1
|
Song Y, Liu Z, Zhang Q. Engineering the future: Unveiling novel paths in heavy metal wastewater remediation with advanced carbon-based nanomaterials - Beyond performance comparison, tackling challenges, and exploring opportunities. CHEMOSPHERE 2024; 366:143477. [PMID: 39374670 DOI: 10.1016/j.chemosphere.2024.143477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
This review addresses the pressing issue of heavy metal pollution in water, specifically focusing on the application of adsorption technology utilizing carbon materials such as biochar, carbon nanotubes, graphene, and carbon quantum dots. Utilizing bibliometric analysis with VOSviewer based on Web of Science core dataset, this study identifies research hotspots related to carbon-based materials in heavy metal applications over the past decade. However, existing literature still lacks sufficient comparative analysis of the potential of carbon-based materials' structural characteristics and inherent advantages in heavy metal applications. This review strategically addresses this gap, offering a comprehensive comparative analysis of these four materials from an engineering application perspective. It offers a thorough evaluation of their suitability for various water treatment applications, providing a detailed examination of their advantages and limitations in heavy metal application. Additionally, the review provides insights into performance comparisons, addresses challenges, and explores emerging opportunities in this field. Insights into potential application fields based on structural characteristics and inherent advantages are presented. This unique focus on a comprehensive comparative analysis distinguishes the article, offering a nuanced perspective on the strengths and future possibilities of carbon materials in tackling the global challenge of heavy metal pollution in water.
Collapse
Affiliation(s)
- Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhanqi Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
2
|
Bityutskii NP, Yakkonen KL, Puzanskiy R, Shavarda AL, Semenov KN. Metabolite responses of cucumber on copper toxicity in presence of fullerene C 60 derivatives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108915. [PMID: 38972240 DOI: 10.1016/j.plaphy.2024.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Copper (Cu) toxicity in crops is a result of excessive release of Cu into environment. Little is known about mitigation of Cu toxicity through the application of carbon-based nanomaterials including water-soluble fullerene C60 derivatives. Two derivatives of fullerene were examined: polyhydroxylated C60 (fullerenol) and arginine C60 derivative. In order to study the response of Cu-stressed plants (Cucumis sativus L.) to these nanomaterials, metabolomics analysis by gas chromatography-mass spectrometry (GC-MS) was performed. Excess Cu (15 μM) caused substantial increase in xylem sap Cu, retarded dry biomass and leaf chlorosis of hydroponically grown cucumber. In Cu-stressed leaves, metabolomes was disturbed towards suppression metabolism of nitrogen (N) compounds and activation metabolism of hexoses. Also, upregulation of some metabolites involving in antioxidant defense system, such as ascorbic acid, tocopherol and ferulic acid, was occurred in Cu-stressed leaves. Hydroponically added fullerene adducts decreased the xylem sap Cu and alleviated Cu toxicity with effectiveness has been most pronounced for arginine C60 derivative. Metabolic responses of plants subjected to high Cu with fullerene derivatives were opposite to that observed under Cu alone. Fatty acids up-regulation (linolenic acid) and antioxidant molecules (tocopherol) down-regulation might indicate that arginine C60 adduct can alleviate Cu induced oxidative stress. Although fullerenol slightly improved cucumber growth, its effect on metabolic state of Cu-stressed plants was not statistically significant. We suggest that tested fullerene C60 adducts have a potential to prevent Cu toxicity in plants through a mechanism associated with their capability to restrict xylem transport of Cu from roots to shoot, and to maintain antioxidative properties of plants.
Collapse
Affiliation(s)
- Nikolai P Bityutskii
- Department of Agricultural Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia.
| | - Kirill L Yakkonen
- Department of Agricultural Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russia
| | - Roman Puzanskiy
- Department of Analytical Phytochemistry, Komarov Botanical Institute, Russian Academy of Sciences, st. Professora Popova, 2, Saint Petersburg, 197022, Russia
| | - Allexey L Shavarda
- Department of Analytical Phytochemistry, Komarov Botanical Institute, Russian Academy of Sciences, st. Professora Popova, 2, Saint Petersburg, 197022, Russia; Center for Molecular and Cell Technologies, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Konstantin N Semenov
- Department of General and Bioorganic Chemistry, First Pavlov State Medical University, 6-8 L'va Tolstogo ulitsa, Saint Petersburg, 197022, Russia
| |
Collapse
|
3
|
Loryuenyong V, Nakhlo W, Srikaenkaew P, Yaidee P, Buasri A, Eiad-Ua A. Enhanced CO 2 Capture Potential of Chitosan-Based Composite Beads by Adding Activated Carbon from Coffee Grounds and Crosslinking with Epichlorohydrin. Int J Mol Sci 2024; 25:8916. [PMID: 39201602 PMCID: PMC11354684 DOI: 10.3390/ijms25168916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Carbon dioxide (CO2) capture has been identified as a potential technology for reducing the anthropic emissions of greenhouse gases, particularly in post-combustion processes. The development of adsorbents for carbon capture and storage is expanding at a rapid rate. This article presents a novel sustainable synthesis method for the production of chitosan/activated carbon CO2 adsorbents. Chitosan is a biopolymer that is naturally abundant and contains amino groups (-NH2), which are required for the selective adsorption of CO2. Spent coffee grounds have been considered as a potential feedstock for the synthesis of activated coffee grounds through carbonization and chemical activation. The chitosan/activated coffee ground composite microspheres were created using the emulsion cross-linking method with epichlorohydrin. The effects of the amount of chitosan (15, 20, and 25 g), activated coffee ground (10, 20, 30, and 40%w/w), and epichlorohydrin (2, 3, 4, 5, 6, 7 and 8 g) were examined. The CO2 capture potential of the composite beads is superior to that of the neat biopolymer beads. The CO2 adsorbed of synthesized materials at a standard temperature and pressure is improved by increasing the quantity of activated coffee ground and epichlorohydrin. These findings suggest that the novel composite bead has the potential to be applied in CO2 separation applications.
Collapse
Affiliation(s)
- Vorrada Loryuenyong
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand; (V.L.); (W.N.); (P.S.); (P.Y.)
| | - Worranuch Nakhlo
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand; (V.L.); (W.N.); (P.S.); (P.Y.)
| | - Praifha Srikaenkaew
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand; (V.L.); (W.N.); (P.S.); (P.Y.)
| | - Panpassa Yaidee
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand; (V.L.); (W.N.); (P.S.); (P.Y.)
| | - Achanai Buasri
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand; (V.L.); (W.N.); (P.S.); (P.Y.)
| | - Apiluck Eiad-Ua
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| |
Collapse
|
4
|
Pereira L, Castillo V, Calero M, Blázquez G, Solís RR, Ángeles Martín-Lara M. Conversion of char from pyrolysis of plastic wastes into alternative activated carbons for heavy metal removal. ENVIRONMENTAL RESEARCH 2024; 250:118558. [PMID: 38412913 DOI: 10.1016/j.envres.2024.118558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
The valorization of post-consumer mixed plastics in pyrolysis processes represents an abundant reservoir of carbon that can be effectively converted into useful chars. This process not only holds appeal in terms of improving plastic waste concerns but also contributes to the reduction of greenhouse gas emissions, thus aligning with the principles of a circular economy paradigm. In this study, the char produced from the pyrolysis of post-consumer mixed plastic waste has been activated with Na2CO3, KOH, NaOH, and K2CO3 to improve the textural, structural, and composition characteristics, leading to improved adsorption capability. These characteristics were studied by N2 adsorption-desorption isotherms, scanning electron microscopy, elemental and immediate analysis, and X-ray photoelectron spectroscopy. The developed surface area (SBET) was 573, 939, 704 and 592 m2 g-1 for Na2CO3, KOH, NaOH and K2CO3 activated carbons, respectively. These activated chars (ACs) were tested for the adsorption of heavy metals in both synthetic waters containing Pb, Cd, and Cu and industrial wastewater collected at an agrochemical production plant. Na2CO3-AC was the best performing material. The metal uptake in synthetic waters using a batch set-up was 40, 13 and 12 mg g-1 for Pb, Cd and Cu. Experiments in a column set-up using Na2CO3-AC resulted in a saturation time of 290, 16, and 80 min for Pb, Cd, and Cu synthetic waters, respectively, and metal uptakes of 26.8, 4.1, and 7.9 mg g-1, respectively. The agrochemical effluents, containing mainly Cr, Cu, Mn, and Zn were tested in a plug-flow column. The metal uptake notably decreased compared to synthetic water due to a competition effect for active sites.
Collapse
Affiliation(s)
- Ledicia Pereira
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain
| | - Ventura Castillo
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain
| | - Mónica Calero
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain.
| | - Gabriel Blázquez
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain.
| | - Rafael R Solís
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain
| | - M Ángeles Martín-Lara
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n 18071 Granada Spain
| |
Collapse
|
5
|
Flores K, Gonzalez DF, Morales HM, Mar A, Garcia-Segura S, Gardea-Torresdey JL, G Parsons J. Amino-modified upcycled biochar achieves selective chromium removal in complex aqueous matrices. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121160. [PMID: 38761625 DOI: 10.1016/j.jenvman.2024.121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Chromium pollution of groundwater sources is a growing global issue, which correlates with various anthropogenic activities. Remediation of both the Cr(VI) and Cr(III), via adsorption technologies, has been championed in recent years due to ease of use, minimal energy requirements, and the potential to serve as a highly sustainable remediation technology. In the present study, a biochar sorbent sourced from pineapple skins, allowed for the upcycling of agricultural waste into water purification technology. The biochar material was chemically modified, through a green amination method, to produce an efficient and selective adsorbent for the removal of both Cr(VI) and Cr(III) from complex aqueous matrices. From FTIR analysis it was evident that the chemical modification introduced new C-N and N-H bonds observed in the modified biochar along with a depletion of N-O and C-H bonds found in the pristine biochar. The amino modified biochar was found to spontaneously adsorb both forms of chromium at room temperature, with binding capacities of 46.5 mg/g of Cr(VI) and 27.1 mg/g of Cr(III). Interference studies, conducted in complex matrices, showed no change in adsorption capacity for Cr(VI) in matrices containing up to 3,000× the concentration of interfering ions. Finally, Cr(III) removal was synergized to 100% adsorption at interfering ions concentrations up to 330× of the analyte, which were suppressed at higher interference concentrations. Considering such performance, the amino modified biochar achieved selective removal for both forms of chromium, showing great potential for utilization in complex chromium pollution sources.
