1
|
Huang P, Wan Z, Qu S. Targeting the RUNX3-miR-186-3p-DAT-IGF1R axis as a therapeutic strategy in a Parkinson's disease model. J Transl Med 2024; 22:719. [PMID: 39103832 PMCID: PMC11299274 DOI: 10.1186/s12967-024-05535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
With the increasing age of the population worldwide, the incidence rate of Parkinson's disease (PD) is increasing annually. Currently, the treatment strategy for PD only improves clinical symptoms. No effective treatment strategy can slow down the progression of the disease. In the present study, whole transcriptome sequencing was used to obtain the mRNA and miRNA expression profiles in a PD mouse model, which revealed the pathogenesis of PD. The transcription factor RUNX3 upregulated the miR-186-3p expression in the PD model. Furthermore, the high miR-186-3p expression in PD can be targeted to inhibit the DAT expression, resulting in a decrease in the dopamine content of dopaminergic neurons. Moreover, miR-186-3p can be targeted to inhibit the IGF1R expression and prevent the activation of the IGF1R-P-PI3K-P-AKT pathway, thus increasing the apoptosis of dopaminergic neurons by regulating the cytochrome c-Bax-cleaved caspase-3 pathway. Our research showed that the RUNX3-miR-186-3p-DAT-IGF1R axis plays a key role in the pathogenesis of PD, and miR-186-3p is a potential target for the treatment of PD.
Collapse
Affiliation(s)
- Peng Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zhiting Wan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Shaogang Qu
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Al Khamici H, Sanchez VC, Yan H, Cataisson C, Michalowski AM, Yang HH, Li L, Lee MP, Huang J, Yuspa SH. The oxidoreductase CLIC4 is required to maintain mitochondrial function and resistance to exogenous oxidants in breast cancer cells. J Biol Chem 2022; 298:102275. [PMID: 35863434 PMCID: PMC9418444 DOI: 10.1016/j.jbc.2022.102275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023] Open
Abstract
The chloride intracellular channel-4 (CLIC4) is one of the six highly conserved proteins in the CLIC family that share high structural homology with GST-omega in the GST superfamily. While CLIC4 is a multifunctional protein that resides in multiple cellular compartments, the discovery of its enzymatic glutaredoxin-like activity in vitro suggested that it could function as an antioxidant. Here, we found that deleting CLIC4 from murine 6DT1 breast tumor cells using CRISPR enhanced the accumulation of reactive oxygen species (ROS) and sensitized cells to apoptosis in response to H2O2 as a ROS-inducing agent. In intact cells, H2O2 increased the expression of both CLIC4 mRNA and protein. In addition, increased superoxide production in 6DT1 cells lacking CLIC4 was associated with mitochondrial hyperactivity including increased mitochondrial membrane potential and mitochondrial organelle enlargement. In the absence of CLIC4, however, H2O2-induced apoptosis was associated with low expression and degradation of the antiapoptotic mitochondrial protein Bcl2 and the negative regulator of mitochondrial ROS, UCP2. Furthermore, transcriptomic profiling of H2O2-treated control and CLIC4-null cells revealed upregulation of genes associated with ROS-induced apoptosis and downregulation of genes that sustain mitochondrial functions. Accordingly, tumors that formed from transplantation of CLIC4-deficient 6DT1 cells were highly necrotic. These results highlight a critical role for CLIC4 in maintaining redox-homeostasis and mitochondrial functions in 6DT1 cells. Our findings also raise the possibility of targeting CLIC4 to increase cancer cell sensitivity to chemotherapeutic drugs that are based on elevating ROS in cancer cells.
Collapse
Affiliation(s)
- Heba Al Khamici
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Vanesa C Sanchez
- Office of Science, Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hualong Yan
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Luowei Li
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Jing Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Liu Z, Li G, Zhang Y, Jin H, Liu Y, Dong J, Li X, Liu Y, Liang X. Blending Technology Based on HPLC Fingerprint and Nonlinear Programming to Control the Quality of Ginkgo Leaves. Molecules 2022; 27:molecules27154733. [PMID: 35897910 PMCID: PMC9332425 DOI: 10.3390/molecules27154733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
The breadth and depth of traditional Chinese medicine (TCM) applications have been expanding in recent years, yet the problem of quality control has arisen in the application process. It is essential to design an algorithm to provide blending ratios that ensure a high overall product similarity to the target with controlled deviations in individual ingredient content. We developed a new blending algorithm and scheme by comparing different samples of ginkgo leaves. High-consistency samples were used to establish the blending target, and qualified samples were used for blending. Principal component analysis (PCA) was used as the sample screening method. A nonlinear programming algorithm was applied to calculate the blending ratio under different blending constraints. In one set of calculation experiments, the result was blended by the same samples under different conditions. Its relative deviation coefficients (RDCs) were controlled within ±10%. In another set of calculations, the RDCs of more component blending by different samples were controlled within ±20%. Finally, the near-critical calculation ratio was used for the actual experiments. The experimental results met the initial setting requirements. The results show that our algorithm can flexibly control the content of TCMs. The quality control of the production process of TCMs was achieved by improving the content stability of raw materials using blending. The algorithm provides a groundbreaking idea for quality control of TCMs.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guixin Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
| | - Yu Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongli Jin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Yucheng Liu
- Heilongjiang ZhenBaoDao Pharmaceutical Co., Ltd., Haerbin 158400, China; (Y.L.); (J.D.)
| | - Jiatao Dong
- Heilongjiang ZhenBaoDao Pharmaceutical Co., Ltd., Haerbin 158400, China; (Y.L.); (J.D.)
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
- Correspondence: (X.L.); (Y.L.); Tel.: +86-791-8306-1116 (X.L.); +86-411-8437-9519 (Y.L.)
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
- Correspondence: (X.L.); (Y.L.); Tel.: +86-791-8306-1116 (X.L.); +86-411-8437-9519 (Y.L.)
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.L.); (G.L.); (Y.Z.); (H.J.); (X.L.)
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| |
Collapse
|