1
|
Khandelwal K, Dalai AK. Catalytic Supercritical Water Gasification of Canola Straw with Promoted and Supported Nickel-Based Catalysts. Molecules 2024; 29:911. [PMID: 38398661 PMCID: PMC10891835 DOI: 10.3390/molecules29040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Lignocellulosic biomass such as canola straw is produced as low-value residue from the canola processing industry. Its high cellulose and hemicellulose content makes it a suitable candidate for the production of hydrogen via supercritical water gasification. However, supercritical water gasification of lignocellulosic biomass such as canola straw suffers from low hydrogen yield, hydrogen selectivity, and conversion efficiencies. Cost-effective and sustainable catalysts with high catalytic activity for supercritical water gasification are increasingly becoming a focal point of interest. In this research study, novel wet-impregnated nickel-based catalysts supported on carbon-negative hydrochar obtained from hydrothermal liquefaction (HTL-HC) and hydrothermal carbonization (HTC-HC) of canola straw, along with other nickel-supported catalysts such as Ni/Al2O3, Ni/ZrO2, Ni/CNT, and Ni/AC, were synthesized for gasification of canola straw on previously optimized reaction conditions of 500 °C, 60 min, 10 wt%, and 23-25 MPa. The order of hydrogen yield for the six supports was (10.5 mmol/g) Ni/ZrO2 > (9.9 mmol/g) Ni/Al2O3 > (9.1 mmol/g) Ni/HTL-HC > (8.8 mmol/g) Ni/HTC-HC > (7.7 mmol/g) Ni/AC > (6.8 mmol/g) Ni/CNT, compared to 8.1 mmol/g for the non-catalytic run. The most suitable Ni/ZrO2 catalyst was further modified using promotors such as K, Zn, and Ce, and the performance of the promoted Ni/ZrO2 catalysts was evaluated. Ni-Ce/ZrO2 showed the highest hydrogen yield of 12.9 mmol/g, followed by 12.0 mmol/g for Ni-Zn/ZrO2 and 11.6 mmol/g for Ni-K/ZrO2. The most suitable Ni-Ce/ZrO2 catalysts also demonstrated high stability over their repeated use. The superior performance of the Ni-Ce/ZrO2 was due to its high nickel dispersion, resilience to sintering, high thermal stability, and oxygen storage capabilities to minimize coke deposition.
Collapse
Affiliation(s)
| | - Ajay K. Dalai
- Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
| |
Collapse
|
2
|
Nikitchenko YV, Klochkov VK, Kavok NS, Karpenko NA, Yefimova SL, Semynozhenko VP, Nikitchenko IV, Bozhkov AI. CeO2 nanoparticles improve prooxidant/antioxidant balance, life quality and survival of old male rats. Biogerontology 2023; 24:47-66. [PMID: 36030453 DOI: 10.1007/s10522-022-09987-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 01/20/2023]
Abstract
Due to its unique redox chemistry, nanoceria is considered as potent free radical scavenger and antioxidant. However, their protective capacity in aging organisms remains controversial. To detect the anti-aging effects associated with the redox activity of 2 and 10 nm nano-CeO2, different test systems were used, including in vitro analysis, in situ assay of mitochondria function and in vivo studies of suitable nano-CeO2 on aging of male Wistar rats from 22 months-old to the end of life. The 2 nm nanoparticles exhibited not only antioxidant (·OH scavenging; chemiluminescence assay; decomposition of H2O2, phosphatidylcholine autooxidation) but also prooxidant properties (reduced glutathione and reduced nicotinamide adenine dinucleotide phosphate oxidation) as well as affected mitochondria whereas in most test systems 10 nm nano-CeO2 showed less activity or was inert. Prolonged use of the more redox active 2 nm nano-CeO2 (0.25-0.3 mg/kg/day) in vivo with drinking water resulted in improvement in physiological parameters and normalization of the prooxidant/antioxidant balance in liver and blood of aging animals. Survival analysis using Kaplan-Meier curve and Gehan tests with Yates' correction showed that by the time the prooxidant-antioxidant balance was assessed (32 months), survival rates exceeded the control values most considerably. The apparent median survival for the control rats was 900 days, and for the experimental rats-960 days. In general, the data obtained indicate the ability of extra-small 2 nm nano-CeO2 to improve quality of life and increase the survival rate of an aging organism.
