1
|
Su J, Li Z, Gao P, Ahmed I, Liu Q, Li R, Cui K, Rehman SU. Comparative evolutionary and molecular genetics based study of Buffalo lysozyme gene family to elucidate their antibacterial function. Int J Biol Macromol 2023; 234:123646. [PMID: 36775226 DOI: 10.1016/j.ijbiomac.2023.123646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
Lysozyme is used as a food preservative, biological medicine, and infant food additive as a natural anti-infective chemical having bactericidal activity and abundantly secreted in mammals' milk, saliva, etc. We systematically analyzed the 16 coding LYZ genes (C and G-type) in buffalo and cattle to elucidate their evolutionary perspective thoroughly by evaluating an evolutionary relationship, motif patterning, physicochemical attributes, gene, and protein structure, as well as the functional role of the mammary gland-specific expressed buffalo and cattle LYZ genes precisely while considering expression levels difference and the interaction sites variation with bacteria envisaged the potential ability of buffalo LYZ protein with enhanced antibacterial effect. Thus, we speculated that the buffalo mammary glands expressed lysozyme has good antibacterial activity. This study on the buffalo lysozyme gene family not only provides comprehensive insights into the genetic architecture and their antibacterial effect but also offers a theoretical basis for the development of new veterinary drugs and animal health care for mastitis, as well as a new molecular genetic basis to study food or medical lysozyme.
Collapse
Affiliation(s)
- Jie Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Peipei Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Ishtiaq Ahmed
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, VIC, Australia
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Ruijia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
| | - Saif Ur Rehman
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
| |
Collapse
|
2
|
Winther AR, da Silva Duarte V, Porcellato D. Metataxonomic analysis and host proteome response in dairy cows with high and low somatic cell count: a quarter level investigation. Vet Res 2023; 54:32. [PMID: 37016420 PMCID: PMC10074679 DOI: 10.1186/s13567-023-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (>100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions. Interestingly, different proteome profiles were also identified in quarter samples containing one of the two mastitis pathogens, Staphylococcus aureus and Streptococcus uberis, indicating a different response of the host depending on the pathogen. Weighted correlation network analysis identified three modules of co-expressed proteins which were correlated with the SCC in the quarters. These modules contained proteins assigned to different aspects of the immune response, but also amino sugar and nucleotide sugar metabolism, and biosynthesis of amino acids. The results of this study provide deeper insights on how the proteome expression changes at quarter level in naturally infected cows and pinpoint potential interactions and important biological functions during host-microbe interaction.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway.
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| |
Collapse
|
3
|
Zhang J, Duley JA, Cowley DM, Shaw PN, Koorts P, Bansal N. Comparative proteomic analysis of donor human milk pasteurized by hydrostatic high-pressure. Food Chem 2023; 403:134264. [DOI: 10.1016/j.foodchem.2022.134264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
|
4
|
Sadat A, Farag AMM, Elhanafi D, Awad A, Elmahallawy EK, Alsowayeh N, El-khadragy MF, Elshopakey GE. Immunological and Oxidative Biomarkers in Bovine Serum from Healthy, Clinical, and Sub-Clinical Mastitis Caused by Escherichia coli and Staphylococcus aureus Infection. Animals (Basel) 2023; 13:ani13050892. [PMID: 36899749 PMCID: PMC10000043 DOI: 10.3390/ani13050892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The study aimed to investigate the mastitis' emerging causative agents and their antimicrobial sensitivity, in addition to the hematological, biochemical indicators, oxidative biomarkers, acute phase protein (APP), and inflammatory cytokine changes in dairy farms in Gamasa, Dakahlia Governorate, Egypt. One hundred Holstein Friesian dairy cattle with clinical and subclinical mastitis were investigated and were allocated into three groups based on a thorough clinical examination. Escherichia coli and Staphylococcus aureus were found responsible for the clinical and subclinical mastitis in dairy farms, respectively. Multiple drug resistance (MDR) was detected in 100%, and 94.74% of E. coli and S. aureus isolates, respectively. Significantly low RBCs count, Hb, and PCV values were detected in mastitic cows compared with both subclinical mastitic and control groups; moreover, WBCs, lymphocytes, and neutrophil counts were significantly diminished in mastitic cows compared to the controls. Significantly higher levels of AST, LDH, total protein, and globulin were noticed in both mastitic and subclinical mastitic cows. The haptoglobin, fibrinogen, amyloid A, ceruloplasmin, TNF-α, IL-1β, and IL-6 levels were statistically increased in mastitic cows compared to the controls. Higher MDA levels and reduction of TAC and catalase were identified in all the mastitic cases compared to the controls. Overall, the findings suggested potential public health hazards due to antimicrobial resistance emergence. Meanwhile, the APP and cytokines, along with antioxidant markers can be used as early indicators of mastitis.
