1
|
Deng Y, Huang S, Jiang G, Zhou L, Nezamzadeh-Ejhieh A, Liu J, Zhou Z. Current status and prospects of MOFs loaded with H 2O 2-related substances for ferroptosis therapy. RSC Med Chem 2024; 15:2996-3016. [PMID: 39309362 PMCID: PMC11411616 DOI: 10.1039/d4md00261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a programmed cell death mechanism characterized by the accumulation of iron (Fe)-dependent lipid peroxides within cells. Ferroptosis holds excellent promise in tumor therapy. Metal-organic frameworks (MOFs) offer unique advantages in tumor ferroptosis treatment due to their high porosity, excellent stability, high biocompatibility, and targeting capabilities. Inducing ferroptosis in tumor cells primarily involves the production of reactive oxygen species (ROS), like hydroxyl radicals (˙OH), through iron-mediated Fenton reactions. However, the intrinsic H2O2 levels in tumor cells are often insufficient to sustain prolonged consumption, limiting therapeutic efficacy if ˙OH production is inadequate. Therefore, catalyzing or supplementing the intracellular H2O2 levels in tumor cells is essential for inducing ferroptosis by nanoscale metal-organic frameworks. This article reviews the biological characteristics and molecular mechanisms of ferroptosis, introduces H2O2-related substances, and reviews MOF-based nanoscale strategies for enhancing intracellular H2O2 levels in tumor cells. Finally, the challenges and prospects of this approach are discussed, aiming to provide insights into improving the effectiveness of ferroptosis induced by MOFs.
Collapse
Affiliation(s)
- Yu Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Guanming Jiang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital) 78 Wandao Road South Dongguan 523059 Guangdong China
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | | | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| | - Zhikun Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials Dongguan 523808 China
| |
Collapse
|
2
|
Zhong J, Zhu M, Guo J, Chen X, Long R, Körte F, Wang S, Chen H, Xiong X, Liu Y. Enhancing tumor photodynamic synergistic therapy efficacy through generation of carbon radicals by Prussian blue nanomedicine. Regen Biomater 2024; 11:rbae103. [PMID: 39346686 PMCID: PMC11434160 DOI: 10.1093/rb/rbae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 10/01/2024] Open
Abstract
Significant progress has been achieved in tumor therapies utilizing nano-enzymes which could convert hydrogen peroxide into reactive oxygen species (ROS). However, the ROS generated by these enzymes possess a short half-life and exhibit limited diffusion within cells, making it challenging to inflict substantial damage on major organelles for effective tumor therapy. Therefore, it becomes crucial to develop a novel nanoplatform that could extend radicals half-life. Artesunate (ATS) is a Fe (II)-dependent drug, while the limited availability of iron (II), coupled with the poor aqueous solubility of ATS, limits its application. Here, Prussian blue (PB) was selected as a nano-carrier to release Fe (II), thus constructing a hollow Prussian blue/artesunate/methylene blue (HPB/ATS/MB) nanoplatform. HPB degraded and released iron(III), ATS and MB, under the combined effects of NIR irradiation and the unique tumor microenvironment. Moreover, Fe (III) exploited GSH to formation of Fe (II), disturbing the redox homeostasis of tumor cells and Fe (II) reacted with H2O2 and ATS to generate carbon radicals with a long half-life in situ. Furthermore, MB generates 1O2 under laser irradiation conditions. In vitro and in vivo experiments have demonstrated that the HPB/ATS/MB NPs exhibit a synergistic therapeutic effect through photothermal therapy, photodynamic therapy and radical therapy.
Collapse
Affiliation(s)
- Jun Zhong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Mingzhi Zhu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Jiaqi Guo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xinyu Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Fabian Körte
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Shibin Wang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China
| | - Hao Chen
- Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System, Haixi Institutes, Chinese Academy of Sciences, Quanzhou 362200, China
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China
| |
Collapse
|
3
|
Cao M, Tang Y, Luo Y, Gu F, Zhu Y, Liu X, Yan C, Hu W, Wang S, Chao X, Xu H, Chen HB, Wang L. Natural compounds modulating mitophagy: Implications for cancer therapy. Cancer Lett 2024; 582:216590. [PMID: 38097131 DOI: 10.1016/j.canlet.2023.216590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
Cancer is considered as the second leading cause of mortality, and cancer incidence is still growing rapidly worldwide, which poses an increasing global health burden. Although chemotherapy is the most widely used treatment for cancer, its effectiveness is limited by drug resistance and severe side effects. Mitophagy is the principal mechanism that degrades damaged mitochondria via the autophagy/lysosome pathway to maintain mitochondrial homeostasis. Emerging evidence indicates that mitophagy plays crucial roles in tumorigenesis, particularly in cancer therapy. Mitophagy can exhibit dual effects in cancer, with both cancer-inhibiting or cancer-promoting function in a context-dependent manner. A variety of natural compounds have been found to affect cancer cell death and display anticancer properties by modulating mitophagy. In this review, we provide a systematic overview of mitophagy signaling pathways, and examine recent advances in the utilization of natural compounds for cancer therapy through the modulation of mitophagy. Furthermore, we address the inquiries and challenges associated with ongoing investigations concerning the application of natural compounds in cancer therapy based on mitophagy. Overcoming these limitations will provide opportunities to develop novel interventional strategies for cancer treatment.