Collapse
Affiliation(s)
- Yuri V Nikitchenko
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Vladimir K Klochkov
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Nataliya S Kavok
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.
| | - Nina A Karpenko
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Svetlana L Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Vladimir P Semynozhenko
- SSI "Institute for Single Crystal", National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Irina V Nikitchenko
- Research Institute of Biology, V.N. Karazin Kharkiv National University, Svobody sq, 4, Kharkiv, 61022, Ukraine
| | - Anatoly I Bozhkov
- Research Institute of Biology, V.N. Karazin Kharkiv National University, Svobody sq, 4, Kharkiv, 61022, Ukraine
| |
Collapse
|
3
|
Graphene loaded with corrosion inhibitor cerium (Ⅲ) cation for enhancing corrosion resistance of waterborne epoxy coating: Physical barrier and self-healing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Popov AL, Abakumov MA, Savintseva IV, Ermakov AM, Popova NR, Ivanova OS, Kolmanovich DD, Baranchikov AE, Ivanov VK. Biocompatible dextran-coated gadolinium-doped cerium oxide nanoparticles as MRI contrast agents with high T 1 relaxivity and selective cytotoxicity to cancer cells. J Mater Chem B 2021; 9:6586-6599. [PMID: 34369536 DOI: 10.1039/d1tb01147b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gd-based complexes are widely used as magnetic resonance imaging (MRI) contrast agents. The safety of previously approved contrast agents is questionable and is being re-assessed. The main causes of concern are possible gadolinium deposition in the brain and the development of systemic nephrogenic fibrosis after repeated use of MRI contrasts. Thus, there is an urgent need to develop a new generation of MRI contrasts that are safe and that have high selectivity in tissue accumulation with improved local contrast. Here, we report on a new type of theranostic MRI contrast, namely dextran stabilised, gadolinium doped cerium dioxide nanoparticles. These ultra-small (4-6 nm) Ce0.9Gd0.1O1.95 nanoparticles have been shown to possess excellent colloidal stability and high r1-relaxivity (3.6 mM-1 s-1). They are effectively internalised by human normal and cancer cells and demonstrate dose-dependent selective cytotoxicity to cancer cells.
Collapse
Affiliation(s)
- A L Popov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky av., 31, Moscow 119991, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wei F, Neal CJ, Sakthivel TS, Kean T, Seal S, Coathup MJ. Multi-functional cerium oxide nanoparticles regulate inflammation and enhance osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112041. [PMID: 33947541 DOI: 10.1016/j.msec.2021.112041] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022]
Abstract
Oxidative stress increases bone loss and limits repair, in part, through immunoregulation and the formation and maintenance of low-grade chronic inflammation. The aim of this study was to investigate the effect of cerium oxide nanoparticles (CeONPs) on (i) macrophage phenotype and cytokine expression under normal and simulated acute and chronic inflammatory conditions and, (ii) human mesenchymal stem cell (hBMSCs) proliferation, osteoinduction and osteogenic differentiation. Spherical particles composed of 60% Ce3+ with a hydrodynamic size of ~35 nm and surface charge of 25.4 mV were internalized within cells. Under both acute and chronic conditions, inducible nitric oxide synthase (iNOS) activity decreased with a significant reduction seen in the 1 and 10 μg/mL groups (p < 0.001). A dose dependent and significant increase in anti-inflammatory cytokine gene expression was observed in all CeONP groups under chronic inflammatory condition. No increase in alkaline phosphatase (ALP) activity or mineral deposits were measured following hBMSCs cultured without osteogenic media in any of the CeONP groups, however, a significant increase in osteogenic-related gene expression, ALP activity and bone mineral deposits was measured when supplemented with both CeONPs and osteogenic media. CeONP activity was multifaceted and exhibited low toxicity. A therapeutic dose of 1 μg/mL delivered a disparate but protective effect when under both acute and chronic inflammatory conditions while at the same dose, potentiated osteogenesis.
