1
|
Jo S, Jang SG, Lee SB, Lee JY, Cho JH, Kang JW, Kwon Y, Lee SM, Park DS, Kwon SW, Lee JH. Analysis of quantitative trait loci and candidate gene exploration associated with cold tolerance in rice ( Oryza sativa L.) during the seedling stage. FRONTIERS IN PLANT SCIENCE 2025; 15:1508333. [PMID: 39840352 PMCID: PMC11747135 DOI: 10.3389/fpls.2024.1508333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025]
Abstract
Cold stress during the seedling stage significantly threatens rice (Oryza sativa L.) production, specifically in temperate climates. This study aimed to identify quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage. QTL analysis was conducted on a doubled haploid (DH) population derived from a cross between the cold-sensitive indica cultivar 93-11 and the cold-tolerant japonica cultivar Milyang352. Phenotypic analysis was conducted over 2 years (2022-2023) under cold water treatment (13°C) at the Chuncheon Substation, South Korea. Cold tolerance scores were used to classify the DH populations and parental lines. In 2022, three QTLs were identified on chromosomes 3, 10, and 11; in 2023, a single QTL was identified on chromosome 10. The QTL qCTS1022/23 on chromosome 10 was consistently observed across both years, explaining up to 16.06% and 40.55% of the phenotypic variance, respectively. Fine-mapping of qCTS1022/23 narrowed the candidate region to a 300-kb interval containing 44 polymorphic single-nucleotide polymorphisms. Among the candidate genes, Os10g0409400 was significantly expressed in the cold-tolerant japonica parent Milyang352 under cold stress, indicating its role in conferring cold tolerance. These findings offer valuable insights into the genetic mechanisms of cold tolerance and highlight qCTS1022/23 as a potential target for marker-assisted selection in rice breeding programs to enhance cold tolerance.
Collapse
Affiliation(s)
- Sumin Jo
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Seong-Gyu Jang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Sais-Beul Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Ji-Yoon Lee
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration (RDA), Jeonju, Republic of Korea
| | - Jun-Hyeon Cho
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Ju-Won Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Yeongho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Dong-Soo Park
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration (RDA), Miryang, Republic of Korea
| |
Collapse
|
2
|
Li N, Miao J, Li Y, Ji F, Yang M, Dai K, Zhou Z, Hu D, Guo H, Fang H, Wang H, Wang M, Yang J. Comparative transcriptome analysis and meta-QTLs mapping reveal the regulatory mechanism of cold tolerance in rice at the budding stage. Heliyon 2024; 10:e37933. [PMID: 39328527 PMCID: PMC11425124 DOI: 10.1016/j.heliyon.2024.e37933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Rice (Oryza sativa L.) is one of the most extensively farmed food crops, but its development and productivity are significantly impacted by cold stress during the budding period. In this study, transcriptome sequencing was conducted on two types of rice: the cold-sensitive indica rice A117 and the substantially cold-tolerant japonica rice B106 under control and cold treatments. Differentially expressed genes between the two materials under cold conditions were analyzed using GO and KEGG enrichment analyses. The results revealed that processes such as the TCA cycle, glycolysis/glycogenesis, oxidative phosphorylation, and glutathione metabolism contribute to B106's cold tolerance. Additionally, an enrichment analysis of cold-induced genes in each material and shared genes identified significant enrichment in pathways such as glutathione metabolism, phenylpropanoid biosynthesis, and photosynthesis-antenna proteins. Initial cold tolerance QTLs at the rice bud stage were collected from published literature, and meta-QTL mapping identified 9 MQTLs. Gene expression profiling led to the identification of 75 potential DEGs within the 9 MQTLs region, from which four candidate genes (Os02g0194100, Os03g0802500, Os05g0129000, and Os07g0462000) were selected using qRT-PCR and gene annotation. These findings provide genetic resources for further research on the molecular mechanisms underlying rice's response to cold stress during the bud stage.