Collapse
Affiliation(s)
- Min Cao
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Yancheng Tang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yufei Luo
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Fen Gu
- Department of Infection, Hunan Children's Hospital, Changsha, 410007, China
| | - Yuyuan Zhu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Xu Liu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Chenghao Yan
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Wei Hu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Boai Rehabilitation Hospital, Changsha, 410082, China
| | - Shaogui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaojuan Chao
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Salahuddin N, Gaber M, Mousa M, Elfiky M. Dopamine / Artesunate loaded polyhydroxybutyrate-g-cellulose- magnetite zinc oxide core shell nanocomposites: Synergistic antimicrobial and anticancer efficacy. Int J Biol Macromol 2023; 248:125348. [PMID: 37330083 DOI: 10.1016/j.ijbiomac.2023.125348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
In this study, polyhydroxybutyrate-g-cellulose - Fe3O4/ZnO (PHB-g-cell- Fe3O4/ZnO) nanocomposites (NCs) was synthesized and used as a delivery system for Dopamine (DO) /Artesunate (ART) drugs. Different types of cells (Ccell, Scell, Pcell) grafted with PHB were designed and mixed with different contents of Fe3O4/ZnO. Physical and chemical features of PHB-g-cell-Fe3O4/ZnO NCs were detected by FTIR, XRD, dynamic light scattering, transmission electron microscopy, and scanning electron microscopy. ART/DO drugs were loaded into PHB-g-cell- Fe3O4/ZnO NCs by single emulsion technique. The rate of drugs release was studied at different pHs (5.4, 7.4). Owing to the overlap between the absorption bands of both drugs, differential pulse adsorptive cathodic stripping voltammetry (DP-AdCSV) was used for the estimation of ART. To study the mechanism of ART and DO release, zero-order, first order, Hixon Crowell, Higuchi and Korsmeyer-Peppas models were applied to the experiment results. The results showed that Ic50 of ART @PHB-g-Ccell-10% DO@ Fe3O4/ZnO, ART @PHB-g-Pcell-10% DO@ Fe3O4/ZnO and ART @PHB-g-Scell-10% DO@ Fe3O4/ZnO were 21.22, 12.3, and 18.11 μg/mL, respectively. The results revealed that ART @PHB-g-Pcell-10% DO@ Fe3O4/ZnO was more effective against HCT-116 than the carriers loaded by a single drug. The antimicrobial efficacy of the nano-loaded drugs was considerably improved compared with free drugs.
Collapse
Affiliation(s)
| | - Mohamed Gaber
- Chemistry Department, Faculty of Science, Tanta 31527, Egypt
| | - Maie Mousa
- Chemistry Department, Faculty of Science, Tanta 31527, Egypt
| | - Mona Elfiky
- Chemistry Department, Faculty of Science, Tanta 31527, Egypt
| |
Collapse
|
5
|
Lu J, Yu J, Xie W, Guo Z, Gao X, Li Y, Zhang Z, Jin Z, Fahad A, Che S, Zhao L, Wei Y. Acidity-Triggered Charge-Convertible Conjugated Polymer for Dihydroartemisinin Delivery and Tumor-Specific Chemo-Photothermal Therapy. ACS APPLIED BIO MATERIALS 2023. [PMID: 37190932 DOI: 10.1021/acsabm.3c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Since the nonspecificity and nonselectivity of traditional treatment models lead to the difficulty of cancer treatment, nanobased strategies are needed to fill in the gaps of current approaches. Herein, a tumor microenvironment (TME)-responsive chemo-photothermal treatment model was developed based on dihydroartemisinin (DHA)-loaded conjugated polymers (DHA@PLGA-PANI). The synthesized DHA@PLGA-PANI exhibited enhanced photothermal properties under mild-acidic conditions and thus triggered local heat at the tumor site. Meanwhile, these iron-doped conjugated polymers of PLGA-PANI were used as the source of Fe, and benefiting from the Fe-dependent cytotoxicity of DHA, the burst of free radicals could be generated in tumors. Therefore, the combination of TME-responsive chemo-photothermal therapy could achieve effective tumor efficacy.
Collapse
Affiliation(s)
- Jingsong Lu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Yu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Wensheng Xie
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Zhenhu Guo
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohan Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Ying Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Ziqing Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Zeping Jin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Abdul Fahad
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Shenglei Che
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Fu F, Wang W, Wu L, Wang W, Huang Z, Huang Y, Wu C, Pan X. Inhalable Biomineralized Liposomes for Cyclic Ca 2+-Burst-Centered Endoplasmic Reticulum Stress Enhanced Lung Cancer Ferroptosis Therapy. ACS NANO 2023; 17:5486-5502. [PMID: 36883602 DOI: 10.1021/acsnano.2c10830] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lung cancer with the highest mortality poses a great threat to human health. Ferroptosis therapy has recently been raised as a promising strategy for lung cancer treatment by boosting the reactive species (ROS) production and lipid peroxidation (LPO) accumulation intracellularly. However, the insufficient intracellular ROS level and the unsatisfactory drug accumulation in lung cancer lesions hamper the efficacy of ferroptosis therapy. Here, an inhalable biomineralized liposome LDM co-loaded with dihydroartemisinin (DHA) and pH-responsive calcium phosphate (CaP) was constructed as a ferroptosis nanoinducer for achieving Ca2+-burst-centered endoplasmic reticulum (ER) stress enhanced lung cancer ferroptosis therapy. Equipped with excellent nebulization properties, about 6.80-fold higher lung lesions drug accumulation than intravenous injection made the proposed inhalable LDM an ideal nanoplatform for lung cancer treatment. The Fenton-like reaction mediated by DHA with peroxide bridge structure could contribute to intracellular ROS production and induce ferroptosis. Assisted by DHA-mediated sarco-/endoplasmic reticulum calcium ATPase (SERCA) inhibition, the initial Ca2+ burst caused by CaP shell degradation triggered the Ca2+-mediated intense ER stress and subsequently induced mitochondria dysfunction to further boost ROS accumulation, which strengthens ferroptosis. The second Ca2+ burst occurred as a result of Ca2+ influx through ferroptotic pores on cell membranes, thus sequentially constructing the lethal "Ca2+ burst-ER stress-ferroptosis" cycle. Consequently, the Ca2+-burst-centered ER stress enhanced ferroptosis process was confirmed as a cell swelling and cell membrane disruption process driven by notable intracellular ROS and LPO accumulation. The proposed LDM showed an encouraging lung retention property and extraordinary antitumor ability in an orthotropic lung tumor murine model. In conclusion, the constructed ferroptosis nanoinducer could be a potential tailored nanoplatform for nebulization-based pulmonary delivery and underscore the application of Ca2+-burst-centered ER stress enhanced lung cancer ferroptosis therapy.
