2
|
Reid G, Klebe S, van Zandwijk N, George AM. Asbestos and Zeolites: from A to Z via a Common Ion. Chem Res Toxicol 2021; 34:936-951. [PMID: 33749247 DOI: 10.1021/acs.chemrestox.0c00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asbestos and zeolites are silicate-based minerals, linked inextricably via paradoxical similarities and differences which have emanated from different geological epochs. Both have been employed in the service of humanity through millennia: asbestos, for its "inextinguishable" quality of being an insulator against heat and fire; zeolite, a "boiling stone" with its volcanic and marine sedimentary rock origins, for its propensity to adsorb water and remove metals and toxins. Serious adverse health effects observed in asbestos miners as long ago as the 1st Century AD did not halt the rising popularity of asbestos. As the miracle material of the 1900s, asbestos production and consumption exploded, culminating in its ubiquity in ships, vehicles, homes, commercial buildings, and over 3000 different industrial and household products. Through the 1940s and 1950s, epidemiological studies concluded that asbestos was a likely cause of asbestosis, lung cancer, and malignant mesothelioma, and it is now banned in many but far from all countries. The long latency between exposure to asbestos and the occurrence of cancer has obscured the deadly consequences of asbestos exposure for centuries. Even today, a considerable part of the world population is insufficiently aware of the dangers of asbestos, and millions of tons of this carcinogen continue to be mined and used worldwide. Zeolites, both natural and synthetic, are microporous aluminosilicate minerals commonly used in a myriad of processes, in the petrochemical industry, in domestic appliances and cleaning agents, as commercial adsorbents and exchangers for toxins and pollutants, and as catalysts. Zeolites are found in agriculture, veterinary science, and human health. More recently, new materials such as carbon nanotubes are being employed in materials requiring durability and thermal and electrical conductivity, yet nanotubes are now joining the ranks of more established particulates such as asbestos and silica, in causing human disease. In this review, we compare and contrast the similarities and differences of these two groups of silicate minerals and their waxing and waning use in the employ of humanity.
Collapse
Affiliation(s)
- Glen Reid
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University and SA Pathology Bedford Park 5042, Australia
| | - Nico van Zandwijk
- Sydney Local Health District, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney, P.O. Box 123 Broadway, New South Wales 2007, Australia
| |
Collapse
|
3
|
Zhou C, Zhen M, Yu M, Li X, Yu T, Liu J, Jia W, Liu S, Li L, Li J, Sun Z, Zhao Z, Wang X, Zhang X, Wang C, Bai C. Gadofullerene inhibits the degradation of apolipoprotein B100 and boosts triglyceride transport for reversing hepatic steatosis. SCIENCE ADVANCES 2020; 6:6/37/eabc1586. [PMID: 32917715 PMCID: PMC7556997 DOI: 10.1126/sciadv.abc1586] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/29/2020] [Indexed: 05/15/2023]
Abstract
Hepatic steatosis is a widespread metabolic disease characterized by excessive accumulation of triglyceride (TG) in liver. So far, effective approved drugs for hepatic steatosis are still in development, and removing the unnecessary TG from the hepatocytes is an enormous challenge. Here, we explore a promising anti-hepatic steatosis strategy by boosting hepatocellular TG transport using β-alanine-modified gadofullerene (GF-Ala) nanoparticles. We confirm that GF-Ala could reverse hepatic steatosis in oleic acid-induced hepatocytes, fructose-induced mice, and obesity-associated transgenic ob/ob mice. Observably, GF-Ala improves hepatomegaly and hepatic lipid accumulation, reduces lipid peroxidation, and repairs abnormal mitochondria. Of note, we demonstrate that GF-Ala markedly inhibits the posttranslational degradation of apolipoprotein B100 (ApoB100) and boosts hepatocellular TG transport based on their superior antioxidant property. Together, we conclude that GF-Ala could potently ameliorate hepatic TG transport and maintain hepatic metabolic homeostasis without apparent toxicity, being beneficial for treatments of hepatic steatosis and other fatty liver diseases.