Collapse
Affiliation(s)
- Nan Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Jiahao Miao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Yichao Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Faru Ji
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Min Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Kunyan Dai
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Zixian Zhou
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Die Hu
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Haiyang Guo
- Zhaoqing Academy of Agriculture and Forestry Sciences, Zhaoqing, 526040, China
| | - Hong Fang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| | - Maohui Wang
- Zhaoqing Academy of Agriculture and Forestry Sciences, Zhaoqing, 526040, China
| | - Jing Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, 650500, China
| |
Collapse
|
3
|
Chen H, Liang X, Yang Z. Effects of Low-Temperature Stress on Physiological Characteristics and Microstructure of Stems and Leaves of Pinus massoniana L. PLANTS (BASEL, SWITZERLAND) 2024; 13:2229. [PMID: 39204665 PMCID: PMC11360594 DOI: 10.3390/plants13162229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Pinus massoniana L. is one of the most important conifer species in southern China and is the mainstay of the forest ecosystem and timber production, yet low temperatures limit its growth and geographical distribution. This study used 30-day-old seedlings from families of varying cold-tolerance to examine the morphological traits of needles and stems, chlorophyll fluorescence characteristics, protective enzymes, and changes in starch and lignin under different low-temperature stresses in an artificial climate chamber. The results showed that the seedlings of Pinus massoniana exhibited changes in phenotypic morphology and tissue structure under low-temperature stress. Physiological and biochemical indexes such as protective enzymes, osmoregulatory substances, starch, and lignin responded to low-temperature stress. The cold-tolerant family increased soluble sugars, starch grain, and lignin content as well as peroxidase activity, and decreased malondialdehyde content by increasing the levels of actual photochemical efficiency (ΦPSII), electron transport rate (ETR), and photochemical quenching (qP) to improve the cold tolerance ability. This study provides a reference for the selection and breeding of cold-tolerant genetic resources of Pinus massoniana and the mechanism of cold-tolerance, as well as the analysis of the mechanism of adaptation of Pinus massoniana in different climatic regions of China.
Collapse
Affiliation(s)
- Hu Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China; (H.C.); (X.L.)
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Masson Pine Engineering Research Center of the State Forestry Administration, Nanning 530002, China
- Masson Pine Engineering Research Center of Guangxi, Nanning 530002, China
| | - Xingxing Liang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China; (H.C.); (X.L.)
| | - Zhangqi Yang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China; (H.C.); (X.L.)
- Key Laboratory of Central South Fast-Growing Timber Cultivation of Forestry Ministry of China, Masson Pine Engineering Research Center of the State Forestry Administration, Nanning 530002, China
- Masson Pine Engineering Research Center of Guangxi, Nanning 530002, China
| |
Collapse
|
4
|
Zhou S, Wu T, Li X, Wang S, Hu B. Identification of candidate genes controlling cold tolerance at the early seedling stage from Dongxiang wild rice by QTL mapping, BSA-Seq and RNA-Seq. BMC PLANT BIOLOGY 2024; 24:649. [PMID: 38977989 PMCID: PMC11232298 DOI: 10.1186/s12870-024-05369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The cold tolerance of rice is closely related to its production and geographic distribution. The identification of cold tolerance-related genes is of important significance for developing cold-tolerant rice. Dongxiang wild rice (Oryza rufipogon Griff.) (DXWR) is well-adapted to the cold climate of northernmost-latitude habitats ever found in the world, and is one of the most valuable rice germplasms for cold tolerance improvement. RESULTS Transcriptome analysis revealed genes differentially expressed between Xieqingzao B (XB; a cold sensitive variety) and 19H19 (derived from an interspecific cross between DXWR and XB) in the room temperature (RT), low temperature (LT), and recovery treatments. The results demonstrated that chloroplast genes might be involved in the regulation of cold tolerance in rice. A high-resolution SNP genetic map was constructed using 120 BC5F2 lines derived from a cross between 19H19 and XB based on the genotyping-by-sequencing (GBS) technique. Two quantitative trait loci (QTLs) for cold tolerance at the early seedling stage (CTS), qCTS12 and qCTS8, were detected. Moreover, a total of 112 candidate genes associated with cold tolerance were identified based on bulked segregant analysis sequencing (BSA-seq). These candidate genes