Collapse
Affiliation(s)
- Fangqin Fu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Linjing Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| |
Collapse
|
7
|
Lv Q, Chi K, Shi X, Liu M, Li X, Zhou C, Shi L, Fan H, Liu H, Liu J, Zhang Y, Wang S, Wang L, Wang Z. Nanozyme-like single-atom catalyst combined with artesunate achieves photothermal-enhanced nanocatalytic therapy in the near-infrared biowindow. Acta Biomater 2023; 158:686-697. [PMID: 36623782 DOI: 10.1016/j.actbio.2022.12.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Selectively generating active free radical (AFR) in tumor microenvironment (TME) can promote irreversible oxidation of biomolecules and damage tumor cells, resulting in effective tumor inhibition. However, therapeutic efficacy of AFR-based tumor suppression approaches is often limited by insufficient amount of H2O2 or O2 within TME. To overcome this obstacle, we design a pH/photothermal dual responsive nanosystem (PFeSA@AS) for combined photothermal and nanocatalytic therapy in the near-infrared biowindow. Here the Fe single-atom dispersed N, S-doped carbon nanosheets (FeSA) nanozyme is dispersed by phospholipid-polyethylene glycol-amine (DSPE-PEG-NH2), and further loads artesunate (AS) via an amide reaction. Upon 808-nm laser irradiation in TME, the AS is released and further be catalyzed by the FeSA nanozyme to produce cytotoxic C-centered AFRs, and further be accelerated due to the photothermal conversion performance of FeSA (23.35%). The nanocatalytic process of FeSA nanozyme is realized by density functional theory (DFT). The tumor inhibition rates of a CT26 xenograft model is 92% through a photothermal-enhanced nanocatalytic synergistic therapy, and negligible systematic toxicity is observed. This work offers a potential paradigm of multifunctional single atomic catalysts (SACs) for enhancing tumor nanocatalytic therapy. STATEMENT OF SIGNIFICANCE: We designed a pH/photothermal dual responsive nanosystem (PFeSA@AS) for nanocatalytic therapy: (1) the nanosystem responsively releases AS under 808-nm laser irradiation in TME; (2) FeSA in the nanosystem can act as heme mimetic to convert AS into high cytotoxic C-centered free radicals for nanocatalytic therapy; (3) the photothermal conversion performance of FeSA further enhances the catalytic process to yield abundant AFR. Both in vitro and in vivo results demonstrate that this nanosystem can efficiently inhibit tumor growth through a photothermal-enhanced nanocatalytic synergistic therapy.
Collapse
Affiliation(s)
- Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kai Chi
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaolei Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Miaodeng Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoye Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Shi
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huiling Fan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huan Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Zhang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Wang X, Hua P, He C, Chen M. Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharm Sin B 2022; 12:3567-3593. [PMID: 36176912 PMCID: PMC9513500 DOI: 10.1016/j.apsb.2022.03.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
As an emerging cancer therapeutic target, non-apoptotic cell death such as ferroptosis, necroptosis and pyroptosis, etc., has revealed significant potential in cancer treatment for bypassing apoptosis to enhance the undermined therapeutic efficacy triggered by apoptosis resistance. A variety of anticancer drugs, synthesized compounds and natural products have been proven recently to induce non-apoptotic cell death and exhibit excellent anti-tumor effects. Moreover, the convergence of nanotechnology with functional materials and biomedicine science has provided tremendous opportunities to construct non-apoptotic cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only employed in targeted delivery of non-apoptotic inducers, but also used as therapeutic components to induce non-apoptotic cell death to achieve efficient tumor treatment. This review first introduces the main characteristics, the mechanism and various pharmacological modulators of different non-apoptotic cell death forms, including ferroptosis, necroptosis, pyroptosis, autophagy, paraptosis, lysosomal-dependent cell death, and oncosis. Second, we comprehensively review the latest progresses of nanomedicine that induces various forms of non-apoptotic cell death and focus on the nanomedicine targeting different pathways and components. Furthermore, the combination therapies of non-apoptotic cell death with photothermal therapy, photodynamic therapy, immunotherapy and other modalities are summarized. Finally, the challenges and future perspectives in this regard are also discussed.