Collapse
Affiliation(s)
- Kenneth Flores
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA.
| | - Diego F Gonzalez
- School of Integrative Biological and Chemical Sciences University of Texas Rio Grande Valley, 1 West University Blvd., Brownsville, TX, 78521, USA
| | - Helia M Morales
- School of Integrative Biological and Chemical Sciences University of Texas Rio Grande Valley, 1 West University Blvd., Brownsville, TX, 78521, USA; Escuela de Ingenierıa y Ciencias, Tecnologico de Monterrey, Av E Garza Sada # 2501, Monterrey, 64849, Mexico
| | - Arnulfo Mar
- School of Integrative Biological and Chemical Sciences University of Texas Rio Grande Valley, 1 West University Blvd., Brownsville, TX, 78521, USA
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Jorge L Gardea-Torresdey
- Department of Chemistry & Biochemistry and Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Jason G Parsons
- School of Earth Environmental, and Marine Science, University of Texas Rio Grande Valley, 1 West University Blvd., Brownsville, TX, 78521, USA.
| |
Collapse
|
6
|
Malik S, Kumar D. Perspectives of nanomaterials in microbial remediation of heavy metals and their environmental consequences: A review. Biotechnol Genet Eng Rev 2024; 40:154-201. [PMID: 36871166 DOI: 10.1080/02648725.2023.2182546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Nanomaterials (NMs) have diverse applications in various sectors, such as decontaminating heavy metals from drinking water, wastewater, and soil. Their degradation efficiency can be enhanced through the application of microbes. As microbial strain releases enzymes, which leads to the degradation of HMs. Therefore, nanotechnology and microbial-assisted remediation-based methods help us develop a remediation process with practical utility, speed, and less environmental toxicity. This review focuses on the success achieved for the bioremediation of heavy metals by nanoparticles and microbial strains and in their integrated approach. Still, the use of NMs and heavy metals (HMs) can negatively affect the health of living organisms. This review describes various aspects of the bioremediation of heavy materials using microbial nanotechnology. Their safe and specific use supported by bio-based technology paves the way for their better remediation. We discuss the utility of nanomaterials for removing heavy metals from wastewater, toxicity studies and issues to the environment with their practical implications. Nanomaterial assisted heavy metal degradation coupled with microbial technology and disposal issues are described along with detection methods. Environmental impact of nanomaterials is also discussed based on the recent work conducted by the researchers. Therefore, this review opens new avenues for future research with an impact on the environment and toxicity issues. Also, applying new biotechnological tools will help us develop better heavy metal degradation routes.
Collapse
Affiliation(s)
- Sachin Malik
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| | - Dharmender Kumar
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonepat, Haryana, India
| |
Collapse
|
7
|
Dhanapal A, Thiruvengadam M, Vairavanathan J, Venkidasamy B, Easwaran M, Ghorbanpour M. Nanotechnology Approaches for the Remediation of Agricultural Polluted Soils. ACS OMEGA 2024; 9:13522-13533. [PMID: 38559935 PMCID: PMC10975622 DOI: 10.1021/acsomega.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Soil pollution from various anthropogenic and natural activities poses a significant threat to the environment and human health. This study explored the sources and types of soil pollution and emphasized the need for innovative remediation approaches. Nanotechnology, including the use of nanoparticles, is a promising approach for remediation. Diverse types of nanomaterials, including nanobiosorbents and nanobiosurfactants, have shown great potential in soil remediation processes. Nanotechnology approaches to soil pollution remediation are multifaceted. Reduction reactions and immobilization techniques demonstrate the versatility of nanomaterials in mitigating soil pollution. Nanomicrobial-based bioremediation further enhances the efficiency of pollutant degradation in agricultural soils. A literature-based screening was conducted using different search engines, including PubMed, Web of Science, and Google Scholar, from 2010 to 2023. Keywords such as "soil pollution, nanotechnology, nanoremediation, heavy metal remediation, soil remediation" and combinations of these were used. The remediation of heavy metals using nanotechnology has demonstrated promising results and offers an eco-friendly and sustainable solution to address this critical issue. Nanobioremediation is a robust strategy for combatting organic contamination in soils, including pesticides and herbicides. The use of nanophytoremediation, in which nanomaterials assist plants in extracting and detoxifying pollutants, represents a cutting-edge and environmentally friendly approach for tackling soil pollution.
Collapse
Affiliation(s)
- Anand
Raj Dhanapal
- Chemistry
and Bioprospecting Division, Institute of Forest Genetics and Tree
Breeding (IFGTB), Forest Campus, Indian
Council of Forestry Research and Education (ICFRE), Coimbatore 641 002, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department
of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic
of Korea
- Center
for Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Jayavarshini Vairavanathan
- Department
of Biotechnology, Karpagam Academy of Higher
Education, Coimbatore 641 021, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department
of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals,
Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil
Nadu, India
| | - Maheswaran Easwaran
- Department
of Research Analytics, Saveetha Dental College and Hospitals, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Mansour Ghorbanpour
- Department
of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
- Institute
of Nanoscience and Nanotechnology, Arak
University, Arak 38156-8-8349, Iran
| |
Collapse
|
8
|
François M, Lin KS, Rachmadona N, Khoo KS. Utilization of carbon-based nanomaterials for wastewater treatment and biogas enhancement: A state-of-the-art review. CHEMOSPHERE 2024; 350:141008. [PMID: 38154673 DOI: 10.1016/j.chemosphere.2023.141008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The management of environmental pollution and carbon dioxide (CO2) emissions is a challenge that has spurred increased research interest in determining sustainable alternatives to decrease biowaste. This state-of-the-art review aimed to describe the preparation and utilization of carbon-based nanomaterials (CNM) for biogas enhancement and wastewater contaminant (dyes, color, and dust particles) removal. The novelty of this review is that we elucidated that the performance of CNMs in the anaerobic digestion (AD) varies from one system to another. In addition, this review revealed that increasing the pyrolysis temperature can facilitate the transition from one CNM type to another and outlined the methods that can be used to develop CNMs, including arc discharge, chemical exfoliation, and laser ablation. In addition, this study showed that methane (CH4) yield can be slightly increased (e.g. from 33.6% to 60.89%) depending on certain CNM factors, including its type, concentration, and feedstock. Temperature is a fundamental factor involved in the method and carbon sources used for CNM synthesis. This review determined that graphene oxide is not a good additive for biogas and CH4 yield improvement compared with other types of CNM, such as graphene and carbon nanotubes. The efficacy of CNMs in wastewater treatment depends on the temperature and pH of the solution. Therefore, CNMs are good adsorbents for wastewater contaminant removal and are a promising alternative for CO2 emissions reduction. Further research is necessary to determine the relationship between CNM synthesis and preparation costs while accounting for other factors such as gas flow, feedstock, consumption time, and energy consumption.
Collapse
Affiliation(s)
- Mathurin François
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Nova Rachmadona
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| |
Collapse
|
9
|
Ahmad Shah SN, Zulfiqar S, Ruipérez F, Rafique M, Iqbal M, Forrester MJ, Sarwar Late MI, Cochran EW. An integrated experimental and theoretical approach to probe Cr(vi) uptake using decorated halloysite nanotubes for efficient water treatment. RSC Adv 2024; 14:2947-2960. [PMID: 38239454 PMCID: PMC10794904 DOI: 10.1039/d3ra07675j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Halloysite nanotubes (HNTs) were surface functionalized using four distinct chemical moieties (amidoxime, hydrazone, ethylenediamine (EDA), and diethylenetriamine (DETA)), producing modified HNTs (H1-H4) capable of binding with Cr(vi) ions. Advanced techniques like FTIR, XRD, SEM, and EDX provided evidence of the successful functionalization of these HNTs. Notably, the functionalization occurred on the surface of HNTs, rather than within the interlayer or lumen. These decorated HNTs were effective in capturing Cr(vi) ions at optimized sorption parameters, with adsorption rates ranging between 58-94%, as confirmed by atomic absorption spectroscopy (AAS). The mechanism of adsorption was further scrutinized through the Freundlich and Langmuir isotherms. Langmuir isotherms revealed the nearest fit to the data suggesting the monolayer adsorption of Cr(vi) ions onto the nanotubes, indicating a favorable adsorption process. It was hypothesized that Cr(vi) ions are primarily attracted to the amine groups on the modified nanotubes. Quantum chemical calculations further revealed that HNTs functionalized with hydrazone structures (H2) demonstrated a higher affinity (interaction energy -26.33 kcal mol-1) for the Cr(vi) ions. This can be explained by the formation of stronger hydrogen bonds with the NH moieties of the hydrazone moiety, than those established by the OH of oxime (H1) and longer amine chains (H3 and H4), respectively. Overall, the findings suggest that these decorated HNTs could serve as an effective and cost-efficient solution for treating water pollution.