were divided into eight functional categories, and the expression trend of candidate genes related to 'oxidation-reduction process' and 'response to stress' differed between XB and 19H19 in the RT, LT and recovery treatments. Among these candidate genes, the expression level of LOC_Os12g18729 in 19H19 (related to 'response to stress') decreased in the LT treatment but restored and enhanced during the recovery treatment whereas the expression level of LOC_Os12g18729 in XB declined during recovery treatment. Additionally, XB contained a 42-bp deletion in the third exon of LOC_Os12g18729, and the genotype of BC5F2 individuals with a survival percentage (SP) lower than 15% was consistent with that of XB. Weighted gene coexpression network analysis (WGCNA) and modular regulatory network learning with per gene information (MERLIN) algorithm revealed a gene interaction/coexpression network regulating cold tolerance in rice. In the network, differentially expressed genes (DEGs) related to 'oxidation-reduction process', 'response to stress' and 'protein phosphorylation' interacted with LOC_Os12g18729. Moreover, the knockout mutant of LOC_Os12g18729 decreased cold tolerance in early rice seedling stage signifcantly compared with that of wild type. CONCLUSIONS In general, study of the genetic basis of cold tolerance of rice is important for the development of cold-tolerant rice varieties. In the present study, QTL mapping, BSA-seq and RNA-seq were integrated to identify two CTS QTLs qCTS8 and qCTS12. Furthermore, qRT-PCR, genotype sequencing and knockout analysis indicated that LOC_Os12g18729 could be the candidate gene of qCTS12. These results are expected to further exploration of the genetic mechanism of CTS in rice and improve cold tolerance of cultivated rice by introducing the cold tolerant genes from DXWR through marker-assisted selection.
Collapse
Affiliation(s)
- Shiqi Zhou
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Qingyunpu District, Nanchang, 330000, China
| | - Ting Wu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Qingyunpu District, Nanchang, 330000, China
| | - Xia Li
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Qingyunpu District, Nanchang, 330000, China
| | - Shilin Wang
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Qingyunpu District, Nanchang, 330000, China
| | - Biaolin Hu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Qingyunpu District, Nanchang, 330000, China.
| |
Collapse
|
5
|
Yang J, Miao J, Li N, Zhou Z, Dai K, Ji F, Yang M, Tan C, Liu J, Wang H, Tang W. Genetic dissection of cold tolerance at the budding stage of rice in an indica-japonica recombination inbred line population. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108086. [PMID: 37890228 DOI: 10.1016/j.plaphy.2023.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Rice is highly cold-sensitive, and thus, the promotion of cold resistance in buds is essential. In this study, we conducted a mapping analysis to identify quantitative trait loci (QTLs) associated with cold tolerance in buds. The analysis was performed using a recombinant inbred line (RIL) population consisting of 192 lines derived from the cold-tolerant strain 02428 and the cold-sensitive strain YZX. Seven additive loci on chromosomes 1, 4, 5, and 6 were identified, of which loci 3 and 7 were found in two crop seasons, indicating stability. Three epistatic interactions, one present over two seasons, were found. Loci 3 and 7 pyramided with two main-effect QTLs observed to control the rate of low-temperature germination in our previous study. Two materials with good cold resistance at the germination and bud stages were obtained, namely, G93 and G146. Transcriptome sequencing analysis of the two parent buds after cold treatment found that genes expressed differentially between the two parents were related to photosynthesis, energy metabolism, and reactive oxygen scavenging. Five candidate genes, namely, Os01g0385400, Os01g0388000, Os06g0287700, Os06g0289200, and Os06g0291100, were selected in the two stable intervals based on gene expression profiles and annotations. These genetic loci exhibit strong potential as targets for breeding cold tolerance in buds and require additional investigation. In conclusion, this work provides valuable genetic resources that can be utilized to improve the cold tolerance of rice.
Collapse
Affiliation(s)
- Jing Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Jiahao Miao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Nan Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Zixian Zhou
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Kunyan Dai
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Faru Ji
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Min Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Chen Tan
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Jing Liu
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China.
| | - Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China.