Collapse
|
9
|
Li Y, Pei Q, Cui B, Zhang H, Han L, Li W, Zhu W, Feng X, Xie Z. A redox-responsive dihydroartemisinin dimeric nanoprodrug for enhanced antitumor activity. J Nanobiotechnology 2021; 19:441. [PMID: 34930288 PMCID: PMC8686335 DOI: 10.1186/s12951-021-01200-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Redox-responsive drug delivery system emerges as a hopeful platform for tumor treatment. Dihydroartemisinin (DHA) has been investigated as an innovative tumor therapeutic agent. Herein, a DHA dimeric prodrug bridged with disulfide bond as linker (DHA2-SS) has been designed and synthesized. The prepared prodrugs could self-assemble into nanoparticles (SS NPs) with high DHA content (> 90%) and robust stability. These SS NPs display sensitive redox responsive capability and can release DHA under the tumor heterogeneity microenvironment. SS NPs possess preferable antitumor therapeutic activity in contrast with free DHA. Moreover, the possible anti-cancer mechanism of SS NPs was investigated through RNA-seq analysis, bioinformatics and molecular biological method. SS NPs could induce apoptosis via mitochondrial apoptosis pathway, as well as glycolysis inhibition associate with the regulation of PI3K/AKT/HIF-1α signal path, which may offer an underlying therapeutic target for liver cancer. Our study highlights the potential of using redox responsive prodrug nanoparticles to treat cancer, meanwhile provides insights into the anti-cancer mechanism of DHA prodrug.
Collapse
Affiliation(s)
- Yawei Li
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Baiji Cui
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Hongmei Zhang
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Liu Han
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Wenqing Li
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Wenhe Zhu
- Jilin Medical University, Jilin, 132013, People's Republic of China.
| | - Xianmin Feng
- Jilin Medical University, Jilin, 132013, People's Republic of China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
| |
Collapse
|
10
|
Ari F, Erkisa M, Pekel G, Erturk E, Buyukkoroglu G, Ulukaya E. Anticancer Potential of Albumin Bound Wnt/β‐Catenin Pathway Inhibitor Niclosamide in Breast Cancer Cells. ChemistrySelect 2021. [DOI: 10.1002/slct.202100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ferda Ari
- Department of Biology Faculty of Arts and Sciences Bursa Uludag University 16059 Bursa Turkey
| | - Merve Erkisa
- Department of Biology Faculty of Arts and Sciences Bursa Uludag University 16059 Bursa Turkey
- Moleculer Cancer Research Center (ISUMKAM) Istinye University 34010 Istanbul Turkey
| | - Gonca Pekel
- Department of Biology Faculty of Arts and Sciences Bursa Uludag University 16059 Bursa Turkey
| | - Elif Erturk
- Vocational School of Health Services Bursa Uludag University 16059 Bursa Turkey
| | - Gulay Buyukkoroglu
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Anadolu University 26470 Eskisehir Turkey
| | - Engin Ulukaya
- Department of Clinical Biochemistry Faculty of Medicine Istinye University 34010 Istanbul Turkey
| |
Collapse
|
11
|
Hemlata, Gupta S, Tejavath KK. ROS-Mediated Apoptosis Induced by BSA Nanospheres Encapsulated with Fruit Extract of Cucumis prophetarum in Various Human Cancer Cell Lines. ACS OMEGA 2021; 6:10383-10395. [PMID: 34056191 PMCID: PMC8153748 DOI: 10.1021/acsomega.1c00755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 05/14/2023]
Abstract
In recent decades, biodegradable polymeric nanoparticles have been used as a nanocarrier for the delivery of anticancer drugs. In the present study, we synthesize bovine serum albumin (BSA) nanospheres and evaluate their ability to incorporate a plant extract with anticancer activity. The plant extract used was the methanol fruit extract of Cucumis prophetarum, which is a medicinal herb. The fruit-extract-encapsulated BSA nanospheres (Cp-BSA nanospheres) were prepared using a desolvation method at various pH values of 5, 7, and 9. The nanosphere formulations were characterized using various techniques such as dynamic light scattering (DLS), ζ-potential, Fourier transform infrared spectroscopy (FTIR), and field-effect scanning electron microscopy (FESEM). The results show that the Cp-BSA nanospheres prepared at pH 7 were spherical with a uniform particle size, low polydispersity index (PDI), ζ-potential, and high entrapment efficiency (82.3%) and showed sustained release of fruit extract from Cp-BSA nanospheres in phosphate-buffered saline (PBS), pH 5. The anticancer activity was evaluated on A549, HepG2, MCF-7 cancer cell lines and HEK 293 normal cell lines. In vitro, antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, intracellular reactive oxygen species (ROS) production, and mitochondrial membrane potential were estimated. An in vitro cellular uptake study was performed using fluorescein isothiocyanate (FITC) dye at a different time of incubation, and DNA fragmentation was observed in a dose-dependent manner. The gene expression level of Bax and the suppression level of Bcl-2 were observed upon the treatment of Cp-BSA nanospheres. Thus, the Cp-BSA nanospheres triggered ROS-dependent mitochondrial apoptosis in different human cancer cell lines when compared to the noncancerous cell lines and could be used as a potential candidate for anticancer agents.