Collapse
Affiliation(s)
- Chen Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilan Yu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xue Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingchao Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpu Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Reina G, Peng S, Jacquemin L, Andrade AF, Bianco A. Hard Nanomaterials in Time of Viral Pandemics. ACS NANO 2020; 14:9364-9388. [PMID: 32667191 PMCID: PMC7376974 DOI: 10.1021/acsnano.0c04117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
The SARS-Cov-2 pandemic has spread worldwide during 2020, setting up an uncertain start of this decade. The measures to contain infection taken by many governments have been extremely severe by imposing home lockdown and industrial production shutdown, making this the biggest crisis since the second world war. Additionally, the continuous colonization of wild natural lands may touch unknown virus reservoirs, causing the spread of epidemics. Apart from SARS-Cov-2, the recent history has seen the spread of several viral pandemics such as H2N2 and H3N3 flu, HIV, and SARS, while MERS and Ebola viruses are considered still in a prepandemic phase. Hard nanomaterials (HNMs) have been recently used as antimicrobial agents, potentially being next-generation drugs to fight viral infections. HNMs can block infection at early (disinfection, entrance inhibition) and middle (inside the host cells) stages and are also able to mitigate the immune response. This review is focused on the application of HNMs as antiviral agents. In particular, mechanisms of actions, biological outputs, and limitations for each HNM will be systematically presented and analyzed from a material chemistry point-of-view. The antiviral activity will be discussed in the context of the different pandemic viruses. We acknowledge that HNM antiviral research is still at its early stage, however, we believe that this field will rapidly blossom in the next period.
Collapse
Affiliation(s)
- Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Lucas Jacquemin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Andrés Felipe Andrade
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572,
University of Strasbourg ISIS, 67000 Strasbourg,
France
| |
Collapse
|
6
|
Fan X, McLaughlin C, Robinson C, Ravasini J, Schelch K, Johnson T, van Zandwijk N, Reid G, George AM. Zeolites ameliorate asbestos toxicity in a transgenic model of malignant mesothelioma. FASEB Bioadv 2019; 1:550-560. [PMID: 32123850 PMCID: PMC6996371 DOI: 10.1096/fba.2019-00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
Malignant mesothelioma (MM) is an almost invariably fatal cancer caused by asbestos exposure. The toxicity of asbestos fibers is related to their physicochemical properties and the generation of free radicals. We set up a pilot study to investigate the potential of the zeolite clinoptilolite to counteract the asbestos carcinogenesis by preventing the generation of reactive nitrogen and oxygen radicals. In cell culture experiments, clinoptilolite prevented asbestos-induced cell death, reactive oxygen species production, DNA degradation, and overexpression of genes known to be up-regulated by asbestos. In an asbestos-induced transgenic mouse model of MM, mice were injected intraperitoneal injections with blue asbestos, with or without clinoptilolite, and monitored for 30 weeks. By the end of the trial all 13 mice injected with asbestos alone had reached humane end points, whereas only 7 of 29 mice receiving crocidolite and clinoptilolite reached a similar stage of disease. Post-mortem examination revealed pinpoint mesothelioma-like tumors in affected mice, and the absence of tumor formation in surviving mice. Interestingly, the macrophage clearance system, which was largely suppressed in asbestos-treated mice, exhibited evidence of increased phagocytosis in mice treated with asbestos and clinoptilolite. Our study suggests that inhibiting the asbestos-induced generation of reactive oxygen species and stimulating the macrophage system may represent a pathway to amelioration of asbestos-induced toxicity. Additional studies are warranted to explore the underlying mechanisms responsible for our observations.
