1
|
Khalil MI, Hassan MM, Samanta SC, Chowdhury AK, Hassan MZ, Ahmed NU, Somaddar U, Ghosal S, Robin AHK, Nath UK, Mostofa MG, Burritt DJ, Ha CV, Gupta A, Tran LSP, Saha G. Unraveling the genetic enigma of rice submergence tolerance: Shedding light on the role of ethylene response factor-encoding gene SUB1A-1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108224. [PMID: 38091930 DOI: 10.1016/j.plaphy.2023.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024]
Abstract
The world's low-lying rice (Oryza sativa) cultivation areas are under threat of submergence or flash flooding due to global warming. Rice plants manifest a variety of physiological and morphological changes to cope with submergence and hypoxia, including lowering carbohydrate consumption, inhibiting shoot elongation, and forming a thicker leaf gas film during submergence. Functional studies have revealed that submergence tolerance in rice is mainly determined by an ethylene response factor (ERF) transcription factor-encoding gene, namely SUBMERGENCE 1A-1 (SUB1A-1) located in the SUB1 quantitative trait locus. The SUB1A-1-dependent submergence tolerance is manifested through hormonal signaling involving ethylene, gibberellic acid, brassinosteroid, auxin and jasmonic acid. Considerable progress has been made toward the introduction of SUB1A-1 into rice varieties through a conventional marker-assisted backcrossing approach. Here, we review the recent advances in the physiological, biochemical and molecular dynamics of rice submergence tolerance mediated by the 'quiescence strategy'. Thus, the present review aims to provide researchers with insights into the genetics of rice submergence tolerance and future perspectives for designing submergence-resilient plants for sustainable agriculture under the uncertainties of climate change.
Collapse
Affiliation(s)
- Md Ibrahim Khalil
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh; Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Md Mahmudul Hassan
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Swadesh Chandra Samanta
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Abul Kashem Chowdhury
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Md Zahid Hassan
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Nasar Uddin Ahmed
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Uzzal Somaddar
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Sharmistha Ghosal
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh.
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Mohammad Golam Mostofa
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, 9054, New Zealand.
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Aarti Gupta
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Gopal Saha
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| |
Collapse
|
2
|
Chi HY, Ou SL, Wang MC, Yang CY. Physiological responses and Ethylene-Response AP2/ERF Factor expression in Indica rice seedlings subjected to submergence and osmotic stress. BMC PLANT BIOLOGY 2023; 23:372. [PMID: 37501108 PMCID: PMC10373351 DOI: 10.1186/s12870-023-04380-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The increased frequency of heavy rains in recent years has led to submergence stress in rice paddies, severely affecting rice production. Submergence causes not only hypoxic stress from excess water in the surrounding environment but also osmotic stress in plant cells. We assessed physiological responses and Ethylene-Response AP2/ERF Factor regulation under submergence conditions alone and with ionic or nonionic osmotic stress in submergence-sensitive IR64 and submergence-tolerant IR64-Sub1 Indica rice cultivars. RESULTS Our results indicate that both IR64 and IR64-Sub1 exhibited shorter plant heights and root lengths under submergence with nonionic osmotic stress than normal condition and submergence alone. IR64-Sub1 seedlings exhibited a significantly lower plant height under submergence conditions alone and with ionic or nonionic osmotic stress than IR64 cultivars. IR64-Sub1 seedlings also presented lower malondialdehyde (MDA) concentration and higher survival rates than did IR64 seedlings after submergence with ionic or nonionic osmotic stress treatment. Sub1A-1 affects reactive oxygen species (ROS) accumulation and antioxidant enzyme activity in rice. The results also show that hypoxia-inducible ethylene response factors (ERF)-VII group and alcohol dehydrogenase 1 (ADH1) and lactate dehydrogenase 1 (LDH1) genes exhibited different expression levels under nonionic or ionic osmotic stress during submergence on rice. CONCLUSIONS Together, these results demonstrate that complex regulatory mechanisms are involved in responses to the aforementioned forms of stress and offer new insights into the effects of submergence and osmotic stress on rice.
Collapse
Affiliation(s)
- Hsin-Yu Chi
- International Master Program of Agriculture, National Chung Hsing University, Taichung, 402, Taiwan
| | - Shang-Ling Ou
- Department of Agronomy, National Chung Hsing University, Taichung, 402, Taiwan
| | - Mao-Chang Wang
- Department of Accounting, Chinese Culture University, Taipei, 111, Taiwan
| | - Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung, 402, Taiwan.
- Smart Sustainable New Agriculture Research Center (SMARTer), National Chung Hsing University, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 402, Taiwan.