Collapse
Affiliation(s)
- Syed Nadeem Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
| | - Sonia Zulfiqar
- Department of Chemistry, Faculty of Science, University of Ostrava 30. Dubna 22 Ostrava 701 03 Czech Republic
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road, Ames Iowa 50011 USA
| | - Fernando Ruipérez
- POLYMAT, Physical Chemistry Department, Faculty of Pharmacy, University of the Basque Country UPV/EHU 01006 Vitoria-Gasteiz Spain
| | - Muhammad Rafique
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology H-12 Islamabad 44000 Pakistan
| | - Michael J Forrester
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road, Ames Iowa 50011 USA
| | | | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road, Ames Iowa 50011 USA
| |
Collapse
|
10
|
Asghar N, Hussain A, Nguyen DA, Ali S, Hussain I, Junejo A, Ali A. Advancement in nanomaterials for environmental pollutants remediation: a systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. J Nanobiotechnology 2024; 22:26. [PMID: 38200605 PMCID: PMC10777661 DOI: 10.1186/s12951-023-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 01/12/2024] Open
Abstract
Environmental pollution is a major issue that requires effective solutions. Nanomaterials (NMs) have emerged as promising candidates for pollution remediation due to their unique properties. This review paper provides a systematic analysis of the potential of NMs for environmental pollution remediation compared to conventional techniques. It elaborates on several aspects, including conventional and advanced techniques for removing pollutants, classification of NMs (organic, inorganic, and composite base). The efficiency of NMs in remediation of pollutants depends on their dispersion and retention, with each type of NM having different advantages and disadvantages. Various synthesis pathways for NMs, including traditional synthesis (chemical and physical) and biological synthesis pathways, mechanisms of reaction for pollutants removal using NMs, such as adsorption, filtration, disinfection, photocatalysis, and oxidation, also are evaluated. Additionally, this review presents suggestions for future investigation strategies to improve the efficacy of NMs in environmental remediation. The research so far provides strong evidence that NMs could effectively remove contaminants and may be valuable assets for various industrial purposes. However, further research and development are necessary to fully realize this potential, such as exploring new synthesis pathways and improving the dispersion and retention of NMs in the environment. Furthermore, there is a need to compare the efficacy of different types of NMs for remediating specific pollutants. Overall, this review highlights the immense potential of NMs for mitigating environmental pollutants and calls for more research in this direction.
Collapse
Affiliation(s)
- Nosheen Asghar
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Alamdar Hussain
- Department of Botany, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
| | - Duc Anh Nguyen
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Salar Ali
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
| | - Ishtiaque Hussain
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan
- Department of Environmental Science, Quaid-i-Azam University of Islamabad, Islamabad, 15320, Pakistan
| | - Aurangzeb Junejo
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Attarad Ali
- Department of Environmental Science, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan.
- Directorate of Quality Enhancement Cell, University of Baltistan, Skardu 16400, Gilgit-Baltistan, Pakistan.
| |
Collapse
|
11
|
Attia YA, Ezet AE, Saeed S, Galmed AH. Nano carbon-modified air purification filters for removal and detection of particulate matters from ambient air. Sci Rep 2024; 14:621. [PMID: 38182636 PMCID: PMC10770146 DOI: 10.1038/s41598-023-50902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024] Open
Abstract
Particulate matters (PMs) pose significant risks to human health and the environment, necessitating research to enhance air purification filters and reduce harmful emissions. This study focuses on the preparation of carbon nanomaterials, including graphitic carbon nitride nanosheets (g-C3N4 NSs), reduced graphene oxide (r-GO), and carbon nanotubes (CNT), for modifying filters in air particle monitoring devices. The objective is to investigate the impact of these nanomaterials on enhancing PM adsorption efficiency. Quantitative and qualitative analyses of the modified filters' adsorption efficiency towards PMs are performed using spectroscopic techniques such as Energy-Dispersive X-ray Spectroscopy (EDX), Inductively Coupled Plasma (ICP), and Laser-Induced Breakdown Spectroscopy (LIBS). The results reveal that CNT-modified filters exhibit superior adsorption efficiency compared to the control, g-C3N4, and r-GO-modified filters. The exceptional performance of CNTs is attributed to their large specific surface area and pore volume. Additionally, LIBS demonstrates its capability to detect heavy metals like Cd, which remain undetected by EDX and ICP. The technique proves sensitive for heavy metal monitoring. This novel approach is expected to garner significant attention and contribute to the development of improved air purification technologies.
Collapse
Affiliation(s)
- Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| | - Abd Elhakim Ezet
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
- Air Quality Lab, Cairo University Center for Hazard Mitigation, Giza, 12613, Egypt
| | - Samar Saeed
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Ahmed H Galmed
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
12
|
Krisanova N, Pastukhov A, Dekaliuk M, Dudarenko M, Pozdnyakova N, Driuk M, Borisova T. Mercury-induced excitotoxicity in presynaptic brain nerve terminals: modulatory effects of carbonaceous airborne particulate simulants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3512-3525. [PMID: 38085481 DOI: 10.1007/s11356-023-31359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Multipollutant approach is a breakthrough in up-to-date environmental quality and health risk estimation. Both mercury and carbonaceous air particulate are hazardous neurotoxicants. Here, the ability of carbonaceous air particulate simulants, i.e. carbon dots obtained by heating of organics, and nanodiamonds, to influence Hg2+-induced neurotoxicity was monitored using biological system, i.e. presynaptic rat cortex nerve terminals. Using HgCl2 and classical reducing/chelating agents, an adequate synaptic parameter, i.e. the extracellular level of key excitatory neurotransmitter L-[14C]glutamate, was selected for further analysis. HgCl2 starting from 5 µM caused an acute and concentration-dependent increase in the extracellular L-[14C]glutamate level in nerve terminals. Combined application of Hg2+ and carbon dots from heating of citric acid/urea showed that this simulant was able to mitigate in an acute manner excitotoxic Hg2+-induced increase in the extracellular L-[14C]glutamate level in nerve terminals by 37%. These carbon dots and Hg2+ acted as a complex in nerve terminals that was confirmed with fluorimetric data on Hg2+-induced changes in their spectroscopic features. Nanodiamonds and carbon dots from β-alanine were not able to mitigate a Hg2+-induced increase in the extracellular L-[14C]glutamate level in nerve terminals. Developed approach can be applicable for monitoring capability of different particles/compounds to have Hg2+-chelating signs in the biological systems. Therefore, among testing simulants, the only carbon dots from citric acid/urea were able to mitigate acute Hg2+-induced neurotoxicity in nerve terminals, thereby showing a variety of effects of carbonaceous airborne particulate in situ and its potential to interfere and modulate Hg2+-associated health hazard.
Collapse
Affiliation(s)
- Nataliya Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Mariia Dekaliuk
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Mikola Driuk
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01054, Ukraine.
| |
Collapse
|
13
|
Ng MG, Chan BJL, Koh RY, Ng KY, Chye SM. Prevention of Parkinson's Disease: From Risk Factors to Early Interventions. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:746-760. [PMID: 37326115 DOI: 10.2174/1871527322666230616092054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by progressively worsening motor dysfunction. Currently, available therapies merely alleviate symptoms, and there are no cures. Consequently, some researchers have now shifted their attention to identifying the modifiable risk factors of PD, with the intention of possibly implementing early interventions to prevent the development of PD. Four primary risk factors for PD are discussed including environmental factors (pesticides and heavy metals), lifestyle (physical activity and dietary intake), drug abuse, and individual comorbidities. Additionally, clinical biomarkers, neuroimaging, biochemical biomarkers, and genetic biomarkers could also help to detect prodromal PD. This review compiled available evidence that illustrates the relationship between modifiable risk factors, biomarkers, and PD. In summary, we raise the distinct possibility of preventing PD via early interventions of the modifiable risk factors and early diagnosis.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Brendan Jun Lam Chan
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University, 47500 Selangor, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Yang H, Zhang P, Zheng Q, Hameed MU, Raza S. Synthesis of cellulose cotton-based UiO-66 MOFs for the removal of rhodamine B and Pb(II) metal ions from contaminated wastewater. Int J Biol Macromol 2023; 253:126986. [PMID: 37739285 DOI: 10.1016/j.ijbiomac.2023.126986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
The presence of pollutants in drinking water has become a significant concern recently. Various substances, including activated carbon, membranes, biochar, etc., are used to remove these pollutants. In the present study, a new composite comprising cotton fabric and a mixture of Metal-Organic Frameworks (MOFs) was synthesized and used as an adsorbent for eliminating pollutants from wastewater. At first, the UiO-66 MOFs were prepared by a simple method of reacting Zirconium (IV) chloride (ZrCl4) and p-Phthalic acid (PTA) after successful preparation of UiO-66 then modified its surface with amino functional groups by reacting with APTES to obtain UiO-66-NH2. Moreover, the cellulose cotton fabric (CF) surface was modified with Polydopamine (PDA) and obtained CF@PDA. Further, with the help of EDC-HCl and NHS, the UiO-66-NH2 grafted on the surface of the CF@PDA and finally obtained CF@PDA/UiO-66-NH2. In addition, the adsorption study was performed toward RhB dye and Pb(II) metal ion pollutants. The maximum adsorption toward RhB dye was 68.5 mg/g, while toward Pb(II) metal ions was 65 mg/g. In addition, the kinetic study was also conducted and the result favoured the Pseudo-second order kinetic study. The adsorption isotherm was also studied and the Langmuir model was more fitted as compared with the Freundlich model. Moreover, the material has excellent regeneration and recycling ability after ten cycles. The significant adsorption ability, the novel combination of cotton and MOFs, and the recycling feature make our material CF@PDA/UiO-66-NH2 a promising potential absorbent material for wastewater treatment and even in other important areas of water research.
Collapse
Affiliation(s)
- Huanggen Yang
- Key Laboratory of Coordination Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, PR China
| | - Pei Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, PR China.
| | - Qi Zheng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, PR China.
| | - Muhammad Usman Hameed
- Department of Chemistry, University of Poonch Rawalakot, 12350, Azad Kashmir, Pakistan
| | - Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China.
| |
Collapse
|
15
|
Majumder S, Dhara B, Mitra AK, Dey S. Applications and implications of carbon nanotubes for the sequestration of organic and inorganic pollutants from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124934-124949. [PMID: 36719577 DOI: 10.1007/s11356-023-25431-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The rapid growth in the population, industrial developments, and climate change over the century have contributed to a significant rise in aquatic pollution leading to a scarcity of clean, reliable, and sustainable water sources and supply. Exposure through ingestion, inhalation, and dermal absorption of organic/inorganic compounds such as heavy metals, pharmaceuticals, dyes, and persistent organic pollutants (POPs) discharged from municipalities, hospitals, textile industries, food, and agricultural sectors has caused adverse health outcomes in aquatic and terrestrial organisms. Owing to the high surface area, photocatalytic activity, antimicrobial, antifouling, optical, electronic, and magnetic properties, the application of nanotechnology offers unique opportunities in advanced wastewater management strategies over traditional approaches. Carbon nanomaterials and associated composites such as single-walled carbon nanotubes (SWCNT), multiwalled carbon nanotubes (MWCNT), and carbon nanotubes (CNT) buckypaper membranes have demonstrated efficiency in adsorption, photocatalytic activity, and filtration of contaminants and thus show immense potentiality in wastewater management. This review focuses on the application of CNTs in the sequestration of organic and inorganic contaminants from the aquatic environment. It also sheds light on the aquatic pollutant desorption processes, current safety regulations, and toxic responses associated with CNTs. Critical knowledge gaps involving CNT synthesis, surface modification processes, CNT-environment interactions, and risk assessments are further identified and discussed.
