1
|
Chen Y, Chen Z, Chu S. Bimetallic ZIF-8 from Hydroxide Double Salts for Efficient Cu 2+ Removal in Wastewater. ACS OMEGA 2025; 10:4326-4335. [PMID: 39959074 PMCID: PMC11822491 DOI: 10.1021/acsomega.4c06512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/01/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025]
Abstract
Metal-organic frameworks (MOFs) hold significant potential for applications in gas adsorption and separation, catalysis, chemical sensing, and drug delivery. Zeolitic imidazolate frameworks (ZIFs) are a type of MOF composed of metal ions and imidazolate ligands, structurally similar to zeolite structures. ZIF-8, a widely studied ZIF material, is composed of zinc ions (Zn2+) and 2-methylimidazole as fundamental building blocks featuring unique porous structures, a high specific surface area, and excellent thermal and chemical stability. This study introduces a rapid room-temperature synthesis method for bimetallic ZIF-8 through the hydroxide double salt (HDS) precursor. Various characterization techniques confirmed that the synthesized bimetallic ZIF-8 exhibits uniform particle size and high crystallinity. Experimental results indicate that the HDS precursor provides numerous active sites, facilitating rapid nucleation and resulting in uniformly sized bimetallic ZIF-8 particles. By optimizing the ultrasonic time of HDS, the concentration of 2-methylimidazole, and the reaction time, the synthesis conditions were refined, producing bimetallic ZIF-8 particles with an average size of 135.0 nm and a minimum polydispersity index (PDI) of 0.024. Additionally, the copper ion adsorption performance was evaluated, with the synthesized bimetallic ZIF-8 showing the highest adsorption capacity of 1196.82 mg/g at pH 6, demonstrating its effectiveness in heavy metal removal.
Collapse
Affiliation(s)
- Yixin Chen
- School of Materials Science
and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zexi Chen
- School of Materials Science
and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Sheng Chu
- School of Materials Science
and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Li WL, Shuai Q, Yu J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402783. [PMID: 39115100 DOI: 10.1002/smll.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Indexed: 11/08/2024]
Abstract
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
Collapse
Affiliation(s)
- Wen-Liang Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qi Shuai
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiamei Yu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
3
|
Králik M, Koóš P, Markovič M, Lopatka P. Organic and Metal-Organic Polymer-Based Catalysts-Enfant Terrible Companions or Good Assistants? Molecules 2024; 29:4623. [PMID: 39407552 PMCID: PMC11477782 DOI: 10.3390/molecules29194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This overview provides insights into organic and metal-organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation-used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A-as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts.
Collapse
Affiliation(s)
- Milan Králik
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | - Peter Koóš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | | | | |
Collapse
|
4
|
Yang YW, Li MJ, Hung TC. Enhancing CO 2 dissolution and inorganic carbon conversion by metal-organic frameworks improves microalgal growth and carbon fixation efficiency. BIORESOURCE TECHNOLOGY 2024; 407:131113. [PMID: 39009052 DOI: 10.1016/j.biortech.2024.131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Carbon supplementation strategies still have certain practical application constraints. Zn/Fe-based metal-organic frameworks (MOFs) nanoparticles that which are not toxic to Scenedesmus obliquus were successfully introduced into microalgal solutions to overcome low CO2 solubility. The maximum specific surface area of MOFs reached 342.94 m2·g-1 at a Zn/Fe molar ratio of 10/1. Under the optimal MOFs concentrations of 2.5 mg·L-1, the conversion of inorganic carbon increased by 2.6-fold. When S. obliquuswas cultured in a MOFs-modified medium with 1.50 % CO2 at 25 °C, the CO2 mass transfer coefficient and mixing time reached 9.01 × 10-3 min-1 and 55 s, respectively. The maximum chlorophyll-a content, biomass productivity, and CO2 fixation efficiency reached 32.57 mg·L-1, 0.240 g·L-1·d-1 and 21.6 %, respectively. Enriching CO2 for ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation by MOFs may be the key to improving the photosynthetic efficiency of microalgae. This strategy could serve as a reference for improving the microalgal CO2 fixation efficiency.
