Zheng
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Jianhong Zhong
- Surgery Oncology Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yiwei Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoxue Li
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Jieping Li
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Yong Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China.
| | - Xiaoling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China.
- The Department of Immunology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
39
|
Lai Z, Tan J, Wan R, Tan J, Zhang Z, Hu Z, Li J, Yang W, Wang Y, Jiang Y, He J, Yang N, Lu X, Zhao Y. An 'activatable' aptamer-based fluorescence probe for the detection of HepG2 cells. Oncol Rep 2017; 37:2688-2694. [PMID: 28339076 PMCID: PMC5428880 DOI: 10.3892/or.2017.5527] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/01/2017] [Indexed: 01/06/2023] Open
Abstract
It is significant to develop a probe with sensitivity and specificity for the detection of cancer cells. The present study aimed to develop an ‘activatable’ aptamer-based fluorescence probe (AAFP) to detect cancer cells and frozen cancer tissue. This AAFP consisted of two fragments: aptamer TLS11a that targets HepG2 cells, and two short extending complementary DNA sequences with a 5′- and 3′-terminus that make the aptamer in hairpin structure a capable quencher to fluorophore. The ability of the AAFP to bind specifically to cancer cells was assessed using flow cytometry, fluorescence spectroscopy and fluorescence microscopy. Its ability to bind to frozen cancer tissue was assessed using fluorescence microscopy. As a result, in the absence of cancer cells, AAFP showed minimal fluorescence, reflecting auto-quenching. In the presence of cancer cells, however, AAFP showed a strong fluorescent signal. Therefore, this AAFP may be a promising tool for sensitive and specific detection of cancer.
Collapse
Affiliation(s)
- Zongqiang Lai
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Juntao Tan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ruirong Wan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Tan
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhenghua Zhang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zixi Hu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jieping Li
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wei Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yiwei Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yafeng Jiang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian He
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|