Collapse
Affiliation(s)
- Satwik Majumder
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Sainte Anne de Bellevue, H9X 3V9, Quebec, Canada
| | - Bikram Dhara
- Department of Microbiology, St. Xavier's College (Autonomous), Kolkata, 30 Park St., Mullick Bazar, Park Street Area, West Bengal, 700016, Kolkata, India
| | - Arup Kumar Mitra
- Department of Microbiology, St. Xavier's College (Autonomous), Kolkata, 30 Park St., Mullick Bazar, Park Street Area, West Bengal, 700016, Kolkata, India
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Ajodhya, Howrah, West Bengal, 711312, India.
| |
Collapse
|
16
|
Mishra Y, Mishra V, Chattaraj A, Aljabali AAA, El-Tanani M, Farani MR, Huh YS, Serrano-Aroca Ã, Tambuwala MM. Carbon nanotube-wastewater treatment nexus: Where are we heading to? ENVIRONMENTAL RESEARCH 2023; 238:117088. [PMID: 37683781 DOI: 10.1016/j.envres.2023.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Water treatment is crucial in solving the rising people's appetite for water and global water shortages. Carbon nanotubes (CNTs) have considerable promise for water treatment because of their adjustable and distinctive arbitrary, physical, as well as chemical characteristics. This illustrates the benefits and risks of integrating CNT into the traditional water treatment resource. Due to their outstanding adsorbent ability and chemical and mechanical properties, CNTs have gained global consideration in environmental applications. The desalination and extraction capability of CNT were improved due to chemical or physical modifications in pure CNTs by various functional groups. The CNT-based composites have many benefits, such as antifouling performance, high selectivity, and increased water permeability. Nevertheless, their full-scale implementations are still constrained by their high costs. Functionalized CNTs and their promising nanocomposites to eliminate contaminants are advised for marketing and extensive water/wastewater treatment.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Ãngel Serrano-Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, England, United Kingdom.
| |
Collapse
|
17
|
Vasilachi-Mitoseru IC, Stoleru V, Gavrilescu M. Integrated Assessment of Pb(II) and Cu(II) Metal Ion Phytotoxicity on Medicago sativa L., Triticum aestivum L., and Zea mays L. Plants: Insights into Germination Inhibition, Seedling Development, and Ecosystem Health. PLANTS (BASEL, SWITZERLAND) 2023; 12:3754. [PMID: 37960110 PMCID: PMC10650519 DOI: 10.3390/plants12213754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Environmental pollution with heavy metals has become a problem of major interest due to the harmful effects of metal ions that constantly evolve and generate serious threats to both the environment and human health through the food chain. Recognizing the imperative need for toxicological assessments, this study revolves around elucidating the effects of Pb(II) and Cu(II) ions on three plant species; namely, Medicago sativa L., Triticum aestivum L., and Zea mays L. These particular species were selected due to their suitability for controlled laboratory cultivation, their potential resistance to heavy metal exposure, and their potential contributions to phytoremediation strategies. The comprehensive phytotoxicity assessments conducted covered a spectrum of critical parameters, encompassing germination inhibition, seedling development, and broader considerations regarding ecosystem health. The key metrics under scrutiny included the germination rate, the relative growth of root and stem lengths, the growth inhibition index, and the tolerance index. These accurately designed experiments involved subjecting the seeds of these plants to an array of concentrations of PbCl2 and CuCl2 solutions, enabling an exhaustive evaluation of the phytotoxic potential of these metal ions and their intricate repercussions on these plant species. Overall, this study provides valuable insights into the diverse and dynamic responses of different plant species to Pb(II) and Cu(II) metal ions, shedding light on their adaptability and resilience in metal-contaminated environments. These findings have important implications for understanding plant-metal interactions and devising phytoremediation strategies in contaminated ecosystems.
Collapse
Affiliation(s)
- Ionela-Catalina Vasilachi-Mitoseru
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Vasile Stoleru
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
18
|
Ahmed T, Masood HA, Noman M, Al-Huqail AA, Alghanem SM, Khan MM, Muhammad S, Manzoor N, Rizwan M, Qi X, Abeed AHA, Li B. Biogenic silicon nanoparticles mitigate cadmium (Cd) toxicity in rapeseed (Brassica napus L.) by modulating the cellular oxidative stress metabolism and reducing Cd translocation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132070. [PMID: 37478591 DOI: 10.1016/j.jhazmat.2023.132070] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Nano-enabled strategies have emerged as promising alternatives to resolve heavy metals (HMs) related harms in an eco-friendly manner. Here, we explored the potential of biogenic silicon nanoparticles (SiNPs) in alleviating cadmium (Cd) stress in rapeseed (Brassica napus L.) plants by modulating cellular oxidative repair mechanisms. Biogenic SiNPs of spherical shapes with size ranging between 14 nm and 35 nm were synthesized using rice straw extract and characterized through advanced characterization techniques. A greenhouse experiment results showed that SiNPs treatment at 250 mg kg-1 significantly improved growth parameters, including fresh weight (33.3 %) and dry weight (32.6 %) of rapeseed plants than Cd-treated control group. Photosynthesis and leaf gas exchange parameters were also positively influenced by SiNPs treatment, indicating enhanced photosynthetic efficiency. Additionally, SiNPs treatment at 250 mg kg-1 increased the activities of antioxidant enzymes such as superoxide dismutase (19.1 %), peroxidase (33.4 %), catalase (14.4 %), and ascorbate peroxidase (33.8 %), which may play a crucial role in ROS scavenging and reduction in Cd-induced oxidative stress. TEM analysis revealed that SiNPs treatment effectively mitigated Cd-induced damage to leaf ultrastructure, while qPCR analysis showed that SiNPs treatment changed the expressions of the antioxidant defense and stress related genes. Moreover, SiNPs treatment significantly influenced the Cd accumulation and Si contents in plants. Overall, our findings revealed that biogenic SiNPs have great potential to serve as a sustainable, eco-friendly, and non-toxic alternative for the remediation of Cd toxicity in rapeseed plants.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.; Xianghu Laboratory, Hangzhou 311231, China
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Suliman Ms Alghanem
- Department of Biology, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Muhammad Munem Khan
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan.
| | - Sher Muhammad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | | | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China..
| |
Collapse
|
19
|
Li M, Shi Q, Song N, Xiao Y, Wang L, Chen Z, James TD. Current trends in the detection and removal of heavy metal ions using functional materials. Chem Soc Rev 2023; 52:5827-5860. [PMID: 37531220 DOI: 10.1039/d2cs00683a] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The shortage of freshwater resources caused by heavy metal pollution is an acute global issue, which has a great impact on environmental protection and human health. Therefore, the exploitation of new strategies for designing and synthesizing green, efficient, and economical materials for the detection and removal of heavy metal ions is crucial. Among the various methods for the detection and removal of heavy ions, advanced functional systems including nanomaterials, polymers, porous materials, and biomaterials have attracted considerable attention over the past several years due to their capabilities of real-time detection, excellent removal efficiency, anti-interference, quick response, high selectivity, and low limit of detection. In this tutorial review, we review the general design principles underlying the aforementioned functional materials, and in particular highlight the fundamental mechanisms and specific examples of detecting and removing heavy metal ions. Additionally, the methods which enhance water purification quality using these functional materials have been reviewed, also current challenges and opportunities in this exciting field have been highlighted, including the fabrication, subsequent treatment, and potential future applications of such functional materials. We envision that this tutorial review will provide invaluable guidance for the design of functional materials tailored towards the detection and removal of heavy metals, thereby expediting the development of high-performance materials and fostering the development of more efficient approaches to water pollution remediation.
Collapse
Affiliation(s)
- Meng Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Quanyu Shi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Ningxin Song
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Yumeng Xiao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
20
|
Jeong D, Kim SC, An T, Lee D, Hwang H, Choi SQ, Park J. Synthesis of Aluminum-Based Metal-Organic Framework (MOF)-Derived Carbon Nanomaterials and Their Water Adsorption Isotherm. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2351. [PMID: 37630937 PMCID: PMC10458837 DOI: 10.3390/nano13162351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
The characteristics of water vapor adsorption depend on the structure, porosity, and functional groups of the material. Metal-organic framework (MOF)-derived carbon (MDC) is a novel material that exhibits a high specific area and tunable pore sizes by exploiting the stable structure and porosity of pure MOF materials. Herein, two types of aluminum-based MOFs were used as precursors to synthesize hydrophobic microporous C-MDC and micro-mesoporous A-MDC via carbonization and activation depending on the type of ligands in the precursors. C-MDC and A-MDC have different pore characteristics and exhibit distinct water adsorption properties. C-MDC with hydrophobic properties and micropores exhibited negligible water adsorption (108.54 mgg-1) at relatively low pressures (P/P0~0.3) but showed a rapid increase in water adsorption ability (475.7 mgg-1) at relative pressures of about 0.6. A comparison with the isotherm model indicated that the results were consistent with the theories, which include site filling at low relative pressure and pore filling at high relative pressure. In particular, the Do-Do model specialized for type 5 showed excellent agreement.
Collapse
Affiliation(s)
- Dasom Jeong
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (D.J.); (S.C.K.); (T.A.)
- Department of Materials Science and Engineering, INHA University, Incheon 22212, Republic of Korea;
| | - Seong Cheon Kim
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (D.J.); (S.C.K.); (T.A.)