Collapse
Affiliation(s)
- Hemlata
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Shruti Gupta
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| |
Collapse
|
12
|
Lu J, Guo Z, Che S, Gao F, Gu Z, Xu J, Chi Y, Xu W, Zhang J, Takuya N, Yu J, Zhao L. Dihydroartemisinin loaded layered double hydroxide nanocomposites for tumor specific photothermal-chemodynamic therapy. J Mater Chem B 2021; 8:11082-11089. [PMID: 33206112 DOI: 10.1039/d0tb01964j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the inspiration to develop new cancer nanotherapeutics by repurposing old drugs, in the current study, a novel two dimensional nanomedicine namely Mn doped, dihydroartemisinin (DHA) loaded layered double hydroxide (MnMgFe-LDH/DHA) with peroxide self-supplying properties for enhanced photothermal-chemodynamic therapy was proposed. Such nanostructures could be synthesized by a simple coprecipitation method, and the as-prepared MnMgFe-LDH/DHA exhibits excellent photothermal properties with a photothermal conversion efficiency up to 10.7%. Besides, the in situ reaction between the released DHA and Fe2+/Mn2+ produced by the degradation of LDH can lead to a burst of intracellular reactive oxygen species (ROS) by Fenton-like reactions. Furthermore, the in vivo experiments demonstrate that MnMgFe-LDH/DHA exhibits a remarkable chemodynamic/photothermal therapy (CDT/PTT) synergistic effect on tumor treatment with negligible damage to normal tissues. Finally, this research provides a smart strategy to construct a DHA repurposing nanomedicine for tumor specific treatment.
Collapse
Affiliation(s)
- Jingsong Lu
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China and State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Shenglei Che
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Fei Gao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Australia
| | - Jianzhong Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yongjie Chi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China and School of Earth Science and Resources, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Wanling Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junxin Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Nonaka Takuya
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jing Yu
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Li Z, Wu X, Wang W, Gai C, Zhang W, Li W, Ding D. Fe(II) and Tannic Acid-Cloaked MOF as Carrier of Artemisinin for Supply of Ferrous Ions to Enhance Treatment of Triple-Negative Breast Cancer. NANOSCALE RESEARCH LETTERS 2021; 16:37. [PMID: 33620584 PMCID: PMC7902752 DOI: 10.1186/s11671-021-03497-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/14/2021] [Indexed: 06/01/2023]
Abstract
Suppression of tumor development by inducing ferroptosis may provide a potential remedy for triple-negative breast cancer, which is sensitive to intracellular oxidative imbalance. Recently, artemisinin (ART) and its derivatives have been investigated as potential anticancer agents for the treatment of highly aggressive cancers via the induction of ferroptosis by iron-mediated cleavage of the endoperoxide bridge. Owing to its poor water solubility and limited intracellular iron content, it is challenging for further application in antitumor therapy. Herein, we developed ferrous-supply nano-carrier for ART based on tannic acid (TA) and ferrous ion (Fe(II)) coated on the zeolitic imidazolate framework-8 (ZIF) with ART encapsulated (TA-Fe/ART@ZIF) via coordination-driven self-assembly. Drug release experiments showed that ART was not nearly released in pH 7.4, while 59% ART was released in pH 5.0 after 10 h, demonstrating the excellent pH-triggered release. Meanwhile, a high level of intracellular ROS and MDA, accompanied with decreasing GSH and GPX4, displayed a newly developed nano-drug system displayed markedly enhanced ferroptosis. Compared with monotherapy, in vitro and vivo tumor inhibition experiments demonstrated higher efficiency of tumor suppression of TA-Fe/ART@ZIF. This work provides a novel approach to enhance the potency of ferroptotic nano-medicine and new directions for TBNC therapy.
Collapse
Affiliation(s)
- Zihaoran Li
- Department of Pathology, Weifang Medical University, Weifang, 261053 China
| | - Xinghan Wu
- Department of Pathology, Weifang Medical University, Weifang, 261053 China
| | - Wenyu Wang
- College of Pharmacology, Weifang Medical University, Weifang, 261053 China
| | - Chengcheng Gai
- Department of Pathology, Weifang Medical University, Weifang, 261053 China
| | - Weifen Zhang
- College of Pharmacology, Weifang Medical University, Weifang, 261053 China
| | - Wentong Li
- Department of Pathology, Weifang Medical University, Weifang, 261053 China
| | - Dejun Ding
- College of Pharmacology, Weifang Medical University, Weifang, 261053 China
| |
Collapse
|
14
|
Ma J, Qiao W, Mu X, Dong J, Quan J, Tian C. Optical Properties of Artemisinin and Its Derivatives. ACS OMEGA 2020; 5:30849-30857. [PMID: 33324794 PMCID: PMC7726762 DOI: 10.1021/acsomega.0c03361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
Artemisinin and its derivatives are of great research value in biology. In this work, we study their chiral and optical properties. The multidimensional multifunction analysis method is used to analyze the linear and nonlinear optical processes (one-photon and two-photon absorption: OPA and TPA), electronic circular dichroism (ECD), and Raman optical activity (ROA) mechanisms under light excitation. Transition dipole moments (TDMs) and charge difference density (CDD) are used to describe the electromagnetic interaction between ECD and ROA when a substance is excited by light. The theoretical research results of the study show that the dioxygen atoms provide an intermediary for the transfer between charges and also enhance the role of the TDMs. This generalized chiral theory can not only explain the traditional sources of chirality but also distinguish whether the molecule has chirality when the chiral center is not obvious. By analyzing ROA and different vibration modes, we can clearly observe that each part of the molecule responds differently when excited.
Collapse
Affiliation(s)
- Jialin Ma
- School
of Physics Science and Technology, Lingnan
Normal University, Zhanjiang 524048, P. R. China
- School
of Mathematics and Physics, University of
Science and Technology Beijing, Beijing 100083, P. R.
China
| | - Wenhua Qiao
- School
of Mathematics and Physics, University of
Science and Technology Beijing, Beijing 100083, P. R.
China
| | - Xijiao Mu
- School
of Mathematics and Physics, University of
Science and Technology Beijing, Beijing 100083, P. R.