Collapse
Affiliation(s)
- Asmaa Sadat
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.S.); (G.E.E.); Tel.: +20-1099633122 (A.S.); +20-1023923945 (G.E.E.); Fax: +20-502379952 (A.S.); +20-502379952 (G.E.E.)
| | - Alshimaa M. M. Farag
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Driss Elhanafi
- Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Amal Awad
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Noorah Alsowayeh
- Department of Biology, College of Education (Majmaah), Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Manal F. El-khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.S.); (G.E.E.); Tel.: +20-1099633122 (A.S.); +20-1023923945 (G.E.E.); Fax: +20-502379952 (A.S.); +20-502379952 (G.E.E.)
| |
Collapse
|
5
|
Das A, Giri K, Behera RN, Maity S, Ambatipudi K. BoMiProt 2.0: An update of the bovine milk protein database. J Proteomics 2022; 267:104696. [PMID: 35995382 DOI: 10.1016/j.jprot.2022.104696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Milk is a biofluid with various functions, containing carbohydrates, lipids, proteins, vitamins, and minerals. Owing to its importance and availability of vast proteomics information, our research group designed a database for bovine milk proteins (N = 3159) containing the primary and secondary information called BoMiProt. Due to the gaining interest and intensively published literature in the last three years, BoMiProt has been upgraded with newer identified proteins (N = 7459) from peer-reviewed journals, significantly expanding the database from different milk fractions (e.g., whey, fat globule membranes, and exosomes). Additionally, class, architecture, topology, and homology, structural classification of proteins, known and predicted disorder, predicted transmembrane helices, and structures have been included. Each protein entry in the database is thoroughly cross-referenced, including 1392 BoMiProt defined proteins provided with secondary information, such as protein function, biochemical properties, post-translational modifications, significance in milk, domains, fold, AlphaFold predicted models and crystal structures. The proteome data in the database can be retrieved using several search parameters using protein name, accession IDs, and FASTA sequence. Overall, BoMiProt represents an extensive compilation of newer proteins, including structural, functional, and hierarchical information, to help researchers better understand mammary gland pathophysiology, including their potential application in improving the nutritional quality of dairy products.
Collapse
Affiliation(s)
- Arpita Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rama N Behera
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sudipa Maity
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
6
|
Yuan X, Shi W, Jiang J, Li Z, Fu P, Yang C, Rehman SU, Pauciullo A, Liu Q, Shi D. Comparative metabolomics analysis of milk components between Italian Mediterranean buffaloes and Chinese Holstein cows based on LC-MS/MS technology. PLoS One 2022; 17:e0262878. [PMID: 35077464 PMCID: PMC8789157 DOI: 10.1371/journal.pone.0262878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
Buffalo and cow milk have a very different composition in terms of fat, protein, and total solids. For a better knowledge of such a difference, the milk metabolic profiles and characteristics of metabolites was investigated in Italian Mediterranean buffaloes and Chinese Holstein cows were investigated by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in this study. Totally, 23 differential metabolites were identified to be significantly different in the milk from the two species of which 15 were up-regulated and 8 down-regulated in Italian Mediterranean buffaloes. Metabolic pathway analysis revealed that 4 metabolites (choline, acetylcholine, nicotinamide and uric acid) were significantly enriched in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabolism, as well as purine metabolism. The results provided further insights for a deep understanding of the potential metabolic mechanisms responsible for the different performance of Italian Mediterranean buffaloes' and Chinese Holstein cows' milk. The findings will offer new tools for the improvement and novel directions for the development of dairy industry.