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea;
| | - Taeseop An
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (D.J.); (S.C.K.); (T.A.)
| | - Dongho Lee
- Process R&D Center, Hanwha Solutions R&D Institute, Daejeon 34128, Republic of Korea;
| | - Haejin Hwang
- Department of Materials Science and Engineering, INHA University, Incheon 22212, Republic of Korea;
| | - Siyoung Q. Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea;
- KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeasung Park
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; (D.J.); (S.C.K.); (T.A.)
| |
Collapse
|
21
|
Aguiar C, Dattani N, Camps I. Möbius carbon nanobelts interacting with heavy metal nanoclusters. J Mol Model 2023; 29:277. [PMID: 37561216 DOI: 10.1007/s00894-023-05669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT The interaction between carbon nanostructures and heavy metal clusters is of great interest due to their potential applications as sensors and filters to remove the former from environment. In this work, we investigated the interaction between two types of carbon nanobelts (Möbius-type nanobelt and simple nanobelt) and nickel, cadmium, and lead nanoclusters. Our aim was to determine how both systems interact which would shed light on the potential applications of the carbon nanostructures as pollutant removal and detecting devices. METHODS To investigate the interaction between carbon nanostructures and heavy metal nanoclusters, we utilized the semiempirical tight binding framework provided by xTB software with the GFN2-xTB Hamiltonian. We performed calculations to determine the best interaction site, lowest energy geometries, complexes stability (using molecular dynamics at 298K), binding energy, and electronic properties. We also carried out a topological study to investigate the nature and intensity of the bonds formed between the metal nanoclusters and the nanobelts. Our results demonstrate that heavy metal nanoclusters have a favorable binding affinity towards both nanobelts, with the Möbius-type nanobelt having a stronger interaction. Additionally, our calculations reveal that the nickel nanocluster has the lowest binding energy, displaying the greatest charge transfer with the nanobelts, which was nearly twice that of the cadmium and lead nanoclusters. Our combined results lead to the conclusion that the nickel nanoclusters are chemisorbed, whereas cadmium and lead nanoclusters are physisorbed in both nanobelts. These findings have significant implications for the development of sensor and filtering devices based on carbon and heavy metal nanoclusters.
Collapse
Affiliation(s)
- C Aguiar
- Laboratório de Modelagem Computacional -LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - N Dattani
- HPQC College, Waterloo, Canada.
- HPQC Labs, Waterloo, Canada.
| | - I Camps
- Laboratório de Modelagem Computacional -LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Minas Gerais, Brazil.
- HPQC Labs, Waterloo, Canada.
| |
Collapse
|
22
|
Krishnani KK, Boddu VM, Singh RD, Chakraborty P, Verma AK, Brooks L, Pathak H. Plants, animals, and fisheries waste-mediated bioremediation of contaminants of environmental and emerging concern (CEECs)-a circular bioresource utilization approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84999-85045. [PMID: 37400699 DOI: 10.1007/s11356-023-28261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/10/2023] [Indexed: 07/05/2023]
Abstract
The release of contaminants of environmental concern including heavy metals and metalloids, and contaminants of emerging concern including organic micropollutants from processing industries, pharmaceuticals, personal care, and anthropogenic sources, is a growing threat worldwide. Mitigating inorganic and organic contaminants, which can be coined as contaminants of environmental and emerging concern (CEECs), is a big challenge as traditional physicochemical processes are not economically viable for managing mixed contaminants of low concentrations. As a result, low-cost materials must be designed to provide high CEEC removal efficiency. One of the environmentally viable and energy-efficient approaches is biosorption, which involves using biomass or biopolymers isolated from plants or animals to decontaminate heavy metals in contaminated environments using inherent biological mechanisms. Among chemical constituents in plant biomass, cellulose, lignin, hemicellulose, proteins, polysaccharides, phenolic compounds, and animal biomass include polysaccharides and other compounds to bind heavy metals covalently and non-covalently. These functional groups include carboxyl, hydroxyl, carbonyl, amide, amine, and sulfhydryl. Cation-exchange capacities of these bioadsorbents can be improved by applying chemical modifications. The relevance of chemical constituents and bioactives in biosorbents derived from agricultural production such as food and fodder crops, bioenergy and cash crops, fruit and vegetable crops, medicinal and aromatic plants, plantation trees, aquatic and terrestrial weeds, and animal production such as dairy, goatery, poultry, duckery, and fisheries is highlighted in this comprehensive review for sequestering and bioremediation of CEECs, including as many as ten different heavy metals and metalloids co-contaminated with other organic micropollutants in circular bioresource utilization and one-health concepts.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India.
| | - Veera Mallu Boddu
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Rajkumar Debarjeet Singh
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Ajit Kumar Verma
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Lance Brooks
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India
| |
Collapse
|
23
|
Abed K, Ahmed E, Shehzad H, Sharif A, Farooqi ZH, Liu Z, Zhou L, Ouyang J, Begum R, Irfan A, Chaudhry AR, Din MI. An innovative approach to synthesize graft copolymerized acetylacetone chitosan/surface functionalized alginate/rutile for efficient Ni(II) uptake from aqueous medium. Int J Biol Macromol 2023:125327. [PMID: 37302624 DOI: 10.1016/j.ijbiomac.2023.125327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
In this study, an innovative approach is followed to synthesize graft copolymerized chitosan with acetylacetone (AA-g-CS) through free-radical induced grafting. Afterwards, AA-g-CS and rutile have been intercalated uniformly into amino carbamate alginate matrix to prepare its biocomposite hydrogel beads of improved mechanical strength having different mass ratio i.e., 5.0 %, 10.0 % 15.0 % and 20.0 % w/w. Biocomposites have been thoroughly characterized through FTIR, SEM and EDX analysis. Isothermal sorption data showed good fit with Freundlich model as conferred from regression coefficient (R2 ≈ 0.99). Kinetic parameters were evaluated through non-linear (NL) fitting of different kinetic models. Experimental kinetic data exhibited close agreement to quasi-second order kinetic model (R2 ≈ 0.99) which reveals that chelation between heterogeneous grafted ligands and Ni(II) is occurring through complexation. Thermodynamic parameters were evaluated at different temperatures to observe the sorption mechanism. The negative values of ΔG° (-22.94, -23.56, -24.35 and - 24.94 kJ/mol), positive ΔH° (11.87 kJ/mol) and ΔS° (0.12 kJ/molK-1) values indicated that the removal process is spontaneous and endothermic. The maximum monolayer sorption capacity (qm) was figured as 246.41 mg/g at 298 K and pH = 6.0. Hence, 3AA-g-CS/TiO2 could be better candidate for economic recovery of Ni(II) ions from waste effluents.
Collapse
Affiliation(s)
- Khalilullah Abed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ejaz Ahmed
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Hamza Shehzad
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan; School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Ahsan Sharif
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Zhirong Liu
- School of Chemistry and Materials Science, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Limin Zhou
- State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Jinbo Ouyang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, Bisha 61922, P.O. Box 551, Saudi Arabia
| | - Muhammad Imran Din
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
24
|
Gill SS, Goyal T, Goswami M, Patel P, Das Gupta G, Verma SK. Remediation of environmental toxicants using carbonaceous materials: opportunity and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27364-9. [PMID: 37160511 DOI: 10.1007/s11356-023-27364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Adsorption and photocatalytic properties of carbonaceous materials, viz., carbon nanotubes (CNTs), fullerene, graphene, graphene oxide, carbon nanofiber nanospheres, and activated carbon, are the legitimate weapons for the remediation of emerging and persistent inorganic/organic contaminants, heavy metals, and radionucleotides from the environment. High surface area, low or non-toxic nature, ease of synthesis, regeneration, and chemical modification of carbonaceous material make them ideal for the removal of toxicants. The research techniques investigated during the last decade for the elimination of environmental toxicants using carbonaceous materials are reviewed to offer comprehensive insight into the mechanism, efficiency, applications, advantages, and shortcomings. Opportunities and challenges associated with carbon materials have been discussed to suggest future perspectives in the remediation of environmental toxicants.
Collapse
Affiliation(s)
| | - Tanish Goyal
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Megha Goswami
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Preeti Patel
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | | | | |
Collapse
|
25
|
Mohamed A, Atta RR, Kotp AA, Abo El-Ela FI, Abd El-Raheem H, Farghali A, Alkhalifah DHM, Hozzein WN, Mahmoud R. Green synthesis and characterization of iron oxide nanoparticles for the removal of heavy metals (Cd 2+ and Ni 2+) from aqueous solutions with Antimicrobial Investigation. Sci Rep 2023; 13:7227. [PMID: 37142660 PMCID: PMC10160056 DOI: 10.1038/s41598-023-31704-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
Clove and green Coffee (g-Coffee) extracts were used to synthesize green iron oxide nanoparticles, which were then used to sorb Cd2+ and Ni2+ ions out of an aqueous solution. Investigations with x-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, nitrogen adsorption and desorption (BET), Zeta potential, and scanning electron microscopy were performed to know and understand more about the chemical structure and surface morphology of the produced iron oxide nanoparticles. The characterization revealed that the main component of iron nanoparticles was magnetite when the Clove extract was used as a reducing agent for Fe3+, but both magnetite and hematite were included when the g-Coffee extract was used. Sorption capacity for metal ions was studied as a function of sorbent dosage, metal ion concentration, and sorption period. The maximum Cd2+ adsorption capacity was 78 and 74 mg/g, while that of Ni2+ was 64.8 and 80 mg/g for iron nanoparticles prepared using Clove and g-Coffee, respectively. Different isotherm and kinetic adsorption models were used to fit experimental adsorption data. Adsorption of Cd2+ and Ni2+ on the iron oxide surface was found to be heterogeneous, and the mechanism of chemisorption is involved in the stage of determining the rate. The correlation coefficient R2 and error functions like RMSE, MES and MAE were used to evaluate the best fit models to the experimental adsorption data. The adsorption mechanism was explored using FTIR analysis. Antimicrobial study showed broad spectrum antibacterial activity of the tested nanomaterials against both Gram positive (S. aureus) (25923) and Gram negative (E. coli) (25913) bacteria with increased activity against Gram positive bacteria than Gram negative one and more activity for Green iron oxide nanoparticles prepared from Clove than g-Coffee one.