Collapse
Affiliation(s)
- Yi-Wen Yang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ming-Jia Li
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Tzu-Chen Hung
- Department of Mechanical Engineering, Taipei University of Technology, Taipei, China
| |
Collapse
|
5
|
Alfonso-Herrera LA, Rodríguez-Girón JS, de Sampedro HIG, Sánchez-Martínez D, Navarrete-López AM, Beltrán HI. Elucidating Structural Stability, Bandgap, and Photocatalytic Hydrogen Evolution of (H 2O/DMF)@HKUST-1 Host-Guest Systems. Chempluschem 2024; 89:e202300579. [PMID: 38116999 DOI: 10.1002/cplu.202300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
The H2O@HKUST-1 and DMF@HKUST-1 systems were experimental and computationally assessed, employing XRD/TGA/FT-IR/DFT-calculations, evidencing that H2O or DMF coordinated to Cu, modulating HKUST-1 photocatalytic properties. DMF@HKUST-1 has narrower bandgap promoting higher-crystallinity and light-harvesting. H2O@HKUST-1 showed smaller particle sizing and sharp morphology. Theoretical models, (H2O)1@HKUST-1 and (DMF)1@HKUST-1, containing one coordinated molecule, elucidated bandgap modulation associated with infiltration. H2O@HKUST-1/DMF@HKUST-1 presented bandgaps [eV] of 3.6/3.4, by Tauc plots, and 3.55/3.26, by theoretical calculations, narrowing bandgap, compared with non-solvated HKUST-1(HKUST-1NS). Both composites raised the valence band (VB) and lowered the conduction band (CB), but DMF@HKUST-1 most raised VB. Topological analysis revealed that guests i) with higher electronic density, raised VB, and ii) induced π-backbonding, lowering CB. DMF@HKUST-1 presented a higher photocatalytic hydrogen evolution (μmol), 26.45, in the first 30 min of the reaction, nevertheless, H2O@HKUST-1 presented a competitive activity, of 17.32. In large periods, H2O@HKUST-1/DMF@HKUST-1 showed practically the same hydrogen evolution, 45.50/49.03.
Collapse
Affiliation(s)
- Luis A Alfonso-Herrera
- Departamento de Ciencias Básicas, DCBI, UAM Unidad Azcapotzalco, Av. San Pablo 420, Col. Nueva Rosario, Alc. Azcapotzalco, 02128, CDMX, México
| | - Jesús S Rodríguez-Girón
- Departamento de Ecomateriales y Energía, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, UANL, Av. Universidad S/N Ciudad Universitaria, 64455, San Nicolás de Los Garza, Nuevo León, México
| | - Héctor I González de Sampedro
- Departamento de Ciencias Básicas, DCBI, UAM Unidad Azcapotzalco, Av. San Pablo 420, Col. Nueva Rosario, Alc. Azcapotzalco, 02128, CDMX, México
| | - Daniel Sánchez-Martínez
- Departamento de Ecomateriales y Energía, Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, UANL, Av. Universidad S/N Ciudad Universitaria, 64455, San Nicolás de Los Garza, Nuevo León, México
| | - Alejandra M Navarrete-López
- Departamento de Ciencias Básicas, DCBI, UAM Unidad Azcapotzalco, Av. San Pablo 420, Col. Nueva Rosario, Alc. Azcapotzalco, 02128, CDMX, México
| | - Hiram I Beltrán
- Departamento de Ciencias Básicas, DCBI, UAM Unidad Azcapotzalco, Av. San Pablo 420, Col. Nueva Rosario, Alc. Azcapotzalco, 02128, CDMX, México
| |
Collapse
|
6
|
Chowdhury A, Bhattacharjee S, Chatterjee R, Bhaumik A. A new nitrogen rich porous organic polymer for ultra-high CO2 uptake and as an excellent organocatalyst for CO2 fixation reactions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Taghipour A, Rahimpour A, Rastgar M, Sadrzadeh M. Ultrasonically synthesized MOFs for modification of polymeric membranes: A critical review. ULTRASONICS SONOCHEMISTRY 2022; 90:106202. [PMID: 36274415 PMCID: PMC9593890 DOI: 10.1016/j.ultsonch.2022.106202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Metal-organic framework (MOF) membranes hold the promise for energy-efficient separation processes. These nanocrystalline compounds can effectively separate materials with different sizes and shapes at a molecular level. Furthermore, MOFs are excellent candidates for improving membrane permeability and/or selectivity due to their unique properties, such as high specific area and special wettability. Generally, MOFs can be used as fillers in mixed matrix membranes (MMMs) or incorporated onto the membrane surface to modify the top layer. Characteristics of the MOFs, and correspondingly, the properties of the MOF-based membranes, are majorly affected by their production technique. This critical review discusses the sonication technique for MOF production and the opportunities and challenges of using MOF for making membranes. Effective parameters on the characteristics of the synthesized MOFs, such as sonication time and power, were discussed in detail. Although the ultrasonically synthesized MOFs have shown great potential in the fabrication/modification of membranes for gas and liquid separation/purification, so far, no comprehensive and critical review has been published to clarify such accomplishments and technological gaps for the future research direction. This paper aims to review the most recent research conducted on ultrasonically synthesized MOF for the modification of polymeric membranes. Recommendations are provided with the intent of identifying the potential future works to explore the influential sonication parameters.