| | - Wei Tang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
6
|
Al-Ashkar I, Sallam M, Ibrahim A, Ghazy A, Al-Suhaibani N, Ben Romdhane W, Al-Doss A. Identification of Wheat Ideotype under Multiple Abiotic Stresses and Complex Environmental Interplays by Multivariate Analysis Techniques. PLANTS (BASEL, SWITZERLAND) 2023; 12:3540. [PMID: 37896004 PMCID: PMC10610392 DOI: 10.3390/plants12203540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Multiple abiotic stresses negatively impact wheat production all over the world. We need to increase productivity by 60% to provide food security to the world population of 9.6 billion by 2050; it is surely time to develop stress-tolerant genotypes with a thorough comprehension of the genetic basis and the plant's capacity to tolerate these stresses and complex environmental reactions. To approach these goals, we used multivariate analysis techniques, the additive main effects and multiplicative interaction (AMMI) model for prediction, linear discriminant analysis (LDA) to enhance the reliability of the classification, multi-trait genotype-ideotype distance index (MGIDI) to detect the ideotype, and the weighted average of absolute scores (WAASB) index to recognize genotypes with stability that are highly productive. Six tolerance multi-indices were used to test twenty wheat genotypes grown under multiple abiotic stresses. The AMMI model showed varying differences with performance indices, which disagreed with the trait and genotype differences used. The G01, G12, G16, and G02 were selected as the appropriate and stable genotypes using the MGIDI with the six tolerance multi-indices. The biplot features the genotypes (G01, G03, G11, G16, G17, G18, and G20) that were most stable and had high tolerance across the environments. The pooled analyses (LDA, MGIDI, and WAASB) showed genotype G01 as the most stable candidate. The genotype (G01) is considered a novel genetic resource for improving productivity and stabilizing wheat programs under multiple abiotic stresses. Hence, these techniques, if used in an integrated manner, strongly support the plant breeders in multi-environment trials.
Collapse
Affiliation(s)
- Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (A.I.); (A.G.); (N.A.-S.); (W.B.R.); (A.A.-D.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Mao Y, Li H, Wang Y, Fan K, Shen J, Zhang J, Han X, Song Y, Bi C, Sun L, Ding Z. Low temperature response index for monitoring freezing injury of tea plant. FRONTIERS IN PLANT SCIENCE 2023; 14:1096490. [PMID: 36818866 PMCID: PMC9933980 DOI: 10.3389/fpls.2023.1096490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Freezing damage has been a common natural disaster for tea plantations. Quantitative detection of low temperature stress is significant for evaluating the degree of freezing injury to tea plants. Traditionally, the determination of physicochemical parameters of tea leaves and the investigation of freezing damage phenotype are the main approaches to detect the low temperature stress. However, these methods are time-consuming and laborious. In this study, different low temperature treatments were carried out on tea plants. The low temperature response index (LTRI) was established by measuring seven low temperature-induced components of tea leaves. The hyperspectral data of tea leaves was obtained by hyperspectral imaging and the feature bands were screened by successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS) and uninformative variable elimination (UVE). The LTRI and seven indexes of tea plant were modeled by partial least squares (PLS), support vector machine (SVM), random forests (RF), back propagation (BP) machine learning methods and convolutional neural networks (CNN), long short-term memory (LSTM) deep learning methods. The results indicated that: (1) the best prediction model for the seven indicators was LTRI-UVE-CNN (R2 = 0.890, RMSEP=0.325, RPD=2.904); (2) the feature bands screened by UVE algorithm were more abundant, and the later modeling effect was better than CARS and SPA algorithm; (3) comparing the effects of the six modeling algorithms, the overall modeling effect of the CNN model was better than other models. It can be concluded that out of all the combined models in this paper, the LTRI-UVE-CNN was a promising model for predicting the degree of low temperature stress in tea plants.