Collapse
Affiliation(s)
- Xiang Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Wen Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jianping Jiang
- Guangxi Engineering Technology Research Center of Chinese Medicinal Materials Stock Breeding, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Penghui Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Chunyan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco (TO), Italy
- * E-mail: (AP); (QL); (DS)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- * E-mail: (AP); (QL); (DS)
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- * E-mail: (AP); (QL); (DS)
| |
Collapse
|
7
|
Rocchetti G, O’Callaghan TF. Application of metabolomics to assess milk quality and traceability. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
9
|
Maity S, Ambatipudi K. Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective. FEMS Microbiol Ecol 2021; 97:6006870. [PMID: 33242081 DOI: 10.1093/femsec/fiaa241] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Bovine mastitis is a prototypic emerging and reemerging bacterial disease that results in cut-by-cut torture to animals, public health and the global economy. Pathogenic microbes causing mastitis have overcome a series of hierarchical barriers resulting in the zoonotic transmission from bovines to humans either by proximity or remotely through milk and meat. The disease control is challenging and has been attributed to faulty surveillance systems to monitor their emergence at the human-animal interface. The complex interaction between the pathogens, the hidden pathobionts and commensals of the bovine mammary gland that create a menace during mastitis remains unexplored. Here, we review the zoonotic potential of these pathogens with a primary focus on understanding the interplay between the host immunity, mammary ecology and the shift from symbiosis to dysbiosis. We also address the pros and cons of the current management strategies and the extent of the success in implementing the One-Health approach to keep these pathogens at bay.
Collapse
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| |
Collapse
|
10
|
Rapid animal species identification of feta and mozzarella cheese using MALDI-TOF mass-spectrometry. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Chopra A, Ali SA, Bathla S, Rawat P, Vohra V, Kumar S, Mohanty AK. High-Resolution Mass Spectrometer-Based Ultra-Deep Profile of Milk Whey Proteome in Indian Zebu ( Sahiwal) Cattle. Front Nutr 2020; 7:150. [PMID: 33072792 PMCID: PMC7533583 DOI: 10.3389/fnut.2020.00150] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Milk serves as a mode of protection to neonate through transferring the host defense proteins from mother to offspring. It also guards the mammary gland against various types of infections. Along with the presence of six vital proteins, bovine milk (whey) contains a massive class of minor proteins, not all of which have been comprehensively reported. In this study, we performed an LC-MS/MS-based ultra-deep identification of the milk whey proteome of Indian zebu (Sahiwal) cattle. Three independent search engines that are Comet, Tandem, and Mascot-based analysis resulted in the discovery of over 6,210 non-redundant proteins commonly identified. Genome-wise mapping revealed that chromosome 1 showed a minimum expression of 14 proteins, whereas chromosome 19 expressed 250 maximum proteins in milk whey. These results demonstrate that milk proteome in Sahiwal cattle is quite complicated, and minor milk fractions play a significant role in host defense.