Collapse
Affiliation(s)
- Amirhossein Taghipour
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Ahmad Rahimpour
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada.
| | - Masoud Rastgar
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada.
| |
Collapse
|
8
|
Couzon N, Dhainaut J, Campagne C, Royer S, Loiseau T, Volkringer C. Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs) – A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Membrane-based air dehumidification: A comparative review on membrane contactors, separative membranes and adsorptive membranes. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
A hybrid nano-MOF/polymer material for trace analysis of fluoroquinolones in complex matrices at microscale by on-line solid-phase extraction capillary electrophoresis. Talanta 2021; 233:122529. [PMID: 34215032 DOI: 10.1016/j.talanta.2021.122529] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
A hybrid material (nano-metal organic framework@organic polymer, named as nano-MOF@polymer) was applied for the first time as sorbent for on-line solid-phase extraction capillary electrophoresis with ultraviolet detection (SPE-CE-UV). The resulting material was prepared building layer-by-layer a HKUST-1 (Hong Kong University of Science and Technology-1) nano-MOF onto the polymer surface, which allowed controlling the thickness and maximizing the active surface area. The sorbent was widely characterized at micro- and nano-scale to validate the synthesis and to establish the material properties. Then, fritless microcartridges (2 mm) were assembled by packing only a few micrograms of sorbent particles and investigated for preconcentration of fluoroquinolones (FQs) in several real samples (river water, human urine and whole cow milk). Under the optimized conditions, the sample (ca. 60 μL) was loaded in separation background electrolyte (BGE, 50 mM phosphate (pH 7)), and retained analytes were eluted using a small volume of 2% v/v formic acid in methanol (ca. 50 nL). The SPE-CE-UV method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), repeatability, reproducibility and reusability. The developed method showed a LOD decreasing until 1 ng L-1 when larger volumes of sample were loaded (ca. 180 μL), which was 500,000 times lower than by CE-UV. This undescribed sensitivity enhancement would arise from the homogenous and populated MOF nano-domains and the appropriate permeability of the hybrid material, which would promote high extraction efficiency and loading capacity. Furthermore, the sorbent showed appropriate selectivity regardless the analyzed complex environmental, biological or food matrix samples, achieving excellent detectability and recoveries (>90%).
Collapse
|
11
|
Lee J, Lee K, Kim J. Fiber-Based Gas Filter Assembled via In Situ Synthesis of ZIF-8 Metal Organic Frameworks for an Optimal Adsorption of SO 2: Experimental and Theoretical Approaches. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1620-1631. [PMID: 33395254 DOI: 10.1021/acsami.0c19957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For environmental protection from exposure to airborne toxic gases, metal organic frameworks (MOFs) have drawn great attention as gas adsorbent options, with their advantages in chemical tailorability and large porosity. To develop a fiber-based gas filter that is effective against SO2 gas, zeolite imidazole framework-8 (ZIF-8) was applied to polypropylene nonwoven by various methods. Among the tested methods, the sol-gel impregnation method showed the highest ZIF-8 loading efficiency. There existed an optimal loading of ZIF-8 for the maximum adsorption efficiency, and it was associated with the accessibility of gas molecules to the ZIF-8 pores and active sites. Dominant adsorption processes and mechanisms were investigated by fitting the theoretical sorption models to experimental data. The results demonstrate that the increased ZIF-8 loading to fibers, beyond a certain level, may hinder the diffusivity and increase the barrier effect, eventually decreasing the adsorption efficiency. This study is novel and significant in that a multifaceted approach, including experimental analysis, theoretical investigation, and computational modeling, was made for scrutinizing the intricate phenomena occurring in the gas sorption process. The results of this study provide the fundamental yet practical information on the manufacturing considerations for the optimal design of MOF-loaded fibrous adsorbents.