Collapse
Affiliation(s)
- Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Tamil Selvan Sakthivel
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Thomas Kean
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melanie J Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
6
|
Razmgar K, Altarawneh M, Oluwoye I, Senanayake G. Ceria-Based Catalysts for Selective Hydrogenation Reactions: A Critical Review. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-020-09319-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Kotkondawar AV, Rayalu S. Enhanced H 2 production from dehydrogenation of sodium borohydride over the ternary Co 0.97Pt 0.03/CeO x nanocomposite grown on CGO catalytic support. RSC Adv 2020; 10:38184-38195. [PMID: 35693040 PMCID: PMC9119289 DOI: 10.1039/c9ra10742h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/30/2020] [Indexed: 12/25/2022] Open
Abstract
The development of low-cost materials for the 100% dehydrogenation of metal hydrides is highly essential to vitalize the chemical hydride-based hydrogen economy. In this context, the ternary Co-Ce-Pt nanocomposite immobilized on functionalized catalytic support CGO is synthesized by the one step chemical reduction approach and has been directly employed for the ethanolysis of sodium borohydride. The co-operative effect of CGO and the synergy between metallic nanoparticles is investigated to determine the highest rate of hydrogen (H2) production. The maximum hydrogen generation rate (HGR) of 41.53 L (min g M )-1 is achieved with the Co0.97Pt0.03/CeO x /CGO nanohybrid from the alkaline ethanolysis of sodium borohydride (SB). In addition, the resultant nanohybrid exhibited a relatively low activation energy of 21.42 kJ mol-1 for the ethanolysis of SB. This enhanced catalytic activity may be attributed to the intermetallic charge transport among metallic Pt, Co/Co3O4, and CeO x counterparts. Moreover, the catalytic support CGO provides mesoporous functionalized surface and its intercalated GO layers promote charge transport. These results indicate that the resultant catalytic system described here for the dehydrogenation of SB can offer a portable and low-cost H2 supply for various fuel cell applications.
Collapse
Affiliation(s)
- Abhay Vijay Kotkondawar
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute Nehru Marg Nagpur-440020 Maharashtra (M.S.) India
| | - Sadhana Rayalu
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute Nehru Marg Nagpur-440020 Maharashtra (M.S.) India
| |
Collapse
|
8
|
Bassous NJ, Garcia CB, Webster TJ. A Study of the Chemistries, Growth Mechanisms, and Antibacterial Properties of Cerium- and Yttrium-Containing Nanoparticles. ACS Biomater Sci Eng 2020; 7:1787-1807. [PMID: 33966381 DOI: 10.1021/acsbiomaterials.0c00776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Under the current climate, physicians prescribe antibiotics for treating bacterial infections, and such a limitation to a single class of drugs is disadvantageous since antibiotic-resistant bacteria have adapted to withstanding their stresses. Antibiotic alternatives are sought, and herein metal nanoparticles comprised of the rare earth elements cerium and yttrium were determined to invoke toxicity on methicillin-resistant Staphylococcus aureus (MRSA) and a multi-drug-resistant strain of Escherichia coli (MDR E. coli). Ceria nanoparticles, yttrium-doped ceria nanoparticles, and cerium-doped yttria nanoparticles were fabricated by a wet chemical route, homogeneous precipitation in hexamethylenetetramine (HMT). To demonstrate the drastic variations in nanoparticle structure and toxicity that occur when the synthesis method and solvent are substituted, two additional approaches involving solvothermal and hydrothermal reactions were pursued in the production of yttrium-containing nanoparticles. Intrinsic nanoparticle features of size, morphology, and composition were construed by physiochemical characterizations, which aided in the elaboration of chemical reaction and growth mechanisms. It was determined by in vitro plate count assays that ceria nanoparticles which had been doped using the yttrium metal precursor after 30 min of the HMT reaction, at 500 μg/mL, were the most effective at inhibiting MRSA growth without imposing significant cytotoxicity on human dermal fibroblast cells. A total of 500 μg/mL of cerium- and yttrium-containing nanoparticles, prepared in a 1:1 molar ratio, were similarly biocompatible and antimicrobial, in the case of MDR E. coli. Indeed, as this study showed, nanoalternatives to antibiotics are feasible, adaptable, and can be facilely produced. The possible clinical applications of the rare earth metal nanoparticles are variegated, and ceria and yttria nanoparticles are additionally credited in the literature as dynamic antioxidants, regulators of tissue regeneration, and anticancer agents.