China
| | - Jun Dong
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, P. R. China
| | - Jun Quan
- School
of Physics Science and Technology, Lingnan
Normal University, Zhanjiang 524048, P. R. China
| | - Chunhua Tian
- School
of Physics Science and Technology, Lingnan
Normal University, Zhanjiang 524048, P. R. China
| |
Collapse
|
15
|
Cai X, Liu X, Jiang J, Gao M, Wang W, Zheng H, Xu S, Li R. Molecular Mechanisms, Characterization Methods, and Utilities of Nanoparticle Biotransformation in Nanosafety Assessments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907663. [PMID: 32406193 DOI: 10.1002/smll.201907663] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
It is a big challenge to reveal the intrinsic cause of a nanotoxic effect due to diverse branches of signaling pathways induced by engineered nanomaterials (ENMs). Biotransformation of toxic ENMs involving biochemical reactions between nanoparticles (NPs) and biological systems has recently attracted substantial attention as it is regarded as the upstream signal in nanotoxicology pathways, the molecular initiating event (MIE). Considering that different exposure routes of ENMs may lead to different interfaces for the arising of biotransformation, this work summarizes the nano-bio interfaces and dose calculation in inhalation, dermal, ingestion, and injection exposures to humans. Then, five types of biotransformation are shown, including aggregation and agglomeration, corona formation, decomposition, recrystallization, and redox reactions. Besides, the characterization methods for investigation of biotransformation as well as the safe design of ENMs to improve the sustainable development of nanotechnology are also discussed. Finally, future perspectives on the implications of biotransformation in clinical translation of nanomedicine and commercialization of nanoproducts are provided.
Collapse
Affiliation(s)
- Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
16
|
Alven S, Aderibigbe BA. Nanoparticles Formulations of Artemisinin and Derivatives as Potential Therapeutics for the Treatment of Cancer, Leishmaniasis and Malaria. Pharmaceutics 2020; 12:E748. [PMID: 32784933 PMCID: PMC7466127 DOI: 10.3390/pharmaceutics12080748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer, malaria, and leishmaniasis remain the deadly diseases around the world although several strategies of treatment have been developed. However, most of the drugs used to treat the aforementioned diseases suffer from several pharmacological limitations such as poor pharmacokinetics, toxicity, drug resistance, poor bioavailability and water solubility. Artemisinin and its derivatives are antimalarial drugs. However, they also exhibit anticancer and antileishmanial activity. They have been evaluated as potential anticancer and antileishmanial drugs but their use is also limited by their poor water solubility and poor bioavailability. To overcome the aforementioned limitations associated with artemisinin and its derivatives used for the treatment of these diseases, they have been incorporated into nanoparticles. Several researchers incorporated this class of drugs into nanoparticles resulting in enhanced therapeutic outcomes. Their potential efficacy for the treatment of parasitic infections such as malaria and leishmaniasis and chronic diseases such as cancer has been reported. This review article will be focused on the nanoparticles formulations of artemisinin and derivatives for the treatment of cancer, malaria, and leishmaniasis and the biological outcomes (in vitro and in vivo).
Collapse
|
17
|
Hao DL, Xie R, De GJ, Yi H, Zang C, Yang MY, Liu L, Ma H, Cai WY, Zhao QH, Sui F, Chen YJ. pH-Responsive Artesunate Polymer Prodrugs with Enhanced Ablation Effect on Rodent Xenograft Colon Cancer. Int J Nanomedicine 2020; 15:1771-1786. [PMID: 32214810 PMCID: PMC7083641 DOI: 10.2147/ijn.s242032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose In this study, pH-sensitive poly(2-ethyl-2-oxazoline)-poly(lactic acid)-poly(β-amino ester) (PEOz-PLA-PBAE) triblock copolymers were synthesized and were conjugated with an antimalaria drug artesunate (ART), for inhibition of a colon cancer xenograft model. Methods The as-prepared polymer prodrugs are tended to self-assemble into polymeric micelles in aqueous milieu, with PEOz segment as hydrophilic shell and PLA-PBAE segment as hydrophobic core. Results The pH sensitivity of the as-prepared copolymers was confirmed by acid-base titration with pKb values around 6.5. The drug-conjugated polymer micelles showed high stability for at least 96 h in PBS and 37°C, respectively. The as-prepared copolymer prodrugs showed high drug loading content, with 9.57%±1.24% of drug loading for PEOz-PLA-PBAE-ART4. The conjugated ART could be released in a sustained and pH-dependent manner, with 92% of released drug at pH 6.0 and 57% of drug released at pH 7.4, respectively. In addition, in vitro experiments showed higher inhibitory effect of the prodrugs on rodent CT-26 cells than that of free ART. Animal studies also demonstrated the enhanced inhibitory efficacy of PEOz-PLA-PBAE-ART2 micelles on the growth of rodent xenograft tumor. Conclusion The pH-responsive artesunate polymer prodrugs are promising candidates for colon cancer adjuvant therapy.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ge-Jing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Hong Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Mi-Yi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Hai Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Wei-Yan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Qing-He Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Yan-Jun Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| |
Collapse
|
18
|
Wan X, Zhong H, Pan W, Li Y, Chen Y, Li N, Tang B. Programmed Release of Dihydroartemisinin for Synergistic Cancer Therapy Using a CaCO
3
Mineralized Metal–Organic Framework. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907388] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Hui Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
19
|
Wan X, Zhong H, Pan W, Li Y, Chen Y, Li N, Tang B. Programmed Release of Dihydroartemisinin for Synergistic Cancer Therapy Using a CaCO
3
Mineralized Metal–Organic Framework. Angew Chem Int Ed Engl 2019; 58:14134-14139. [DOI: 10.1002/anie.201907388] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Hui Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
20
|
Charlie-Silva I, Fraceto LF, de Melo NFS. Progress in nano-drug delivery of artemisinin and its derivatives: towards to use in immunomodulatory approaches. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S611-S620. [DOI: 10.1080/21691401.2018.1505739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Theranostics Applications of Nanoparticles in Cancer Immunotherapy. Med Sci (Basel) 2018; 6:medsci6040100. [PMID: 30424010 PMCID: PMC6313674 DOI: 10.3390/medsci6040100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/01/2023] Open
Abstract
With the advancement in the mechanism of immune surveillance and immune evasion in cancer cells, cancer immunotherapy shows promising results for treating cancer with established efficacy and less toxicity. As a result of the off-target effect, the approach for delivering vaccines, adjuvants, or antibodies directly to tumor sites is gaining widespread attention. An effective alternative is to utilize nanoengineered particles, functioning as drug-delivery systems or as antigens themselves. This article reviews the practical implementation of nanotechnology in cancer immunotherapy.