Collapse
Affiliation(s)
- Yilin Mao
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - He Li
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jie Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Xiao Han
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yujie Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Caihong Bi
- Agricultural Technology Extension Center, Linyi Agricultural and Rural Bureau, Linyi, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
8
|
Gu S, Zhuang J, Zhang Z, Chen W, Xu H, Zhao M, Ma D. Multi-omics approach reveals the contribution of OsSEH1 to rice cold tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1110724. [PMID: 36714747 PMCID: PMC9880419 DOI: 10.3389/fpls.2022.1110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
As low environmental temperature adversely affects the growth, development and geographical distribution, plants have evolved multiple mechanisms involving changing physiological and metabolic processes to adapt to cold stress. In this study, we revealed that nucleoporin-coding gene OsSEH1 was a positive regulator of cold stress in rice. Physiological assays showed that the activity of antioxidant enzymes showed a significant difference between osseh1 knock-out lines and wild type under cold stress. Metabolome analysis revealed that the contents of large-scale flavonoids serving as ROS scavengers were lower in osseh1 mutants compared with wild type under cold stress. Transcriptome analysis indicated that the DEGs between osseh1 knock-out lines and wild type plants were enriched in defense response, regulation of hormone levels and oxidation-reduction process. Integration of transcriptomic and metabolic profiling revealed that OsSEH1 plays a role in the oxidation-reduction process by coordinately regulating genes expression and metabolite accumulation involved in phenylpropanoid and flavonoid biosynthetic pathway. In addition, Exogenous ABA application assays indicated that osseh1 lines had hypersensitive phenotypes compared with wild type plants, suggesting that OsSEH1 may mediate cold tolerance by regulating ABA levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dianrong Ma
- *Correspondence: Minghui Zhao, ; Dianrong Ma,
| |
Collapse
|
9
|
Berchembrock YV, Pathak B, Maurya C, Botelho FBS, Srivastava V. Phenotypic and transcriptomic analysis reveals early stress responses in transgenic rice expressing Arabidopsis DREB1a. PLANT DIRECT 2022; 6:e456. [PMID: 36267847 PMCID: PMC9579989 DOI: 10.1002/pld3.456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/13/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Overexpression of Arabidopsis dehydration response element binding 1a (DREB1a) is a well-known approach for developing salinity, cold and/or drought stress tolerance. However, understanding of the genetic mechanisms associated with DREB1a expression in rice is generally limited. In this study, DREB1a-associated early responses were investigated in a transgenic rice line harboring cold-inducible DREB1a at a gene stacked locus. Although the function of other genes in the stacked locus was not relevant to stress tolerance, this study demonstrates DREB1a can be co-localized with other genes for multigenic trait enhancement. As expected, the transgenic lines displayed improved tolerance to salinity stress and water withholding as compared with non-transgenic controls. RNA sequencing and transcriptome analysis showed upregulation of complex transcriptional networks and metabolic reprogramming as DREB1a expression led to the upregulation of multiple transcription factor gene families, suppression of photosynthesis, and induction of secondary metabolism. In addition to the detection of previously described mechanisms such as production of protective molecules, potentially novel pathways were also revealed. These include jasmonate, auxin, and ethylene signaling, induction of JAZ and WRKY regulons, trehalose synthesis, and polyamine catabolism. These genes regulate various stress responses and ensure timely attenuation of the stress signal. Furthermore, genes associated with heat stress response were downregulated in DREB1a expressing lines, suggesting antagonism between heat and dehydration stress response pathways. In summary, through a complex transcriptional network, multiple stress signaling pathways are induced by DREB1a that presumably lead to early perception and prompt response toward stress tolerance as well as attenuation of the stress signal to prevent deleterious effects of the runoff response.
Collapse
Affiliation(s)
- Yasmin Vasques Berchembrock
- Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas System Division of AgricultureFayettevilleArkansasUSA
| | - Bhuvan Pathak
- Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas System Division of AgricultureFayettevilleArkansasUSA
- Present address:
Biological and Life Sciences Division, School of Arts and SciencesAhmedabad University Central CampusNavrangpuraAhmedabadIndia
| | - Chandan Maurya
- Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas System Division of AgricultureFayettevilleArkansasUSA
| | | | - Vibha Srivastava
- Department of Crop, Soil, and Environmental SciencesUniversity of Arkansas System Division of AgricultureFayettevilleArkansasUSA
| |
Collapse
|
10
|
Zhang MX, Bai R, Nan M, Ren W, Wang CM, Shabala S, Zhang JL. Evaluation of salt tolerance of oat cultivars and the mechanism of adaptation to salinity. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153708. [PMID: 35504119 DOI: 10.1016/j.jplph.2022.153708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Soil salinity is a threat to agricultural production worldwide. Oat (Avena sativa L.) is an irreplaceable crop in areas with fragile ecological conditions. However, there is a lack of research on salt tolerance evaluation of oat germplasm resources. Therefore, the purpose of this work was to evaluate the salt tolerance of oat cultivars and investigate the mechanism of salt-tolerant oat cultivars' adaptation to salinity. Salt tolerance of 100 oat cultivars was evaluated, and then two salt-tolerant cultivars and two salt-sensitive cultivars were used to compare their physiological responses and expression patterns of Na+- and K+-transport-related genes under salinity. Principal component analysis and membership function analysis had good predictability for salt tolerance evaluation of oat and other crops. The 100 oat cultivars were clustered into three categories, with three salt tolerance levels. Under saline condition, salt-tolerant cultivars maintained higher growth rate, leaf cell membrane integrity, and osmotic adjustment capability via enhancing the activities of antioxidant enzymes and accumulating more osmotic regulators. Furthermore, salt-tolerant cultivars had stronger capability to restrict root Na + uptake through reducing AsAKT1 and AsHKT2;1 expression, exclude more Na+ from root through increasing AsSOS1 expression, compartmentalize more Na + into root vacuoles through increasing AsNHX1 and AsVATP-P1 expression, and absorb more K+ through increasing AsKUP1 expression, compared with salt-sensitive cultivars. The evaluation procedure developed in this work can be applied for screening cereal crop cultivars with higher salt tolerance, and the elucidated mechanism of oat adaptation to salinity lays a foundation for identifying more functional genes related to salt tolerance.