Collapse
Affiliation(s)
- Jinwook Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyeongeun Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic of Korea
- Reliability Assessment Center, FITI Testing & Research Institute, Seoul 07791, Republic of Korea
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Jiamjirangkul P, Inprasit T, Intasanta V, Pangon A. Metal organic framework-integrated chitosan/poly(vinyl alcohol) (PVA) nanofibrous membrane hybrids from green process for selective CO2 capture and filtration. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115650] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Domán A, Klébert S, Madarász J, Sáfrán G, Wang Y, László K. Graphene Oxide Protected Copper Benzene-1,3,5-Tricarboxylate for Clean Energy Gas Adsorption. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1182. [PMID: 32560460 PMCID: PMC7353370 DOI: 10.3390/nano10061182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
Among microporous storage materials copper benzene-1,3,5-tricarboxylate (CuBTC MOF, Cu3(BTC)2 or HKUST-1) holds the greatest potential for clean energy gases. However, its usefulness is challenged by water vapor, either in the gas to be stored or in the environment. To determine the protection potential of graphene oxide (GO) HKUST1@GO composites containing 0-25% GO were synthesized and studied. In the highest concentration, GO was found to strongly affect HKUST-1 crystal growth in solvothermal conditions by increasing the pH of the reaction mixture. Otherwise, the GO content had practically no influence on the H2, CH4 and CO2 storage capacities, which were very similar to those from the findings of other groups. The water vapor resistance of a selected composite was compared to that of HKUST-1. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric (TG/DTG) and N2 adsorption techniques were used to monitor the changes in the crystal and pore structure. It was found that GO saves the copper-carboxyl coordination bonds by sacrificing the ester groups, formed during the solvothermal synthesis, between ethanol and the carboxyl groups on the GO sheets.
Collapse
Affiliation(s)
- Andrea Domán
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budafoki út 8., H-1521 Budapest, Hungary;
| | - Szilvia Klébert
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., H-1117 Budapest, Hungary;
| | - János Madarász
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4., H-1521 Budapest, Hungary;
| | - György Sáfrán
- Research Institute for Technical Physics and Materials Science, Eötvös Loránd Research Network, Konkoly Thege M. út 29-33., H-1121 Budapest, Hungary;
| | - Ying Wang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China;
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budafoki út 8., H-1521 Budapest, Hungary;
| |
Collapse
|
14
|
Barton HF, Davis AK, Parsons GN. The Effect of Surface Hydroxylation on MOF Formation on ALD Metal Oxides: MOF-525 on TiO 2/Polypropylene for Catalytic Hydrolysis of Chemical Warfare Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14690-14701. [PMID: 32027111 DOI: 10.1021/acsami.9b20910] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic framework (MOF) fibrous composites were synthesized in a variety of methods in attempt to incorporate the highly effective reactivity of MOFs into a more facile and applicable format. Recent advances have demonstrated incorporating a metal oxide nucleation surface or reactive layer promotes conformal, well-adhered MOF growth on substrates. These materials have demonstrated promising reactivity in capturing or degrading chemical warfare agents and simulants. Here, we examine the mechanisms for MOF nucleation from metal oxide thin films to explore why some metal oxide sources are better suited for one synthesis mechanism over another. We isolate metal oxide extent of hydroxylation as an indicative factor as to whether the film serves as a nucleation promoter or may be converted directly to the MOF thin films. MOF-525 growth on Al2O3, TiO2, and ZnO coated fibers is demonstrated to corroborate these findings and used to degrade chemical warfare agent simulant dimethyl-4-nitrophenyl phosphate.
Collapse
Affiliation(s)
- Heather F Barton
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27606, United States
| | - Alexandra K Davis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27606, United States
| | - Gregory N Parsons
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27606, United States
| |
Collapse
|
15
|
Cairós C, González-Sálamo J, Hernández-Borges J. The current binomial Sonochemistry-Analytical Chemistry. J Chromatogr A 2020; 1614:460511. [DOI: 10.1016/j.chroma.2019.460511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/17/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023]
|
16
|
Zhang P, Lou XWD. Design of Heterostructured Hollow Photocatalysts for Solar-to-Chemical Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900281. [PMID: 31141231 DOI: 10.1002/adma.201900281] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Direct conversion of solar energy into chemical energy in a sustainable manner is one of the most promising solutions to the energy crisis and environmental issues. Fabrication of highly active photocatalysts is of great significance for the practical applications of efficient solar-to-chemical energy conversion systems. Among various photocatalytic materials, semiconductor-based heterostructured photocatalysts with hollow features show distinct advantages. Recent research efforts on rational design of heterostructured hollow photocatalysts toward photocatalytic water splitting and CO2 reduction are presented. First, both single-shelled and multishelled heterostructured photocatalysts are surveyed. Then, heterostructured hollow photocatalysts with tube-like and frame-like morphologies are discussed. It is intended that further innovative works on the material design of high-performance photocatalysts for solar energy utilization can be inspired.