- Advanced Plant and Food Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
3
|
Flooding tolerance in Rice: adaptive mechanism and marker-assisted selection breeding approaches. Mol Biol Rep 2023; 50:2795-2812. [PMID: 36592290 DOI: 10.1007/s11033-022-07853-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 01/03/2023]
Abstract
Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
Collapse
|
4
|
Submergence Gene Sub1A Transfer into Drought-Tolerant japonica Rice DT3 Using Marker-Assisted Selection. Int J Mol Sci 2021; 22:ijms222413365. [PMID: 34948165 PMCID: PMC8705020 DOI: 10.3390/ijms222413365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022] Open
Abstract
Flash flooding is a major environmental stressor affecting rice production worldwide. DT3 is a drought-tolerant, recurrent parent with a good yield, edible quality, and agronomic traits akin to those of an elite Taiwanese variety, Taiken9 (TK9). Progenies carrying Sub1A can enhance submergence stress tolerance and can be selected using the marker-assisted backcross (MAB) breeding method. For foreground selection, Sub1A and SubAB1 were utilized as markers on the BC2F1, BC3F1, and BC3F2 generations to select the submergence-tolerant gene, Sub1A. Background selection was performed in the Sub1A-BC3F2 genotypes, and the percentages of recurrent parent recovery within individuals ranged from 84.7–99.55%. BC3F3 genotypes (N = 100) were evaluated for agronomic traits, yield, and eating quality. Four of the eleven BC3F4 lines showed good yield, yield component, grain, and eating quality. Four BC3F4 lines, SU39, SU40, SU89, and SU92, exhibited desirable agronomic traits, including grain quality and palatability, consistent with those of DT3. These genotypes displayed a high survival rate between 92 and 96%, much better compared with DT3 with 64%, and demonstrated better drought tolerance compared to IR64 and IR96321-345-240. This study provides an efficient and precise MAB strategy for developing climate-resilient rice varieties with good grain quality for flood-prone regions.
Collapse
|
5
|
Pan T, Zhang J, He L, Hafeez A, Ning C, Cai K. Silicon Enhances Plant Resistance of Rice against Submergence Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:767. [PMID: 33919738 PMCID: PMC8070673 DOI: 10.3390/plants10040767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
Flooding is an important natural disaster limiting rice production. Silicon (Si) has been shown to have an important role in alleviating varied environmental stress. However, very few studies have investigated the effects and mechanisms of Si in alleviating flood stress in rice. In the present study, wild type rice (cv. Oochikara, WT) and Si-defective mutant (lsi1) were chosen to examine the impacts of Si application on plant growth, photosynthesis, cell structure, and antioxidant enzyme activity of rice exposed to submergence stress at tillering stage. Our results showed that Si application improved root morphological traits, and increased Si uptake and plant biomass of WT under submergence stress, but non-significantly influenced lsi1 mutant. Under submergence stress, leaf photosynthesis of WT was significantly inhibited, and Si application had no significant effects on photosynthetic rate, transpiration rate, stomatal conductance, and intercellular carbon dioxide concentration for both of WT and lsi1 mutant, but the photochemical quenching of WT was increased and the integrity of cell structure was improved. In addition, Si application significantly reduced malondialdehyde concentration and increased the activity of peroxidase and catalase in WT leaves under submergence stress. These results suggested that Si could increase rice plant resistance against submergence stress by improving root morphological traits and chloroplast ultrastructure and enhancing antioxidant defense.
Collapse
Affiliation(s)
- Taowen Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (T.P.); (J.Z.); (L.H.); (A.H.); (C.N.)
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jian Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (T.P.); (J.Z.); (L.H.); (A.H.); (C.N.)
| | - Lanmengqi He
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (T.P.); (J.Z.); (L.H.); (A.H.); (C.N.)
| | - Abdul Hafeez
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (T.P.); (J.Z.); (L.H.); (A.H.); (C.N.)
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chuanchuan Ning
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (T.P.); (J.Z.); (L.H.); (A.H.); (C.N.)
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (T.P.); (J.Z.); (L.H.); (A.H.); (C.N.)