Collapse
Affiliation(s)
- Ming-Xu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rong Bai
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ming Nan
- Gansu Academy of Agricultural Sciences, Lanzhou, 730070, People's Republic of China
| | - Wei Ren
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chun-Mei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, People's Republic of China
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, 528000, PR China; School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia.
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering, Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
11
|
Han B, Cui D, Ma X, Cao G, Zhang H, Koh HJ, Han L. Evidence for evolution and selection of drought-resistant genes based on high-throughput resequencing in weedy rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1949-1962. [PMID: 35179195 DOI: 10.1093/jxb/erab515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Weedy rice (Oryza sativa f. spontanea) is a relative of cultivated rice that propagates in paddy fields and has strong drought resistance. In this study, we used 501 rice accessions to reveal the selection mechanism of drought resistance in weedy rice through a combination of selection analysis, genome-wide association studies, gene knockout and overexpression analysis, and Ca2+ and K+ ion flux assays. The results showed that the weedy rice species investigated have gene introgression with cultivated rice, which is consistent with the hypothesis that weedy rice originated from de-domestication of cultivated rice. Regions related to tolerance have particularly diversified during de-domestication and three drought-tolerance genes were identified. Of these, Os01g0800500 was also identified using an assay of the degree of leaf withering under drought, and it was named as PAPH1, encoding a PAP family protein. The drought-resistance capacity of PAPH1-knockout lines was much lower than that of the wild type, while that of overexpression lines was much higher. Concentrations of Ca2+ and K+ were lower in the knockout lines and higher in the overexpression lines compared with those of the wild type, suggesting that PAPH1 plays important roles in coping with drought stress. Our study therefore provides new insights into the genetic mechanisms underlying adaptive tolerance to drought in wild rice and highlights potential new resistance genes for future breeding programs in cultivated rice.
Collapse
Affiliation(s)
- Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guilan Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hee Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute of Agriculture and Life Science, Seoul National University, Seoul, >Korea
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Phan H, Schläppi M. Low Temperature Antioxidant Activity QTL Associate with Genomic Regions Involved in Physiological Cold Stress Tolerance Responses in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:genes12111700. [PMID: 34828305 PMCID: PMC8618774 DOI: 10.3390/genes12111700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Boosting cold stress tolerance in crop plants can minimize stress-mediated yield losses. Asian rice (Oryza sativa L.), one of the most consumed cereal crops, originated from subtropical regions and is generally sensitive to low temperature environments. Within the two subspecies of rice, JAPONICA, and INDICA, the cold tolerance potential of its accessions is highly variable and depends on their genetic background. Yet, cold stress tolerance response mechanisms are complex and not well understood. This study utilized 370 accessions from the Rice Diversity Panel 1 (RDP1) to investigate and correlate four cold stress tolerance response phenotypes: membrane damage, seedling survivability, and catalase and anthocyanin antioxidative activity. Most JAPONICA accessions, and admixed accessions within JAPONICA, had lower membrane damage, higher antioxidative activity, and overall, higher seedling survivability compared to INDICA accessions. Genome-wide association study (GWAS) mapping was done using the four traits to find novel quantitative trait loci (QTL), and to validate and fine-map previously identified QTL. A total of 20 QTL associated to two or more traits were uncovered by our study. Gene Ontology (GO) term enrichment analyses satisfying four layers of filtering retrieved three potential pathways: signal transduction, maintenance of plasma membrane and cell wall integrity, and nucleic acids metabolism as general mechanisms of cold stress tolerance responses involving antioxidant activity.