Collapse
Affiliation(s)
- Alka Chopra
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Shveta Bathla
- Yale University School of Medicine, New Haven, CT, United States
| | - Preeti Rawat
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Vikas Vohra
- Animal Genetics and Breeding Division, National Dairy Research Institute, Karnal, India
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| |
Collapse
|
12
|
Maity S, Das D, Ambatipudi K. Quantitative alterations in bovine milk proteome from healthy, subclinical and clinical mastitis during S. aureus infection. J Proteomics 2020; 223:103815. [PMID: 32423885 DOI: 10.1016/j.jprot.2020.103815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Bovine mastitis, caused by Staphylococcus aureus, is a major impediment to milk production and lacks markers to indicate disease progression in cows and buffaloes. Thus, the focus of this study was to identify proteins marking the transition from subclinical to clinical mastitis. Whey proteins were isolated from 6 group's i.e. healthy, subclinical and clinical mastitis of Holstein Friesian cow and Murrah buffalo. Mass spectrometry and statistical analysis (ANOVA and t-tests) were performed on 12 biological samples each from cow and buffalo (4 per healthy, subclinical and clinical mastitis) resulting in a total of 24 proteome datasets. Collectively, 1479 proteins were identified of which significant proteins were shortlisted by a combination of fold change (≤ 0.5 or ≥ 2) and q < 0.05. Of these proteins, 128 and 163 indicated disease progression in cow and buffalo, respectively. Change in expression of haptoglobin and fibronectin from Holstein Friesian while spermadhesin and osteopontin from Murrah correlated with disease progression. Similarly, angiogenin and cofilin-1 were upregulated while ubiquitin family members were downregulated during disease transition. Subsequently, selected proteins (e.g. osteopontin and fibrinogen-α) were validated by Western blots. The results of this study provide deeper insights into whey proteome dynamics and signature patterns indicative of disease progression. BIOLOGICAL SIGNIFICANCE: Bovine mastitis is the most lethal infectious disease causing a huge economic loss in the dairy industry. In an attempt, to understand the dynamics of whey proteome in response to S. aureus infection, whey protein collected from healthy, subclinical and clinical mastitic HF and Mu were investigated. A total of 1479 proteins were identified, of which 128 and 163 had signature pattern in each stage indicative of the progression of the disease. The results of the present study provide a foundation to better understand the complexity of mastitis that will ultimately help facilitate early therapeutic and husbandry-based intervention to improve animal health and milk quality.
Collapse
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Debiprasanna Das
- Department of Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
13
|
Maity S, Bhat AH, Giri K, Ambatipudi K. BoMiProt: A database of bovine milk proteins. J Proteomics 2020; 215:103648. [PMID: 31958638 DOI: 10.1016/j.jprot.2020.103648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/09/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022]
Abstract
Bovine milk has become an important biological fluid for proteomic research due to its nutritional and immunological benefits. To date, over 300 publications have reported changes in bovine milk protein composition based on seasons, lactation stages, breeds, health status and milk fractions while there are no reports on consolidation or overlap of data between studies. Thus, we have developed a literature-based, manually curated open online database of bovine milk proteome, BoMiProt (http://bomiprot.org), with over 3100 proteins from whey, fat globule membranes and exosomes. Each entry in the database is thoroughly cross-referenced including 397 proteins with well-defined information on protein function, biochemical properties, post-translational modifications and significance in milk from different publications. Of 397 proteins, over 199 have been reported with a structural gallery of homology models and crystal structures in the database. The proteome data can be retrieved using several search parameters such as protein name, accession IDs, FASTA sequence. Furthermore, the proteome data can be filtered based on milk fractions, post-translational modifications and/or structures. Taken together, BoMiProt represents an extensive compilation of bovine milk proteins from literature, providing a foundation for future studies to identify specific milk proteins which may be linked to mammary gland pathophysiology. BIOLOGICAL SIGNIFICANCE: Protein data identified from different previously published proteomic studies on bovine milk samples (21 publications) were gathered in the BoMiProt database. Unification of the identified proteins will give researchers an initial reference database on bovine milk proteome to understand the complexities of milk as a biological fluid. BoMiProt has a user-friendly interface with several useful features, including different search criteria for primary and secondary information of proteins along with cross-references to external databases. The database will provide insights into the existing literature and possible future directions to investigate further and improve the beneficial effects of bovine milk components and dairy products on human health.
Collapse
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Aadil Hussain Bhat
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kuldeep Giri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
14
|
Haynes A, Halpert P, Levine M. Colorimetric Detection of Aliphatic Alcohols in β-Cyclodextrin Solutions. ACS OMEGA 2019; 4:18361-18369. [PMID: 31720538 PMCID: PMC6844157 DOI: 10.1021/acsomega.9b02612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/10/2019] [Indexed: 05/20/2023]
Abstract
The sensitive, selective, and practical detection of aliphatic alcohols is a continuing technical challenge with significant impact in public health research and environmental remediation efforts. Reported herein is the use of a β-cyclodextrin derivative to promote proximity-induced interactions between aliphatic alcohol analytes and a brightly colored organic dye, which resulted in highly analyte-specific color changes that enabled accurate alcohol identification. Linear discriminant analysis of the color changes enabled 100% differentiation of the colorimetric signals obtained from methanol, ethanol, and isopropanol in combination with BODIPY and Rhodamine dyes. The resulting solution-state detection system has significant broad-based applicability because it uses only easily available materials to achieve such detection with moderate limits of detection obtained. Future research with this sensor system will focus on decreasing limits of detection as well as on optimizing the system for quantitative detection applications.