Collapse
Affiliation(s)
- Abdelrahman Mohamed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - R R Atta
- Department of Chemistry, Faculty of Science, Damietta University, Damietta, Egypt.
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia.
| | - Amna A Kotp
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hany Abd El-Raheem
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Environmental Engineering Program, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12578, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Dalal Hussien M Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, B.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Wael N Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
26
|
Tian J, An M, Zhao X, Wang Y, Hasan M. Advances in Fluorescent Sensing Carbon Dots: An Account of Food Analysis. ACS OMEGA 2023; 8:9031-9039. [PMID: 36936334 PMCID: PMC10018703 DOI: 10.1021/acsomega.2c07986] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Illuminating the use of nanomaterials, carbon quantum dots (CQDs) have transfigured the food safety arena because of their bright luminescence, optical properties, low toxicity, and enhanced biocompatibility. Therefore, fluorescent resonance energy transfer, photoinduced electron transfer, and an internal filtering effect mechanism allow precise detection of food additives, heavy metal ions, pathogenic bacteria, veterinary drug residues, and food nutrients. In this review, we describe the primal mechanism of CQD-based fluorescence sensors for food safety inspection. This is an abridged description of the nanodesign and future perspectives of more advanced CQD-based sensors for food safety analysis.
Collapse
Affiliation(s)
- Jixiang Tian
- Institute
of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Minmei An
- Taian
Traditional Chinese Medicine Hospital, Taian 271000, China
| | - Xiaoang Zhao
- Institute
of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yun Wang
- Institute
of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Murtaza Hasan
- Faculty
of Biological and Chemical Sciences, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
27
|
Kazemi S, Zabarjad Shiraz N, Samadizadeh M, Ezabadi A. Theoretical Study on Design and Feasibility of Novel Circumtrindene Derivatives to Remove Ionic Contaminants. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2185642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Sara Kazemi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nader Zabarjad Shiraz
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Marjaneh Samadizadeh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ezabadi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
28
|
Khorram Abadi V, Habibi D, Heydari S, Ariannezhad M. The effective removal of Ni 2+, Cd 2+, and Pb 2+ from aqueous solution by adenine-based nano-adsorbent. RSC Adv 2023; 13:5970-5982. [PMID: 36816085 PMCID: PMC9936600 DOI: 10.1039/d2ra07230k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
The presence of heavy metal ions in drinking and wastewater generates environmental and human health concerns as they are known as cumulative poisons. Therefore, the purification of contaminated waters is an important ecological issue. Various techniques have been developed to address this issue, where adsorption has received widespread attention. The facile synthesis of effective adenine-based nano-adsorbents is reported and adsorptive removal of Ni2+, Cd2+, and Pb2+ from aqueous media was investigated by inductively-coupled plasma analyses, adsorption isotherms, kinetics, and thermodynamic studies. The effects of pH, adsorbent dose, contact time, and temperature were optimized. The maximum adsorption capacity was achieved at pH = 7, an adsorbent dose of 25 mg, and an initial concentration of 50 mg L-1 at 25 °C. A thermodynamic study showed that adsorption is an endothermic process, and the Langmuir model fitted well to the ion adsorption data to reveal that the maximum adsorption capacities for Ni2+, Cd2+, and Pb2+ were 273.7, 252.4, and 249.8 mg g-1, respectively.
Collapse
Affiliation(s)
- Vahideh Khorram Abadi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 81 38380709 +98 81 38380922
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 81 38380709 +98 81 38380922
| | | | - Maryam Ariannezhad
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 81 38380709 +98 81 38380922
| |
Collapse
|
29
|
Monisha B, Sridharan R, Kumar PS, Rangasamy G, Krishnaswamy VG, Subhashree S. Sensing of azo toxic dyes using nanomaterials and its health effects - A review. CHEMOSPHERE 2023; 313:137614. [PMID: 36565768 DOI: 10.1016/j.chemosphere.2022.137614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Development of science has taken over our lives and made it mandatory to live with science. Synthetic technology takes more than it has given for our welfare. In the process of meeting the demand of the consumers, industries supported synthetic products to meet the same. One such sector that employs synthetic azo dyes for food coloring is the food industry. The result of the process is the production of a variety of colored foods which looks more appealing and palatable. The process not only meets the consumer's demand it also has an impact on customers' health because the consumption of azo-toxic dye-treated foods regularly or in direct contact with synthetic azo dyes can also cause severe human health consequences. Nanotechnology is a rapidly evolving branch of research in which nanosensors are being developed for a variety of applications, including sensing various azo-toxic dyes in food products, which provides a wider scope in the future, with the innovation in designing different nanosensors. The current review focuses on the different types of nanosensors, their key role in sensing, and the sensing of azo toxic dyes using nanosensors, their advantages over other sensors, applications of nanomaterials, and the health impacts of azo dyes on humans, appropriate parameters for maximum permissible limits, and an Acceptable Daily Intake (ADI) of azo toxic dye to be followed. The regulations followed on the application of colorants to the food are also elaborated. The review also focuses on the application of enzyme-based biosensors in detecting azo dyes in food products.
Collapse
Affiliation(s)
- B Monisha
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Rajalakshmi Sridharan
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India.
| | - S Subhashree
- Department of Food Processing and Quality Control, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| |
Collapse
|
30
|
Fu T, Zhang B, Gao X, Cui S, Guan CY, Zhang Y, Zhang B, Peng Y. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158810. [PMID: 36162572 DOI: 10.1016/j.scitotenv.2022.158810] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The application of carbon-based materials (CBMs) for heavy metal polluted soil remediation has gained growing interest due to their versatile properties and excellent remediation performance. Although the progresses on applications of CBMs in removing heavy metal from aqueous solution and their corresponding mechanisms were well known, comprehensive review on applications of CBMs in heavy metal polluted soil remediation were less identified. Therefore, this review provided insights into advanced progresses on utilization of typical CBMs including biochar, activated carbon, graphene, graphene oxide, carbon nanotubes, and carbon black for heavy metal polluted soil remediation. The mechanisms of CBM remediation of heavy metals in soil were summarized, mainly including physical adsorption, precipitation, complexation, electrostatic interaction, and cationic-π coordination. The key factors affecting the remediation effect include soil pH, organic matter, minerals, microorganisms, coexisting ions, moisture, and material size. Disadvantages of CBMs were also included, such as: potential health risks, high cost, and difficulty in achieving co-passivation of anions and cations. This work will contribute to our understanding of current research advances, challenges, and opportunities for CBMs remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Tianhong Fu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China; Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xing Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Yujin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Bangxi Zhang
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China.
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
31
|
Devi MK, Yaashikaa PR, Kumar PS, Manikandan S, Oviyapriya M, Varshika V, Rangasamy G. Recent advances in carbon-based nanomaterials for the treatment of toxic inorganic pollutants in wastewater. NEW J CHEM 2023. [DOI: 10.1039/d3nj00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Wastewater contains inorganic pollutants, generated by industrial and domestic sources, such as heavy metals, antibiotics, and chemical pesticides, and these pollutants cause many environmental problems.
Collapse
|
32
|
Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. CHEMOSPHERE 2023; 311:136989. [PMID: 36309058 DOI: 10.1016/j.chemosphere.2022.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.
Collapse
Affiliation(s)
- V Mohanapriya
- Research scholar, Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India.
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Nguyen Dang Khoa Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Minh Hao Dong
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
33
|
Manimegalai S, Vickram S, Deena SR, Rohini K, Thanigaivel S, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Carbon-based nanomaterial intervention and efficient removal of various contaminants from effluents - A review. CHEMOSPHERE 2023; 312:137319. [PMID: 36410505 DOI: 10.1016/j.chemosphere.2022.137319] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Water treatment is a worldwide issue. This review aims to present current problems and future challenges in water treatments with the existing methodologies. Carbon nanotube production, characterization, and prospective uses have been the subject of considerable and rigorous research around the world. They have a large number of technical uses because of their distinct physical characteristics. Various catalyst materials are used to make carbon nanotubes. This review's primary focus is on integrated and single-treatment technologies for all kinds of drinking water resources, including ground and surface water. Inorganic non-metallic matter, heavy metals, natural organic matter, endocrine-disrupting chemicals, disinfection by-products and microbiological pollutants are among the contaminants that these treatment systems can remediate in polluted drinking water resources. Significant advances in the antibacterial and adsorption capabilities of carbon-based nanomaterials have opened up new options for excluding organic/inorganic and biological contaminants from drinking water in recent years. The advancements in multifunctional nanocomposites synthesis pave the possibility for their use in enhanced wastewater purification system design. The adsorptive and antibacterial characteristics of six main kinds of carbon nanomaterials are single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, fullerene and single-walled carbon nanohorns. This review potentially addressed the essential metallic and polymeric nanocomposites, are described and compared. Barriers to use these nanoparticles in long-term water treatment are also discussed.