Collapse
|
13
|
Fukuda A, Hirose T, Hashida Y, Aoki N, Nagano AJ. Selection of transcripts related to low-temperature tolerance using RNA sequencing from F 2 plants between japonica and indica rice (Oryza sativa L.) cultivars. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:984-993. [PMID: 34112311 DOI: 10.1071/fp21088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
At low temperatures (18°C), seedlings of an indica rice (Oryza sativa L.) cultivar Kasalath showed symptoms of chlorosis, although the leaves of a japonica cultivar Arroz da Terra remained green. In this study, transcripts related to the chlorophyll content of rice seedlings grown at 18°C were investigated using RNA-sequencing (RNA-Seq) data for F2 crosses between cultivars Arroz da Terra and Kasalath, as well as their parental cultivars. Differential expression analysis revealed that gene ontology terms related to 'photosynthesis' were significantly enriched in lowly expressed genes at 18°C than at 25°C in Kasalath. However, the gene ontology terms related to 'response to stress' were significantly enriched in highly expressed genes at 18°C than at 25°C in Kasalath. When the F2 plants were grown at 18°C, their chlorophyll contents varied. Transcripts with expression levels related to chlorophyll content were statistically selected using RNA-Seq data from 21 F2 plants. In regression models, frequently selected genes included four photosynthetic and two stress-responsive genes. The expression values of four photosynthetic and two stress-responsive genes in high-frequency selected genes were significantly correlated with chlorophyll content not only in plants analysed using RNA-Seq but also in 95 F2 plants.
Collapse
Affiliation(s)
- Akari Fukuda
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; and Corresponding author.
| | - Tatsuro Hirose
- Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Yoichi Hashida
- Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Naohiro Aoki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
14
|
Yu R, Wang G, Yu X, Li L, Li C, Song Y, Xu Z, Zhang J, Guan C. Assessing alfalfa (Medicago sativa L.) tolerance to salinity at seedling stage and screening of the salinity tolerance traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:664-674. [PMID: 33884732 DOI: 10.1111/plb.13271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Salt is among the most harmful agents that negatively influences crop yield. Alfalfa is an important perennial forage crop that exhibits wide cultivar variations in salt tolerance. Developing salt-tolerant alfalfa plants is a promising way to utilize salinized land. A comprehensive method was developed to achieve reliable and effective evaluation of alfalfa salt resistance. This included principal components, membership functions and cluster and stepwise regression analyses. These were used to analyse the salt tolerance coefficients of 14 traits and to evaluate 20 diverse alfalfa cultivars at the seedling stage. The various morphological root parameters of six alfalfa cultivars with contrasting salt tolerance were also tested by a scanning apparatus. According to the comprehensive evaluation value (D value), one highly salt-tolerant, two salt-tolerant, four moderately salt-tolerant and 13 salt-sensitive alfalfa cultivars were screened. A mathematical equation for the evaluation of alfalfa salt tolerance was established: D' = -0.126 + 0.667SFW + 0.377SDW + 1.089K+ /Na+ + 0.172SFW/RFW (R2 = 0.988; average forecast accuracy of 96.95%), where four indices were closely related to the salt tolerance: shoot fresh weight, ratio of shoot fresh weight to root fresh weight, shoot dry weight and ratio of K+ to Na+ in the shoot. We also found that SSA correlated strongly with SFW, SDW, K+ /Na+ , D values, while SRV correlated obviously with SFW, SFW/RFW and D values after 150 mm NaCl treatment. In conclusion, the SFW, K+ /Na+ , SDW, SFW/RFW, SSA and SRV could be used as indicators of salt tolerance in alfalfa seedlings grown under 150 mm NaCl treatment.