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Kaspary TE, Roma-Burgos N, Merotto A. Snorkeling Strategy: Tolerance to Flooding in Rice and Potential Application for Weed Management. Genes (Basel) 2020; 11:genes11090975. [PMID: 32842571 PMCID: PMC7564916 DOI: 10.3390/genes11090975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/28/2023] Open
Abstract
Flooding is an important strategy for weed control in paddy rice fields. However, terrestrial weeds had evolved mechanisms of tolerance to flooding, resulting in new 'snorkeling' ecotypes. The aim of this review is to discuss the mechanisms of flooding tolerance in cultivated and weedy rice at different plant stages and the putative utility of this trait for weed management. Knowledge about flooding tolerance is derived primarily from crop models, mainly rice. The rice model informs us about the possible flooding tolerance mechanisms in weedy rice, Echinochloa species, and other weeds. During germination, the gene related to carbohydrate mobilization and energy intake (RAmy3D), and genes involved in metabolism maintenance under anoxia (ADH, PDC, and OsB12D1) are the most important for flooding tolerance. Flooding tolerance during emergence involved responses promoted by ethylene and induction of RAmy3D, ADH, PDC, and OsB12D1. Plant species tolerant to complete submersion also employ escape strategies or the ability to become quiescent during the submergence period. In weedy rice, the expression of PDC1, SUS3, and SUB1 genes is not directly related to flooding tolerance, contrary to what was learned in cultivated rice. Mitigation of flooding tolerance in weeds could be achieved with biotechnological approaches and genetic manipulation of flood tolerance genes through RNAi and transposons, providing a potential new tool for weed management.
Collapse
Affiliation(s)
- Tiago Edu Kaspary
- Instituto Nacional de Investigación Agropecuaria, INIA, La Estanzuela, Colonia 70006, Uruguay;
| | - Nilda Roma-Burgos
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Aldo Merotto
- Department of Crop Sciences, Agricultural School, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- Correspondence:
| |
Collapse
|
7
|
Li YS, Ou SL, Yang CY. The Seedlings of Different Japonica Rice Varieties Exhibit Differ Physiological Properties to Modulate Plant Survival Rates under Submergence Stress. PLANTS 2020; 9:plants9080982. [PMID: 32756426 PMCID: PMC7465654 DOI: 10.3390/plants9080982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 01/30/2023]
Abstract
Oryza sativa is a major food crop in Asia. In recent years, typhoons and sudden downpours have caused field flooding, which has resulted in serious harm to the production of rice. In this study, our data revealed that the plant heights of the five Japonica varieties increased during submergence. The elongation rates of TN14, KH139, and TK9 increased significantly during submergence. Chlorophyll contents of the five varieties significantly decreased after submergence and increased after recovery. Moreover, the chlorophyll content of KH139 was significantly higher than those of the other four varieties after recovery. The plant survival rates of the five varieties were higher than 50% after four-day submergence. After eight-day submergence, the survival rate of KH139 remained at 90%, which was the highest among the different varieties. The KH139 presented lower accumulation of hydrogen peroxide and the catalase activity than those of the other four varieties under submergence. The sucrose synthase 1 and alcohol dehydrogenase 1 were induced in KH139 under submergence. The results presented that different varieties of japonica rice have different flood tolerances, especially KH139 under submergence was superior to that of the other four varieties. These results can provide crucial information for future research on japonica rice under flooding stress.
Collapse
Affiliation(s)
| | | | - Chin-Ying Yang
- Correspondence: ; Tel.: +886-4-22840777 (ext. 608); Fax: +886-4-22877054
| |
Collapse
|
8
|
Gan L, Han L, Yin S, Jiang Y. Chlorophyll Metabolism and Gene Expression in Response to Submergence Stress and Subsequent Recovery in Perennial Ryegrass Accessions Differing in Growth Habits. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153195. [PMID: 32485524 DOI: 10.1016/j.jplph.2020.153195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/09/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Submergence-induced leaf senescence may alter chlorophyll metabolism. The objective of this study was to characterize chlorophyll biosynthesis and degradation in contrasting perennial ryegrass (Lolium perenne) in response to submergence stress and recovery. The light-green and fast-growing accession PI238938 and the darker-green and slow-growing cultivar BrightStar SLT were exposed to 0, 6 h, 1-, 3-, and 7-d of submergence stress and 1- and 5- d of de-submergence, respectively. Plant growth of PI238938 were more severely inhibited by submergence stress and recovery. Both accessions showed increased leaf malondialdehyde under stress and recovery, but reduced chlorophyll (Chl) concentrations were observed at 3- and 7-d of stress and at recovery. The reduction in Chl was more severe in BrightStar SLT at 7 d of stress. The concentration of 5-aminolevulenic acid was unaffected by stress but increased at 1d of recovery. Activities of 5-aminolevulinic acid dehydratase (ALAD) involved in Chl biosynthesis remained unchanged under stress and recovery, while the activities of Chl degrading enzymes chlorophyllase (CHL) and pheophytinase (PPH) increased at 3 d or 7 d of stress, and returned to the control level after recovery in both accessions. The downregulation of Chl-biosynthetic genes CHLI, POR, and CHLP and the upregulation of Chl-degrading genes CLH, PPH, and SGR were observed in both accessions under most of the stress periods. BrightStar SLT exhibited much lower expressions of the Chl-biosynthetic genes PBGD, CHS, and CHID under stress, while PI238938 had remarkably higher expressions of genes involved in Chl breakdown including CLH, PPH, PAO, RCCR, and SGR, and the expressions of these genes remained at a higher level at 1 d of recovery. The results indicated that submergence-induced leaf senescence and declines in Chl were associated with downregulation of more Chl-biosynthetic genes in slow-growing genotype and upregulation of more Chl-degrading genes in fast-growing genotype of perennial ryegrass.