Collapse
Affiliation(s)
- Xiyong Fan
- School of Life SciencesUniversity of Technology SydneyBroadwayNSWAustralia
| | - Chris McLaughlin
- School of Life SciencesUniversity of Technology SydneyBroadwayNSWAustralia
| | - Cleo Robinson
- School of Biomedical SciencesUniversity of Western Australia (M503)CrawleyWAAustralia
- Molecular Anatomical Pathology, PathWest Laboratory MedicineQEII Medical CentreNedlandsWAAustralia
| | - Jason Ravasini
- School of Life SciencesUniversity of Technology SydneyBroadwayNSWAustralia
| | - Karin Schelch
- Asbestos Diseases Research InstituteUniversity of SydneySydneyNSWAustralia
- Faculty of MedicineUniversity of SydneySydneyNSWAustralia
- Institute of Cancer Research, Department of Medicine IMedical University of ViennaViennaAustria
| | - Thomas Johnson
- Asbestos Diseases Research InstituteUniversity of SydneySydneyNSWAustralia
- Faculty of MedicineUniversity of SydneySydneyNSWAustralia
| | - Nico van Zandwijk
- Asbestos Diseases Research InstituteUniversity of SydneySydneyNSWAustralia
| | - Glen Reid
- School of Life SciencesUniversity of Technology SydneyBroadwayNSWAustralia
- Asbestos Diseases Research InstituteUniversity of SydneySydneyNSWAustralia
- Faculty of MedicineUniversity of SydneySydneyNSWAustralia
- Present address:
Department of PathologyUniversity of OtagoDunedinNew Zealand
| | - Anthony M. George
- School of Life SciencesUniversity of Technology SydneyBroadwayNSWAustralia
| |
Collapse
|
7
|
Halamoda-Kenzaoui B, Bremer-Hoffmann S. Main trends of immune effects triggered by nanomedicines in preclinical studies. Int J Nanomedicine 2018; 13:5419-5431. [PMID: 30271138 PMCID: PMC6149906 DOI: 10.2147/ijn.s168808] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The application of nanotechnology to emerging medicinal products is a crucial parameter for the implementation of personalized medicine. For example, sophisticated drug delivery systems can target the diseased tissue by recognizing patient-specific biomarkers while carrying pharmacologically active molecules. However, such nanomedicines can be recognized by the immune system as foreign triggering unexpected biological reactions. The anticipation of the immunogenic potential of emerging nanotechnology-based products in the preclinical phase is challenging due to high interspecies variations between the immune systems of laboratory animals and humans. A close monitoring of the scientific literature is required to better understand the relationship between various immune reactions and the diversity of nanomedicines currently in the development pipeline. We have reviewed the most frequent immune reactions induced by the nanomaterials in vivo and have identified the main effects triggered by lipid-based, polymer-based and inorganic nanoparticles, as the main categories of nanomaterials used in medicine. According to our results, almost 50% of the investigated nanomaterials induced effects related to the activation of the immune system. Among them, complement activation-related hypersensitivity reactions and activation of adaptive immune response were the most frequent effects reported for the lipid-based nanoparticles. However, many of these effects are not or are only partially covered by the current regulatory framework applicable for nanomedicines. In addition, we extracted the most relevant nanospecific properties responsible for the observed biological effects. Our analysis led to identification of the most prevalent measurement endpoints relevant for the assessment of the immunotoxic potential of the nanotechnology-based products and will support the smooth and safe translation of the new formulations to clinical applications.
Collapse
Affiliation(s)
- Blanka Halamoda-Kenzaoui
- Directorate F-Health, Consumers and Reference Materials, European Commission Joint Research Centre (JRC), Ispra (VA), Italy,
| | - Susanne Bremer-Hoffmann
- Directorate F-Health, Consumers and Reference Materials, European Commission Joint Research Centre (JRC), Ispra (VA), Italy,
| |
Collapse
|
9
|
Castro E, Hernandez Garcia A, Zavala G, Echegoyen L. Fullerenes in Biology and Medicine. J Mater Chem B 2017; 5:6523-6535. [PMID: 29225883 PMCID: PMC5716489 DOI: 10.1039/c7tb00855d] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fullerenes and related carbon based derivatives have shown a growing relevance in biology and medicine, mainly due to the unique electronic and structural properties that make them excellent candidates for multiple functionalization. This review focuses on the most recent developments of fullerene derivatives for different biological applications.
Collapse
Affiliation(s)
- Edison Castro
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Andrea Hernandez Garcia
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Gerardo Zavala
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, USA
| |
Collapse
|