Collapse
Affiliation(s)
- Sengani Manimegalai
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Rampuram, Chennai, 600087, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Malaysia; Department of Bioinformatics, Saveetha School of Engineering, (Saveetha Institute of Medical and Technical Sciences) SIMATS, Chennai, 602 105, Tamil Nadu, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
34
|
Comparative study of divalent cation sorption on titania nanotubes using Co2+, Ni2+, Zn2+, and Sr2+. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Jawahar MJ, Neshaanthini JP, Saravanan R. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. CHEMOSPHERE 2022; 307:135713. [PMID: 35843436 DOI: 10.1016/j.chemosphere.2022.135713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Freshwater has been incessantly polluted by various activities such as rapid industrialization, fast growth of population and agricultural activities. Water pollution is considered as one the major threatens to human health and aquatic bodies which causes various severe harmful diseases including gastrointestinal disorders, asthma, cancer, etc. The polluted wastewater could be treated by different conventional and advanced methodologies. Amongst them, adsorption is the most utilized low cost, efficient technique to treat and remove the harmful pollutants from the wastewater. The efficiency of adsorption mainly depends on the surface properties such as functional group availability and surface area of the adsorbents used. Since various waste-based carbon derivatives are utilized as adsorbents for harmful pollutants removal; nanomaterials are employed as effective adsorbents in recent times due to its excellent surface properties. This review presents an overview of the different types of nanomaterials such as nano-particles, nanotubes, nano-sheets, nano-rods, nano-spheres, quantum dots, etc. which have been synthesized by different chemical and green synthesis methodologies using plants, microorganisms, biomolecules and carbon derivatives, metals and metal oxides and polymers. By concentrating on potential research difficulties, this study offers a new viewpoint on fundamental field of nanotechnology for wastewater treatment applications. This review paper critically reviewed the synthesis of nanomaterials more importantly green synthesis and their applications in wastewater treatment to remove the harmful pollutants such as heavy metals, dyes, pesticides, polycyclic aromatic hydrocarbons, etc.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, 602105, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, 603110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R V Hemavathy
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - Marie Jyotsna Jawahar
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - J P Neshaanthini
- Department of Biotechnology, Rajalakshmi College of Engineering, Chennai, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
36
|
Facile synthesis and preparation of graphite/chitosan/graphene quantum dots nanocomposite cathode for electrochemical removal of tetracycline from aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
37
|
Mahesh N, Balakumar S, Shyamalagowri S, Manjunathan J, Pavithra MKS, Babu PS, Kamaraj M, Govarthanan M. Carbon-based adsorbents as proficient tools for the removal of heavy metals from aqueous solution: A state of art-review emphasizing recent progress and prospects. ENVIRONMENTAL RESEARCH 2022; 213:113723. [PMID: 35752329 DOI: 10.1016/j.envres.2022.113723] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Carbon-centric adsorbents (CCA) are diverse forms, from simple biochar (BC) to graphene derivatives, carbon nanotubes (CNTs), and activated carbon (AC), which have been vastly explored for their removal of a plethora of pollutants, including heavy metals (HM). The prominent features of CCA are their operational attributes like extensive surface area, the occurrence of flexible surface functional groups, etc. This work offers a comprehensive examination of contemporary research on CCA for their superior metal removal aptitude and performances in simulated solutions and wastewater flows; via portraying the recent research advances as an outlook on the appliances of CACs for heavy metal adsorption for removal via distinct forms like AC, BC, Graphene oxide (GO), and CNTs. The bibliometric analysis tool was employed to highlight the number of documents, country-wise contribution, and co-occurrence mapping based on the Scopus database. The coverage of research works in this review is limited to the last 5 years (2017-2021) to highlight recent progress and prospects in using CCAs such as AC, BC, GO, and CNTs to remove HM from aqueous media, which makes the review unique. Besides an overview of the common mechanisms of CACs, the future scope of CAC, especially towards HM mitigation, is also discussed in this review. This review endorses that further efforts should be commenced to enhance the repertory of CCAs that effectively eliminate multiple targeted metals in both simulated and real wastewater.
Collapse
Affiliation(s)
- Narayanan Mahesh
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | - Srinivasan Balakumar
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | | | - Jagadeesan Manjunathan
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, 600117, Tamil Nadu, India
| | - M K S Pavithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - Palanisamy Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Murugesan Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
38
|
Nirmala N, Shriniti V, Aasresha K, Arun J, Gopinath KP, Dawn SS, Sheeladevi A, Priyadharsini P, Birindhadevi K, Chi NTL, Pugazhendhi A. Removal of toxic metals from wastewater environment by graphene-based composites: A review on isotherm and kinetic models, recent trends, challenges and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156564. [PMID: 35690214 DOI: 10.1016/j.scitotenv.2022.156564] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/29/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Access to clean water has reduced in recent years due to pollution and man-made activities. Wastewater treatment regimens are many such as electrocoagulation, adsorption, ozonation, membrane and advanced oxidation processes. Owing to economical, resource availability and ease of operation adsorption has upper hand over all other methods employed in wastewater treatment. Graphene based adsorbents attracted researchers due to their ability to play dual role as adsorbent and photo-catalysts. When it comes to removal of heavy metals and dyes graphene-based aerogels are successful. Graphene composites were predominantly synthesized by top-down and bottom-up approach methods. Graphene composites are mesoporous and have microporous structure on surface. Graphene has copper desorption efficiency of 90 % upon 10th consecutive cycle. Graphene based adsorbents have adsorption efficiency of 367, 246 and 106.3 mg-1 for lead, zinc and cadmium respectively. Though graphene possesses numerous applications, this review was devoted towards heavy metals removal from aqueous environment. In detail, the synthesis routes and interaction mechanism were explained and also the adsorption isotherms, kinetics were added. This review will serve as support for future research directions on removal of wastewater contaminants (heavy metals).
Collapse
Affiliation(s)
- N Nirmala
- Center for Waste Management 'International Research Center', Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 603 119, Tamil Nadu, India
| | - V Shriniti
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - K Aasresha
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - J Arun
- Center for Waste Management 'International Research Center', Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 603 119, Tamil Nadu, India
| | - K P Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - S S Dawn
- Center for Waste Management 'International Research Center', Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 603 119, Tamil Nadu, India; Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 603 119, Tamil Nadu, India
| | - A Sheeladevi
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Madurantakam 603308, Tamil Nadu, India
| | - P Priyadharsini
- Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 603 119, Tamil Nadu, India
| | - Kathirvel Birindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
39
|
Mamidi N, Delgadillo RMV. Squaramide-Immobilized Carbon Nanoparticles for Rapid and High-Efficiency Elimination of Anthropogenic Mercury Ions from Aquatic Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35789-35801. [PMID: 35881879 DOI: 10.1021/acsami.2c09232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water pollution due to environmental remediation and poor waste administration in certain areas of the globe signifies a serious problem in acquiring safe and clean drinking water. This problem is especially critical in rural areas, where advanced water purification techniques are deficient, and it remains a daunting task for ecosystem and public health protection. This critical task can be addressed herein by developing scalable poly squaramide-phenyl methacrylamide (PSQ)-functionalized carbon nanoparticles (CNPs) (PSQ-CNPs) with densely populated chelating sites with strong Hg2+-binding capacity. The PSQ-CNPs have shown high efficiency in removing Hg2+ from aqueous solution, providing a Hg2+ capacity of 2840 mg g-1, surpassing all the amine and thiol-based adsorbents reported hitherto. More significantly, the adsorbent reveals the largest distribution coefficient value (Kd) of 9.09 × 1010 mL g-1, which allows it to reduce Hg2+ content from 10 ppm to less than 0.011 ppb, well below the United States Environmental Protection Agency (EPA) limits for drinking water standards (2 ppb). The adsorption measurements of the adsorbent followed the Langmuir isotherm model and pseudo-second order. The practical applicability of PSQ-CNPs was verified with the real samples (the lake, river, and industrial wastewater) and has been proven to be excellent. The adsorbent could still retain its Hg2+ removal efficacy even after 12 sorption cycles. It is attributed that the remarkable performance of PSQ-CNPs arises from the high-density chelating sites and pores on the surface of CNPs. The present work shows a new benchmark for Hg2+-removal adsorbents and presents a novel practical approach for decontaminating Hg2+ and other heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Ramiro Manuel Velasco Delgadillo
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| |
Collapse
|
40
|
Damiri F, Andra S, Kommineni N, Balu SK, Bulusu R, Boseila AA, Akamo DO, Ahmad Z, Khan FS, Rahman MH, Berrada M, Cavalu S. Recent Advances in Adsorptive Nanocomposite Membranes for Heavy Metals Ion Removal from Contaminated Water: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5392. [PMID: 35955327 PMCID: PMC9369589 DOI: 10.3390/ma15155392] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
Water contamination is one of the most urgent concerns confronting the world today. Heavy metal poisoning of aquatic systems has piqued the interest of various researchers due to the high toxicity and carcinogenic consequences it has on living organisms. Due to their exceptional attributes such as strong reactivity, huge surface area, and outstanding mechanical properties, nanomaterials are being produced and employed in water treatment. In this review, recent advances in the use of nanomaterials in nanoadsorptive membrane systems for wastewater treatment and heavy metal removal are extensively discussed. These materials include carbon-based nanostructures, metal nanoparticles, metal oxide nanoparticles, nanocomposites, and layered double hydroxide-based compounds. Furthermore, the relevant properties of the nanostructures and the implications on their performance for water treatment and contamination removal are highlighted. The hydrophilicity, pore size, skin thickness, porosity, and surface roughness of these nanostructures can help the water permeability of the nanoadsorptive membrane. Other properties such as surface charge modification and mechanical strength can improve the metal adsorption effectiveness of nanoadsorptive membranes during wastewater treatment. Various nanocomposite membrane fabrication techniques are also reviewed. This study is important because it gives important information on the roles of nanomaterials and nanostructures in heavy metal removal and wastewater treatment.
Collapse
Affiliation(s)
- Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Swetha Andra
- Department of Chemistry, Rajalakshmi Institute of Technology, Chennai 600124, Tamil Nadu, India
| | | | - Satheesh Kumar Balu
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Raviteja Bulusu
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), Cairo 12611, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Sinai 41636, Egypt
| | - Damilola O. Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
41
|
Sharma D, Faraz M, Kumar D, Takhar D, Birajdar B, Khare N. Visible light activated V2O5/rGO nanocomposite for enhanced photodegradation of methylene blue dye and photoelectrochemical water splitting. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Baratta M, Tursi A, Curcio M, Cirillo G, Nicoletta FP, De Filpo G. GO-SWCNT Buckypapers as an Enhanced Technology for Water Decontamination from Lead. Molecules 2022; 27:molecules27134044. [PMID: 35807300 PMCID: PMC9268222 DOI: 10.3390/molecules27134044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Water decontamination is an important challenge resulting from the incorrect disposal of heavy metal waste into the environment. Among the different available techniques (e.g., filtration, coagulation, precipitation, and ion-exchange), adsorption is considered the cheapest and most effective procedure for the removal of water pollutants. In the last years, several materials have been tested for the removal of heavy metals from water, including metal-organic frameworks (MOFs), single-walled carbon nanotubes (SWCNTs), and graphene oxide (GO). Nevertheless, their powder consistency, which makes the recovery and reuse after adsorption difficult, is the main drawback for these materials. More recently, SWCNT buckypapers (SWCNT BPs) have been proposed as self-standing porous membranes for filtration and adsorption processes. In this paper, the adsorption capacity and selectivity of Pb2+ (both from neat solutions and in the presence of other interferents) by SWCNT BPs were evaluated as a function of the increasing amount of GO used in their preparation (GO-SWCNT buckypapers). The highest adsorption capacity, 479 ± 25 mg g−1, achieved for GO-SWCNT buckypapers with 75 wt.% of graphene oxide confirmed the effective application of such materials for cheap and fast water decontamination from lead.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (M.B.); (A.T.)
| | - Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (M.B.); (A.T.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (G.C.)