Collapse
Affiliation(s)
- Anna Haynes
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Priva Halpert
- Stella
K. Abraham High School for Girls, 291 Meadowview Ave, Hewlett, New York 11557, United States
| | - Mindy Levine
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
15
|
Maity S, Ambatipudi K. Quantitative proteomics of milk whey reveals breed and season specific variation in protein abundance in Holstein Friesian cow and Murrah buffalo. Res Vet Sci 2019; 125:244-252. [DOI: 10.1016/j.rvsc.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/22/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
|
16
|
Hale O, Morris M, Jones B, Reynolds CK, Cramer R. Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Adds Enhanced Functionalities to MALDI MS Profiling for Disease Diagnostics. ACS OMEGA 2019; 4:12759-12765. [PMID: 31460399 PMCID: PMC6681994 DOI: 10.1021/acsomega.9b01476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 05/08/2023]
Abstract
A liquid matrix-assisted laser desorption/ionization (liquid MALDI) method has been developed for high-throughput atmospheric pressure (AP) mass spectrometry (MS) analysis of the molecular content of crude bioliquids for disease diagnostics. The presented method is rapid and highly robust, enabling its application in environments where speed and low-cost high-throughput analyses are required. Importantly, because of the creation of multiply charged analyte ions, it provides additional functionalities that conventional solid MALDI MS profiling is lacking, including the use of high-performance mass analyzers with limited m/z range. The concomitant superior MS/MS performance that is achieved similar to ESI MS/MS adds greater analytical power and specificity to MALDI MS profiling while retaining the advantages of a fast laser-based analysis system and off-line large-scale sample preparation. The potential of this MALDI MS profiling method is demonstrated on the detection of dairy cow mastitis, which is a substantial economic burden on the dairy industry with losses of hundreds of dollars per diseased cow per year, equating to a total annual loss of billions of dollars, as well as leading to the use of large quantities of antibiotics, adding to the proliferation of antimicrobial resistance. Only small amounts of aliquots obtained from the daily farm milking process were prepared for liquid MALDI MS profiling using a simple one-pot/two-step analyte extraction. Automated analysis was performed using a custom-built AP-MALDI ion source, enabling the simultaneous detection of lipids, peptides, and proteins. Diagnostic, multiply charged, proteinaceous ions were easily sequenced and identified by MS/MS experiments. Samples were classified according to mastitis status using multivariate analysis, achieving 98.5% accuracy (100% specificity) determined by "leave 20% out" cross-validation. The methodology is generally applicable to AP-MALDI MS profiling on most commercial high-resolution mass spectrometers, with the potential for expansion into hospitals for rapid assessment of human and other biofluids.
Collapse
Affiliation(s)
- Oliver
J. Hale
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Michael Morris
- Waters
Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K.
| | - Barney Jones
- The
Centre for Dairy Research, School of Agriculture, Policy and Development, University of Reading, Reading RG2 9HX, U.K.
| | - Christopher K. Reynolds
- The
Centre for Dairy Research, School of Agriculture, Policy and Development, University of Reading, Reading RG2 9HX, U.K.
| | - Rainer Cramer
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
- E-mail:
| |
Collapse
|
17
|
Milk proteome from in silico data aggregation allows the identification of putative biomarkers of negative energy balance in dairy cows. Sci Rep 2019; 9:9718. [PMID: 31273261 PMCID: PMC6609625 DOI: 10.1038/s41598-019-46142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/19/2019] [Indexed: 01/13/2023] Open
Abstract
A better knowledge of the bovine milk proteome and its main drivers is a prerequisite for the modulation of bioactive proteins in milk for human nutrition, as well as for the discovery of biomarkers that are useful in husbandry and veterinary medicine. Milk composition is affected by lactation stage and reflects, in part, the energy balance of dairy cows. We aggregated the cow milk proteins reported in 20 recent proteomics publications to produce an atlas of 4654 unique proteins. A multistep assessment was applied to the milk proteome datasets according to lactation stages and milk fractions, including annotations, pathway analysis and literature mining. Fifty-nine proteins were exclusively detected in milk from early lactation. Among them, we propose six milk proteins as putative biomarkers of negative energy balance based on their implication in metabolic adaptative pathways. These proteins are PCK2, which is a gluconeogenic enzyme; ACAT1 and IVD, which are involved in ketone metabolism; SDHA and UQCRC1, which are related to mitochondrial oxidative metabolism; and LRRC59, which is linked to mammary gland cell proliferation. The cellular origin of these proteins warrants more in-depth research but may constitute part of a molecular signature for metabolic adaptations typical of early lactation.
