1
|
Nelson AD, Catalfio AM, Gupta JP, Min L, Caballero-Florán RN, Dean KP, Elvira CC, Derderian KD, Kyoung H, Sahagun A, Sanders SJ, Bender KJ, Jenkins PM. Physical and functional convergence of the autism risk genes Scn2a and Ank2 in neocortical pyramidal cell dendrites. Neuron 2024; 112:1133-1149.e6. [PMID: 38290518 PMCID: PMC11097922 DOI: 10.1016/j.neuron.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/26/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.
Collapse
Affiliation(s)
- Andrew D Nelson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda M Catalfio
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie P Gupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lia Min
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Kendall P Dean
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carina C Elvira
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kimberly D Derderian
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Atehsa Sahagun
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J Sanders
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Co M, Barnard RA, Jahncke JN, Grindstaff S, Fedorov LM, Adey AC, Wright KM, O'Roak BJ. Shared and Distinct Functional Effects of Patient-Specific Tbr1 Mutations on Cortical Development. J Neurosci 2022; 42:7166-7181. [PMID: 35944998 PMCID: PMC9480892 DOI: 10.1523/jneurosci.0409-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/06/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
T-Box Brain Transcription Factor 1 (TBR1) plays essential roles in brain development, mediating neuronal migration, fate specification, and axon tract formation. While heterozygous loss-of-function and missense TBR1 mutations are associated with neurodevelopmental conditions, the effects of these heterogeneous mutations on brain development have yet to be fully explored. We characterized multiple mouse lines carrying Tbr1 mutations differing by type and exonic location, including the previously generated Tbr1 exon 2-3 knock-out (KO) line, and we analyzed male and female mice at neonatal and adult stages. The frameshift patient mutation A136PfsX80 (A136fs) caused reduced TBR1 protein in cortex similar to Tbr1 KO, while the missense patient mutation K228E caused significant TBR1 upregulation. Analysis of cortical layer formation found similar defects between KO and A136fs homozygotes in their CUX1+ and CTIP2+ layer positions, while K228E homozygosity produced layering defects distinct from these mutants. Meanwhile, the examination of cortical apoptosis found extensive cell death in KO homozygotes but limited cell death in A136fs or K228E homozygotes. Despite their discordant cortical phenotypes, these Tbr1 mutations produced several congruent phenotypes, including anterior commissure reduction in heterozygotes, which was previously observed in humans with TBR1 mutations. These results indicate that patient-specific Tbr1 mutant mice will be valuable translational models for pinpointing shared and distinct etiologies among patients with TBR1-related developmental conditions.SIGNIFICANCE STATEMENT Mutations of the TBR1 gene increase the likelihood of neurodevelopmental conditions such as intellectual disability and autism. Therefore, the study of TBR1 can offer insights into the biological mechanisms underlying these conditions, which affect millions worldwide. To improve the modeling of TBR1-related conditions over current Tbr1 knock-out mice, we created mouse lines carrying Tbr1 mutations identical to those found in human patients. Mice with one mutant Tbr1 copy show reduced amygdalar connections regardless of mutation type, suggesting a core biomarker for TBR1-related disorders. In mice with two mutant Tbr1 copies, brain phenotypes diverge by mutation type, suggesting differences in Tbr1 gene functionality in different patients. These mouse models will serve as valuable tools for understanding genotype-phenotype relationships among patients with neurodevelopmental conditions.
Collapse
Affiliation(s)
- Marissa Co
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Rebecca A Barnard
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Jennifer N Jahncke
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Sally Grindstaff
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Lev M Fedorov
- Transgenic Mouse Models Core, Oregon Health & Science University, Portland, Oregon 97239
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Brian J O'Roak
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|