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (G.C.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (G.C.)
- Correspondence: (F.P.N.); (G.D.F.); Tel.: +39-0984493194 (F.P.N.); +39-0984492105 (G.D.F.)
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (M.B.); (A.T.)
- Correspondence: (F.P.N.); (G.D.F.); Tel.: +39-0984493194 (F.P.N.); +39-0984492105 (G.D.F.)
| |
Collapse
|
43
|
Jirimali H, Singh J, Boddula R, Lee JK, Singh V. Nano-Structured Carbon: Its Synthesis from Renewable Agricultural Sources and Important Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3969. [PMID: 35683277 PMCID: PMC9182223 DOI: 10.3390/ma15113969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022]
Abstract
Carbon materials are versatile in nature due to their unique and modifiable surface and ease of production. Nanostructured carbon materials are gaining importance due to their high surface area for application in the energy, biotechnology, biomedical, and environmental fields. According to their structures, carbon allotropes are classified as carbon nanodots, carbon nanoparticles, graphene, oxide, carbon nanotubes, and fullerenes. They are synthesized via several methods, including pyrolysis, microwave method, hydrothermal synthesis, and chemical vapor deposition, and the use of renewable and cheaper agricultural feedstocks and reactants is increasing for reducing cost and simplifying production. This review explores the nanostructured carbon detailed investigation of sources and their relevant reports. Many of the renewable sources are covered as focused here, such as sugar cane waste, pineapple, its solid biomass, rise husk, date palm, nicotine tabacum stems, lapsi seed stone, rubber-seed shell, coconut shell, and orange peels. The main focus of this work is on the various methods used to synthesize these carbon materials from agricultural waste materials, and their important applications for energy storage devices, optoelectronics, biosensors, and polymer coatings.
Collapse
Affiliation(s)
- Harishchandra Jirimali
- Tarsadia Institute of Chemical Sciences, Uka Tarsadia University, Maliba Campus, Gopal-Vidya Nagar, Surat 394350, Gujarat, India; (H.J.); (J.S.); (R.B.)
| | - Jyoti Singh
- Tarsadia Institute of Chemical Sciences, Uka Tarsadia University, Maliba Campus, Gopal-Vidya Nagar, Surat 394350, Gujarat, India; (H.J.); (J.S.); (R.B.)
| | - Rajamouli Boddula
- Tarsadia Institute of Chemical Sciences, Uka Tarsadia University, Maliba Campus, Gopal-Vidya Nagar, Surat 394350, Gujarat, India; (H.J.); (J.S.); (R.B.)
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
| | - Vijay Singh
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
44
|
Bhuyan A, Ahmaruzzaman M. Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Xia Y, Li Y, Xu Y. Adsorption of Pb(II) and Cr(VI) from Aqueous Solution by Synthetic Allophane Suspension: Isotherm, Kinetics, and Mechanisms. TOXICS 2022; 10:291. [PMID: 35736900 PMCID: PMC9230429 DOI: 10.3390/toxics10060291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023]
Abstract
The adsorption of heavy metals on allophane has been extensively studied due to the properties of allophane special. However, the difference in adsorption behaviors and mechanisms of a metal cation and metal anion on allophane remains uncertain. The present study aimed to investigate the removal of Pb(II) and Cr(VI) onto synthetic allophane under variable pH, initial Pb(II) and Cr(VI) concentrations, and contact time. The results showed that the maximum adsorption capacity of allophane for Pb(II) and Cr(VI) was 88 and 8 mg/g, respectively. Equilibrium adsorption for Pb(II) was achieved in <2 min, but it took >12 h for Cr(VI). The response to changes in pH indicated the occurrence of electrostatic adsorption occurred during Cr(VI) absorption. XPS analysis suggested that reactions between predominant surface functional groups of allophane (Al-O- and Si-O-) and Pb(II) occurred through the formation of P-O bonds. The uptake mechanism of Pb(II) was based on a chemical reaction rather than a physical adsorption process. Synthetic allophane holds great potential to effectively remove aqueous metal ions for special wastewater treatment applications.
Collapse
Affiliation(s)
- Yan Xia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China;
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Yang Li
- School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Xu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
46
|
Velusamy K, Chellam P, Kumar PS, Venkatachalam J, Periyasamy S, Saravanan R. Functionalization of MXene-based nanomaterials for the treatment of micropollutants in aquatic system: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119034. [PMID: 35196563 DOI: 10.1016/j.envpol.2022.119034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The increased industrialization and urbanization generate a larger quantity of effluent that is discharged into the environment regularly. Based on the effluent composition produced from various industries, the number of hazardous substances such as heavy metals, hydrocarbons, volatile organic compounds, organic chemicals, microorganisms introduced into the aquatic systems vary. The conventional wastewater treatment systems do not meet the effluent standards before discharge and require a different treatment system before reuse. Adsorption is an eco-friendly technique that uses selective adsorbents to remove hazardous pollutants even at microscale levels. MXene, a 2-Dimensional nanomaterial with resplendent properties like conductivity, hydrophilicity, stability, and functionalized surface characteristics, is found as a potential candidate for pollutant removal systems. This review discusses the fabrication, characterization, and application of MXene based nanoparticles to remove many pollutants in water treatment systems. The improvement in surface properties and adsorption capacity of MXene based NPs, when modified using different modification agents, has also been discussed. Their feasibility in terms of economic and environmental aspects has been evaluated to understand their scope for practical application in large-scale industries. The challenges towards the synthesis and toxicity's importance have been discussed, with the appropriate recommendations.
Collapse
Affiliation(s)
- Karthik Velusamy
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, Tamilnadu, India
| | | | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | | | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
47
|
Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker MU, Osman H, Alhumaydhi FA, Simal-Gandara J. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101865. [DOI: 10.1016/j.jksus.2022.101865] [Citation(s) in RCA: 280] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
48
|
Thangavelu L, Veeraragavan GR, Mallineni SK, Devaraj E, Parameswari RP, Syed NH, Dua K, Chellappan DK, Balusamy SR, Bhawal UK. Role of Nanoparticles in Environmental Remediation: An Insight into Heavy Metal Pollution from Dentistry. Bioinorg Chem Appl 2022; 2022:1946724. [PMID: 35340422 PMCID: PMC8947893 DOI: 10.1155/2022/1946724] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 12/20/2022] Open
Abstract
Environmental damage is without a doubt one of the most serious issues confronting society today. As dental professionals, we must recognize that some of the procedures and techniques we have been using may pose environmental risks. The usage and discharge of heavy metals from dental set-ups pollute the environment and pose a serious threat to the ecosystem. Due to the exclusive properties of nanosized particles, nanotechnology is a booming field that is being extensively studied for the remediation of pollutants. Given that the nanoparticles have a high surface area to volume ratio and significantly greater reactivity, they have been greatly considered for environmental remediation. This review aims at identifying the heavy metal sources and their environmental impact in dentistry and provides insights into the usage of nanoparticles in environmental remediation. Although the literature on various functions of inorganic nanoparticles in environmental remediation was reviewed, the research is still confined to laboratory set-ups and there is a need for more studies on the usage of nanoparticles in environmental remediation.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Department of Pharmacology, Mandy Dental College, University of Dhaka, Dhaka, Bangladesh
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Geetha Royapuram Veeraragavan
- Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600 077, India
| | - Sreekanth Kumar Mallineni
- Department of Preventive Dental Sciences, College of Dentistry, Majmaah University, Almajmaah 11952, Saudi Arabia
| | - Ezhilarasan Devaraj
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Royapuram Parthasarathy Parameswari
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Nazmul Huda Syed
- Department of Ophthalmology and Visual Science, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, George Town 16150, Kelantan, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Ujjal K. Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
49
|
Darvishi R, Moghadas H, Moshkriz A. Oxidized gum arabic cross-linked pectin/O-carboxymethyl chitosan: An antibiotic adsorbent hydrogel. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Baby R, Hussein MZ, Abdullah AH, Zainal Z. Nanomaterials for the Treatment of Heavy Metal Contaminated Water. Polymers (Basel) 2022; 14:583. [PMID: 35160572 PMCID: PMC8838446 DOI: 10.3390/polym14030583] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/16/2023] Open
Abstract
Nanotechnology finds its application almost in every field of science and technology. At the same time, it also helps to find the solution to various environment-related problems, especially water contamination. Nanomaterials have many advantages over conventional materials, such as high surface area, both polar and non-polar chemistries, controlled and size-tunable, easier biodegradation, which made them ideal candidates for water and environmental remediation as well. Herein, applications of non-carbon nanomaterials, such as layered double hydroxides, iron oxide magnetite nanoparticles, nano-polymer composites, metal oxide nanomaterials and nanomembranes/fibers in heavy metal contaminated water and environmental remediation are reviewed. These non-carbon nanomaterials, due to their tunable unique chemistry and small size have greater potentials for water and environmental remediation applications.
Collapse
Affiliation(s)
- Rabia Baby
- Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Education, Sukkur IBA University, Sukkur Sindh 65200, Pakistan
| | - Mohd Zobir Hussein
- Nanomaterial Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Abdul Halim Abdullah
- Department of Chemistry, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.H.A.); (Z.Z.)
| | - Zulkarnain Zainal
- Department of Chemistry, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.H.A.); (Z.Z.)
| |
Collapse
|