Collapse
|
18
|
Greenwood SL, Honan MC. Symposium review: Characterization of the bovine milk protein profile using proteomic techniques. J Dairy Sci 2019; 102:2796-2806. [PMID: 30612793 DOI: 10.3168/jds.2018-15266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022]
Abstract
Identification and characterization of the comprehensive bovine milk proteome has historically been limited due to the dichotomy of protein abundances within milk. The high abundance of a select few proteins, including caseins, α-lactalbumin, β-lactoglobulin, and serum albumin, has hindered intensive identification and characterization of the vast array of low-abundance proteins in milk due to limitations in separation techniques and protein labeling capacity. In more recent years, the development and advancement of proteomics techniques have yielded valuable tools for characterization of the protein profile in bovine milk. More extensive fractionation and enrichment techniques, including the use of combinations of precipitation techniques, immunosorption, gel electrophoresis, chromatography, ultracentrifugation, and hexapeptide-based binding enrichment, have allowed for better isolation of lower abundance proteins for further downstream liquid chromatography-tandem mass spectrometry approaches. The different milk subfractions isolated during these processes can also be analyzed as individual entities to assess the protein profile unique to the different fractions-for instance, investigation of the skim milk-associated proteome versus the milk fat globule membrane-associated proteome. Updates to high-throughput methods, equipment, and software have also allowed for greater interpretation and visualization of the data. For instance, labeling techniques have enabled analysis of multiplexed samples and more accurate comparison of specific protein abundances and quantities across samples, and integration of gene ontology analysis has allowed for a more in-depth and visual representation of potential relationships between identified proteins. Inclusively, these developments in proteomic techniques have allowed for a rapid increase in the number of milk-associated proteins identified and a better grasp of the relationships and potential functionality of the proteins within the milk proteome.
Collapse
Affiliation(s)
- Sabrina L Greenwood
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405.
| | - Mallory C Honan
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| |
Collapse
|
19
|
Liu Z, Rochfort S, Cocks B. Milk lipidomics: What we know and what we don't. Prog Lipid Res 2018; 71:70-85. [DOI: 10.1016/j.plipres.2018.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
|
20
|
Differences in the bovine milk whey proteome between early pregnancy and the estrous cycle. Theriogenology 2018; 114:301-307. [DOI: 10.1016/j.theriogenology.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022]
|
21
|
Guerreiro TM, de Oliveira DN, Melo CFOR, de Oliveira Lima E, Ribeiro MDS, Catharino RR. Evaluating the effects of the adulterants in milk using direct-infusion high-resolution mass spectrometry. Food Res Int 2018; 108:498-504. [PMID: 29735085 DOI: 10.1016/j.foodres.2018.03.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/24/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
Milk is an extremely complex food, capable of providing essential nutrients as well as being an important source of energy, and high-quality proteins and fats. Due to advances in technology, and to meet the increasing demand, production costs have increased, turning milk into a target of adulterations. Routine methods usually applied to certify the quality of the milk are restricted to microbiological tests, and assays that attest the nutritional composition within the expected values. However, potentially harmful byproducts generated by adulterating substances in general are not detected through these methodologies. In this contribution, we simulated the adulteration of freshly produced milk samples with four adulterants whose use already had reported for extended shelf life: formaldehyde, hydrogen peroxide, sodium hydroxide, and sodium hypochlorite. These samples were submitted to direct-infusion high-resolution mass spectrometry analysis and multivariate statistical analysis. This approach allows the characterization of a series of molecules modified by the adulterants, what demonstrates how these species affect the nutritious characteristics of this product.