Collapse
Affiliation(s)
- Peng Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
17
|
Peng J, Li Y, Sun X, Huang C, Jin J, Wang J, Chen J. Controlled Manipulation of Metal-Organic Framework Layers to Nanometer Precision Inside Large Mesochannels of Ordered Mesoporous Silica for Enhanced Removal of Bisphenol A from Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4328-4337. [PMID: 30614680 DOI: 10.1021/acsami.8b17508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Considerable attention has been paid on the design of hierarchical porous metal-organic framework (MOF) composites, which not only enhances the performance but also broadens the applications of MOFs. So far, controlled manipulation of nanometer-thick MOF layers in ordered mesochannels, while retaining their respective intrinsic properties, is still a main challenge because of the difficulty of growing MOFs in confined space. Herein, using a step-by-step coordination method, the formation of a hierarchical micro-mesoporous hybrid with a wall (channel wall and coating layer) thickness of up to 8.0 nm and open pore size down to 7.7 nm has been achieved based on large mesoporous SBA-15, and the wall thickness with nanometer precision can be controlled by adjusting the growth cycles of zeolite imidazolate framework-8 (ZIF-8) coating layers. Compared to pure ZIF-8, the obtained ZIF-8@SBA-15 composites showed more than 2-fold enhancement in adsorption capacity and approximately 20-fold improvement in the adsorption rate constant for bisphenol A in water, which could be ascribed to the synergistic effects of the high adsorption ability from ZIF-8 and the fast diffusion property from SBA-15. More importantly, the degraded ZIF-8@SBA-15 composite can be completely restored by a simple immersion into 2-methylimidazole solution. The easy restorability and good reusability further enable ZIF-8@SBA-15 as a promising adsorbent for effectively removing organic contaminants from water.
Collapse
Affiliation(s)
- Junyu Peng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116011 , China
- University of Chinese Academy of Science , Beijing 100049 , China
| | - Yun Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116011 , China
| | - Xiaoli Sun
- Lishui University , Lishui 323000 , China
| | - Chaonan Huang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116011 , China
- University of Chinese Academy of Science , Beijing 100049 , China
| | - Jing Jin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116011 , China
| | - Jincheng Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116011 , China
| | - Jiping Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116011 , China
| |
Collapse
|
18
|
Rezaei M, Abbasi A, Varshochian R, Dinarvand R, Jeddi-Tehrani M. NanoMIL-100(Fe) containing docetaxel for breast cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1390-1401. [PMID: 28838252 DOI: 10.1080/21691401.2017.1369425] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Metal-organic frameworks, such as MIL-100, have been recently introduced as promising drug carriers due to their notable characteristics such as stability, biocompatibility and owning large porosity which may admit a broad range of drugs with different molecular sizes. In this study, we firstly proposed an accessible top-down approach using ultrasound method to prepare nanoMIL-100 and secondly, evaluated its potentials as an anticancer nanocarrier. This is the first report that docetaxel (DTX) as a highly hydrophobic anticancer drug was encapsulated in nanoMIL-100 with the drug payload of 57.2 wt%. Characterizations of the prepared nanoMIL-100 and DTX-loaded nanoMIL-100 were performed by PXRD, FT-IR, N2 adsorption, DLS and FE-SEM. Moreover, the drug loading and release processes were quantified by HPLC. The in vitro release of DTX from the prepared nanocarrier was investigated in two pH values, 7.4 and 5.5. The toxic effect of DTX-loaded nanoMIL-100 was examined on human breast cancer cell line, MCF-7, and a significant decrease was observed in IC50 value (0.198 μg/mL) at the first 24 h in comparison with the free drug (4.9908 μg/mL). This nanocarrier may, thus offer promising potentials as a novel cytotoxic drug delivery system.
Collapse
Affiliation(s)
- Mahsa Rezaei
- a School of Chemistry, College of Science , University of Tehran , Tehran , Iran
| | - Alireza Abbasi
- a School of Chemistry, College of Science , University of Tehran , Tehran , Iran
| | - Reyhaneh Varshochian
- b Nanotechnology Research Center, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Rassoul Dinarvand
- b Nanotechnology Research Center, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran.,c Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | | |
Collapse
|