Collapse
|
22
|
Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol Res 2018; 136:172-180. [DOI: 10.1016/j.phrs.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|
23
|
Zhang J, Sun X, Wang L, Wong YK, Lee YM, Zhou C, Wu G, Zhao T, Yang L, Lu L, Zhong J, Huang D, Wang J. Artesunate-induced mitophagy alters cellular redox status. Redox Biol 2018; 19:263-273. [PMID: 30196190 PMCID: PMC6128040 DOI: 10.1016/j.redox.2018.07.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Artesunate (ART) is a prominent anti-malarial with significant anti-cancer properties. Our previous studies showed that ART enhances lysosomal function and ferritin degradation, which was necessary for its anti-cancer properties. ART targeting to mitochondria also significantly improved its efficacy, but the effect of ART on mitophagy, an important cellular pathway that facilitates the removal of damaged mitochondria, remains unknown. Here, we first observed that ART mainly localizes in the mitochondria and its probe labeling revealed that it binds to a large number of mitochondrial proteins and causes mitochondrial fission. Second, we found that ART treatment leads to autophagy induction and the decrease of mitochondrial proteins. When autophagy is inhibited, the decrease of mitochondrial proteins could be reversed, indicating that the degradation of mitochondrial proteins is through mitophagy. Third, our results showed that ART treatment stabilizes the full-length form of PTEN induced putative kinase 1 (PINK1) on the mitochondria and activates the PINK1-dependent pathway. This in turn leads to the recruitment of Parkin, sequestosome 1 (SQSTM1), ubiquitin and microtubule-associated proteins 1A/1B light chain 3 (LC3) to the mitochondria and culminates in mitophagy. When PINK1 is knocked down, ART-induced mitophagy is markedly suppressed. Finally, we investigated the effect of mitophagy by ART on mitochondrial functions and found that knockdown of PINK1 alters the cellular redox status in ART-treated cells, which is accompanied with a significant decrease in glutathione (GSH) and increase in mitochondrial reactive oxidative species (mROS) and cellular lactate levels. Additionally, knockdown of PINK1 leads to a significant increase of mitochondrial depolarization and more cell apoptosis by ART, suggesting that mitophagy protects from ART-induced cell death. Taken together, our findings reveal the molecular mechanism that ART induces cytoprotective mitophagy through the PINK1-dependent pathway, suggesting that mitophagy inhibition could enhance the anti-cancer activity of ART.
Collapse
Affiliation(s)
- Jianbin Zhang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China; Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China; Key Laboratory of Cardio-cerebrovascular disease prevention & therapy, Gannan Medical University, Ganzhou 341000, China.
| | - Xin Sun
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Liming Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yew Mun Lee
- Department of Pharmacology, National University of Singapore, 117600, Singapore
| | - Chao Zhou
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Guoqing Wu
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Tongwei Zhao
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Liu Yang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Liqin Lu
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jianing Zhong
- Key Laboratory of Cardio-cerebrovascular disease prevention & therapy, Gannan Medical University, Ganzhou 341000, China
| | - Dongsheng Huang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Jigang Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Pharmacology, National University of Singapore, 117600, Singapore; Key Laboratory of Cardio-cerebrovascular disease prevention & therapy, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
24
|
Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor Research on Artemisinin and Its Bioactive Derivatives. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:303-319. [PMID: 29633188 PMCID: PMC6102173 DOI: 10.1007/s13659-018-0162-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 05/02/2023]
Abstract
Cancer is the leading cause of human death which seriously threatens human life. The antimalarial drug artemisinin and its derivatives have been discovered with considerable anticancer properties. Simultaneously, a variety of target-selective artemisinin-related compounds with high efficiency have been discovered. Many researches indicated that artemisinin-related compounds have cytotoxic effects against a variety of cancer cells through pleiotropic effects, including inhibiting the proliferation of tumor cells, promoting apoptosis, inducing cell cycle arrest, disrupting cancer invasion and metastasis, preventing angiogenesis, mediating the tumor-related signaling pathways, and regulating tumor microenvironment. More importantly, artemisinins demonstrated minor side effects to normal cells and manifested the ability to overcome multidrug-resistance which is widely observed in cancer patients. Therefore, we concentrated on the new advances and development of artemisinin and its derivatives as potential antitumor agents in recent 5 years. It is our hope that this review could be helpful for further exploration of novel artemisinin-related antitumor agents.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - P Saravana Prabha
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, China.