Collapse
Affiliation(s)
- Tatiane Melina Guerreiro
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Diogo Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | | | - Estela de Oliveira Lima
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Marta da Silva Ribeiro
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
22
|
Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome. Anal Bioanal Chem 2018. [DOI: 10.1007/s00216-018-0976-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Identification of Host Defense-Related Proteins Using Label-Free Quantitative Proteomic Analysis of Milk Whey from Cows with Staphylococcus aureus Subclinical Mastitis. Int J Mol Sci 2017; 19:ijms19010078. [PMID: 29283389 PMCID: PMC5796028 DOI: 10.3390/ijms19010078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus is the most common contagious pathogen associated with bovine subclinical mastitis. Current diagnosis of S. aureus mastitis is based on bacteriological culture of milk samples and somatic cell counts, which lack either sensitivity or specificity. Identification of milk proteins that contribute to host defense and their variable responses to pathogenic stimuli would enable the characterization of putative biomarkers of subclinical mastitis. To accomplish this, milk whey samples from healthy and mastitic dairy cows were analyzed using a label-free quantitative proteomics approach. In total, 90 proteins were identified, of which 25 showed significant differential abundance between healthy and mastitic samples. In silico functional analyses indicated the involvement of the differentially abundant proteins in biological mechanisms and signaling pathways related to host defense including pathogen-recognition, direct antimicrobial function, and the acute-phase response. This proteomics and bioinformatics analysis not only facilitates the identification of putative biomarkers of S. aureus subclinical mastitis but also recapitulates previous findings demonstrating the abundance of host defense proteins in intramammary infection. All mass spectrometry data are available via ProteomeXchange with identifier PXD007516.
Collapse
|
24
|
Clinical veterinary proteomics: Techniques and approaches to decipher the animal plasma proteome. Vet J 2017; 230:6-12. [PMID: 29208216 DOI: 10.1016/j.tvjl.2017.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
Abstract
Over the last two decades, technological advancements in the field of proteomics have advanced our understanding of the complex biological systems of living organisms. Techniques based on mass spectrometry (MS) have emerged as powerful tools to contextualise existing genomic information and to create quantitative protein profiles from plasma, tissues or cell lines of various species. Proteomic approaches have been used increasingly in veterinary science to investigate biological processes responsible for growth, reproduction and pathological events. However, the adoption of proteomic approaches by veterinary investigators lags behind that of researchers in the human medical field. Furthermore, in contrast to human proteomics studies, interpretation of veterinary proteomic data is difficult due to the limited protein databases available for many animal species. This review article examines the current use of advanced proteomics techniques for evaluation of animal health and welfare and covers the current status of clinical veterinary proteomics research, including successful protein identification and data interpretation studies. It includes a description of an emerging tool, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS), available on selected mass spectrometry instruments. This newly developed data acquisition technique combines advantages of discovery and targeted proteomics approaches, and thus has the potential to advance the veterinary proteomics field by enhancing identification and reproducibility of proteomics data.
Collapse
|
25
|
Koh YQ, Peiris HN, Vaswani K, Meier S, Burke CR, Macdonald KA, Roche JR, Almughlliq F, Arachchige BJ, Reed S, Mitchell MD. Characterization of exosomes from body fluids of dairy cows1. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
26
|
Yang M, Cao X, Wu R, Liu B, Ye W, Yue X, Wu J. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS. Int J Food Sci Nutr 2017; 68:671-681. [PMID: 28276902 DOI: 10.1080/09637486.2017.1279129] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.
Collapse
Affiliation(s)
- Mei Yang
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Xueyan Cao
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Rina Wu
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Biao Liu
- b Inner Mongolia Yili Industrial Group Company Limited , Hohhot , PR China
| | - Wenhui Ye
- b Inner Mongolia Yili Industrial Group Company Limited , Hohhot , PR China
| | - Xiqing Yue
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| | - Junrui Wu
- a College of Food Science , Shenyang Agricultural University , Shenyang , PR China
| |
Collapse
|