Collapse
Affiliation(s)
- Nicole J Bassous
- Department of Chemical Engineering, Northeastern University, Boston Massachusetts 02115, United States
| | - Caterina Bartomeu Garcia
- Department of Chemical Engineering, Northeastern University, Boston Massachusetts 02115, United States
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston Massachusetts 02115, United States
| |
Collapse
|
9
|
Popova NR, Popov AL, Ermakov AM, Reukov VV, Ivanov VK. Ceria-Containing Hybrid Multilayered Microcapsules for Enhanced Cellular Internalisation with High Radioprotection Efficiency. Molecules 2020; 25:E2957. [PMID: 32605031 PMCID: PMC7411955 DOI: 10.3390/molecules25132957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cerium oxide nanoparticles (nanoceria) are believed to be the most versatile nanozyme, showing great promise for biomedical applications. At the same time, the controlled intracellular delivery of nanoceria remains an unresolved problem. Here, we have demonstrated the radioprotective effect of polyelectrolyte microcapsules modified with cerium oxide nanoparticles, which provide controlled loading and intracellular release. The optimal (both safe and uptake efficient) concentrations of ceria-containing microcapsules for human mesenchymal stem cells range from 1:10 to 1:20 cell-to-capsules ratio. We have revealed the molecular mechanisms of nanoceria radioprotective action on mesenchymal stem cells by assessing the level of intracellular reactive oxygen species (ROS), as well as by a detailed 96-genes expression analysis, featuring genes responsible for oxidative stress, mitochondrial metabolism, apoptosis, inflammation etc. Hybrid ceria-containing microcapsules have been shown to provide an indirect genoprotective effect, reducing the number of cytogenetic damages in irradiated cells. These findings give new insight into cerium oxide nanoparticles' protective action for living beings against ionising radiation.
Collapse
Affiliation(s)
- N. R. Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - A. L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - A. M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - V. V. Reukov
- University of Georgia, 315 Dawson Hall, Athens, GA 30602, USA;
| | - V. K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
10
|
Untangling the Mechanisms of GdYVO4:Eu3+ nanoparticle Photocatalytic Activity. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Vashchenko O, Kasian N, Budianska L, Brodskii R, Bespalova I, Lisetski L. Adsorption of ions on model phospholipid membranes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
|
13
|
Hubenko K, Yefimova S, Tkacheva T, Maksimchuk P, Borovoy I, Klochkov V, Kavok N, Opolonin O, Malyukin Y. Reactive oxygen species generation in aqueous solutions containing GdVO 4:Eu 3+ nanoparticles and their complexes with methylene blue. NANOSCALE RESEARCH LETTERS 2018; 13:100. [PMID: 29654410 PMCID: PMC5899080 DOI: 10.1186/s11671-018-2514-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.
Collapse
Affiliation(s)
- Kateryna Hubenko
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Tatyana Tkacheva
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Pavel Maksimchuk
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Igor Borovoy
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Vladimir Klochkov
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Nataliya Kavok
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Oleksander Opolonin
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| | - Yuri Malyukin
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv, 61072 Ukraine
| |
Collapse
|