Collapse
Affiliation(s)
- Lu Gan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; Institute of Turfgrass Science, Beijing Forestry University, Beijing, 100083, China
| | - Liebao Han
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, 100083, China
| | - Shuxia Yin
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, 100083, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
Barik J, Panda D, Mohanty SK, Lenka SK. Leaf photosynthesis and antioxidant response in selected traditional rice landraces of Jeypore tract of Odisha, India to submergence. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:847-863. [PMID: 31404200 PMCID: PMC6656848 DOI: 10.1007/s12298-019-00671-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/26/2019] [Accepted: 04/26/2019] [Indexed: 05/11/2023]
Abstract
Submergence tolerance in rice is important for improving yield under rain-fed lowland rice ecosystem. In this study, five traditional rice landraces having submergence tolerance phenotype were selected. These five rice landraces were chosen based on the submergence-tolerance screening of 88 rice landraces from various lowland areas of Jeypore tract of Odisha in our previous study. These five rice landraces were further used for detailed physiological assessment under control, submergence and subsequent re-aeration to judge their performance under different duration of submergence. Seedling survival was significantly decreased with the increase of plant height and significant varietal difference was observed after 14 days of complete submergence. Results showed that submergence progressively declined the leaf photosynthetic rate, stomatal conductance, instantaneous water use efficiency, carboxylation efficiency, photosystem II (PSII) activity and chlorophyll, with greater effect observed in susceptible check variety (IR 42). Notably, higher activities of antioxidative enzymes and ascorbate level were observed in traditional rice landraces and were found comparable with the tolerant check variety (FR 13A). Taken together, three landraces such as Samudrabali, Basnamundi and Gadaba showed better photosynthetic activity than that of tolerant check variety (FR 13A) and showed superior antioxidant response to submergence and subsequent re-aeration. These landraces can be considered as potential donors for the future submergence tolerance breeding program.
Collapse
Affiliation(s)
- Jijnasa Barik
- Department of Biodiversity and Conservation of Natural Resources, Central University of Orissa, Koraput, Odisha 764021 India
| | - Debabrata Panda
- Department of Biodiversity and Conservation of Natural Resources, Central University of Orissa, Koraput, Odisha 764021 India
| | | | - Sangram K. Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122 001 India
| |
Collapse
|
10
|
Huang YC, Yeh TH, Yang CY. Ethylene signaling involves in seeds germination upon submergence and antioxidant response elicited confers submergence tolerance to rice seedlings. RICE (NEW YORK, N.Y.) 2019; 12:23. [PMID: 30972510 PMCID: PMC6458221 DOI: 10.1186/s12284-019-0284-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/02/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Flooding has negative impact on agriculture. The plant hormone ethylene is involved in plant growth and stress responses, which are important role in tolerance and adaptation regulatory mechanisms during submergence stress. Ethylene signaling crosstalk with gibberellin signaling enhances tolerance in lowland rice (Flood Resistant 13A) through a quiescence strategy or in deepwater rice through an escape strategy when rice is submerged. Information regarding ethylene-mediated priming in submergence stress tolerance in rice is scant. Here, we used 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, to evaluate the response in submerged rice seedlings. RESULTS The germination rate and mean germination times of rice seeds was higher in seedlings under submergence only when ethylene signaling was inhibited by supplemented with silver nitrate (AgNO3). Reduced leaf chlorophyll contents and induced senescence-associated genes in rice seedlings under submergence were relieved by pretreatment with an ethylene precursor. The ethylene-mediated priming by pretreatment with an ethylene precursor enhanced the survival rate and hydrogen peroxide (H2O2) and superoxide (O2-) anion accumulation and affected antioxidant response in rice seedlings. CONCLUSIONS Pretreatment with an ethylene precursor leads to reactive oxygen species generation, which in turn triggered the antioxidant response system, thus improving the tolerance of rice seedlings to complete submergence stress. Thus, H2O2 signaling may contribute to ethylene-mediated priming to submergence stress tolerance in rice seedlings.
Collapse
Affiliation(s)
- Yi-Chun Huang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tsun-Hao Yeh
- Department of Agronomy, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|