| |
Collapse
|
25
|
Li S, Li G, Yang X, Meng Q, Yuan S, He Y, Sun D. Design, synthesis and biological evaluation of artemisinin derivatives containing fluorine atoms as anticancer agents. Bioorg Med Chem Lett 2018; 28:2275-2278. [PMID: 29789258 DOI: 10.1016/j.bmcl.2018.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022]
Abstract
Ten novel artemisinin derivatives containing fluorine atoms were synthesized and their structures were confirmed by 1H NMR, 13C NMR and HRMS technologies in this study. The in vitro cytotoxicity against U87MG, SH-SY5Y, MCF-7, MDA-MB-231, A549 and A375 cancer cell lines was evaluated by MTT assay. Compound 9j was the most potent anti-proliferative agent against the human breast cancer MCF-7 cells (IC50 = 2.1 μM). The mechanism of action of compound 9j was further investigated by analysis of cell apoptosis and cell cycle. Compound 9j induced cell apoptosis and arrested cell cycle at G1 phase in MCF-7 cells. Our promising findings indicated that the compound 9j could stand as potential lead compound for further investigation.
Collapse
Affiliation(s)
- Shu Li
- Marine College, Shandong University at Weihai, No. 180, Wenhua West Road, Weihai 264209, PR China
| | - Gongming Li
- Marine College, Shandong University at Weihai, No. 180, Wenhua West Road, Weihai 264209, PR China
| | - Xiaohong Yang
- School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Chongqing 401331, PR China
| | - Qian Meng
- Marine College, Shandong University at Weihai, No. 180, Wenhua West Road, Weihai 264209, PR China
| | - Shuo Yuan
- Marine College, Shandong University at Weihai, No. 180, Wenhua West Road, Weihai 264209, PR China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Chongqing 401331, PR China
| | - Dequn Sun
- Marine College, Shandong University at Weihai, No. 180, Wenhua West Road, Weihai 264209, PR China.
| |
Collapse
|
26
|
Oncosis-like cell death is induced by berberine through ERK1/2-mediated impairment of mitochondrial aerobic respiration in gliomas. Biomed Pharmacother 2018; 102:699-710. [PMID: 29604589 DOI: 10.1016/j.biopha.2018.03.132] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
Gliomas, the most common primary malignant brain tumor, exhibit high metabolic activity. The targeting of metabolism alterations, particularly in mitochondria, is emerging as an efficient approach for curing cancers. Here, we showed that berberine, a natural compound that is used as an antibacterial agent, could reduce cellular viability and induce oncosis-like death, characterized by cell swelling, cytoplasmic vacuoles and plasma membrane blebbing, in gliomas, and that these effects were correlated with intracellular adenosine triphosphate (ATP) depletion. We also found that berberine induced autophagy as a protective effect and decreased the oxygen consumption rate (OCR), which could inhibit mitochondrial aerobic respiration by repressing phosphorylated extracellular regulated protein kinases (p-ERK1/2). Furthermore, the down-regulation of mitochondrial p-ERK1/2 by berberine inhibited aerobic respiration and led to glycolysis, an inefficient energy production pathway. In addition, berberine reduced tumor growth and inhibited Ki-67 and p-ERK1/2 expression in vivo. The results demonstrate that berberine, which represses aerobic oxidation in mitochondria and decreases their energy production efficiency, decreases metabolic activity by reducing ERK1/2 activity.
Collapse
|
27
|
Wang K, Qi M, Guo C, Yu Y, Wang B, Fang L, Liu M, Wang Z, Fan X, Chen D. Novel Dual Mitochondrial and CD44 Receptor Targeting Nanoparticles for Redox Stimuli-Triggered Release. NANOSCALE RESEARCH LETTERS 2018; 13:32. [PMID: 29396830 PMCID: PMC5796929 DOI: 10.1186/s11671-018-2445-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/15/2018] [Indexed: 05/14/2023]
Abstract
In this work, novel mitochondrial and CD44 receptor dual-targeting redox-sensitive multifunctional nanoparticles (micelles) based on oligomeric hyaluronic acid (oHA) were proposed. The amphiphilic nanocarrier was prepared by (5-carboxypentyl)triphenylphosphonium bromide (TPP), oligomeric hyaluronic acid (oHA), disulfide bond, and curcumin (Cur), named as TPP-oHA-S-S-Cur. The TPP targeted the mitochondria, the antitumor drug Cur served as a hydrophobic core, the CD44 receptor targeting oHA worked as a hydrophilic shell, and the disulfide bond acted as a connecting arm. The chemical structure of TPP-oHA-S-S-Cur was characterized by 1HNMR technology. Cur was loaded into the TPP-oHA-S-S-Cur micelles by self-assembly. Some properties, including the preparation of micelles, morphology, redox sensitivity, and mitochondrial targeting, were studied. The results showed that TPP-oHA-S-S-Cur micelles had a mean diameter of 122.4 ± 23.4 nm, zeta potential - 26.55 ± 4.99 mV. In vitro release study and cellular uptake test showed that TPP-oHA-S-S-Cur micelles had redox sensibility, dual targeting to mitochondrial and CD44 receptor. This work provided a promising smart multifunctional nanocarrier platform to enhance the solubility, decrease the side effects, and improve the therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Kaili Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Mengjiao Qi
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Chunjing Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Yueming Yu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Bingjie Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Lei Fang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Mengna Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Zhen Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Xinxin Fan
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China.
| |
Collapse
|