Collapse
Affiliation(s)
- R Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - G Wang
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| | - X Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - L Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - C Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Y Song
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Z Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
- Purple pasture Co., Ltd, Wuhe, Bengbu, Anhui, China
| | - J Zhang
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| | - C Guan
- Shandong Institute of Agricultural Sustainable Development, Jinan, Shandong, China
| |
Collapse
|
15
|
Yang Y, Chen J, He Y, Liu F, Feng X, Zhang J. Assessment of the vigor of rice seeds by near-infrared hyperspectral imaging combined with transfer learning. RSC Adv 2020; 10:44149-44158. [PMID: 35517156 PMCID: PMC9058448 DOI: 10.1039/d0ra06938h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
Rice seed vigor plays a significant role in determining the quality and quantity of rice production. Thus, the quick and non-destructive identification of seed vigor is not only beneficial to fully obtain the state of rice seeds but also the intelligent development of agriculture by instant monitoring. Thus, herein, near-infrared hyperspectral imaging technology, as an information acquisition tool, was introduced combined with a deep learning algorithm to identify the rice seed vigor. Both the spectral images and average spectra of the rice seeds were sent to discriminant models including deep learning models and traditional machine learning models, and the highest accuracy of vigor identification reached 99.5018% using the self-built model. The parameters of the established deep learning models were frozen to be feature extractor for transfer learning. The identification results whose highest number also reached almost 98% indicated the possibility of applying transfer learning to improve the universality of the models. Moreover, by visualizing the output of convolutional layers, the progress and mechanism of spectral image feature extraction in the established deep learning model was explored. Overall, the self-built deep learning models combined with near-infrared hyperspectral images in the determination of rice seed vigor have potential to efficiently perform this task.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science Hangzhou China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science Hangzhou China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University Ningbo China
| | - Yong He
- College of Biosystems Engineering and Food Science, Key Laboratory of Spectroscopy, Ministry of Agriculture and Rural Affairs, Zhejiang University Hangzhou China +86-137-773-88835
- Huanan Industrial Technology Research Institute of Zhejiang University Guangzhou China
| | - Feng Liu
- College of Life Sciences, Nanjing Agricultural University Nanjing China
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Key Laboratory of Spectroscopy, Ministry of Agriculture and Rural Affairs, Zhejiang University Hangzhou China +86-137-773-88835
- Huanan Industrial Technology Research Institute of Zhejiang University Guangzhou China
| | - Jinnuo Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Spectroscopy, Ministry of Agriculture and Rural Affairs, Zhejiang University Hangzhou China +86-137-773-88835
- Huanan Industrial Technology Research Institute of Zhejiang University Guangzhou China
| |
Collapse
|
16
|
Han B, Ma X, Cui D, Geng L, Cao G, Zhang H, Han L. Parallel reaction monitoring revealed tolerance to drought proteins in weedy rice (Oryza sativa f. spontanea). Sci Rep 2020; 10:12935. [PMID: 32737338 PMCID: PMC7395730 DOI: 10.1038/s41598-020-69739-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/16/2020] [Indexed: 11/22/2022] Open
Abstract
Drought is a complicated abiotic stress factor with severe effects on rice growth and production. Weedy rice is a valuable genetic resource that possesses a strong capacity for drought tolerance, cold tolerance, and salt tolerance, and is an excellent material for studying rice tolerance. Here, according to comprehensive tolerance to drought index D, accession WR16 was selected based on strong drought tolerance among 133 studied weedy red rice germplasms. WR16 was compared with Oryza sativa ssp. Japonica. cv. IAPAR-9, a reference genotype originating from Brazil. In addition, accession WR24 was classified as moderately tolerant to drought accessions. Transcriptomic and proteomic analyses were combined to identify 38 co-upregulated proteins related to drought tolerance, and targeted parallel reaction monitoring (PRM) was used to precisely quantify and verify nine proteins in the complex backgrounds. Result showed that six proteins were significantly (Fisher's exact P value < 0.05) related to drought tolerance in accessions WR16 and WR24. Among them, OS09T0478300-01, OS09T0530300-01, and OS01T0800500-01 formed a combined defense system to respond to drought stress in weedy rice. Results of these studies provide comprehensive information for precisely identifying and verifying tolerance to drought proteins and lay a solid theoretical foundation for research on drought tolerance mechanisms.
Collapse
Affiliation(s)
- Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Leiyue Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Coastal Agriculture Institute, Hebei Academy of Agricultural and Forestry Sciences, Tangshan, 063299, China
| | - Guilan Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
17
|
Transcriptomic Profiling of Young Cotyledons Response to Chilling Stress in Two Contrasting Cotton ( Gossypium hirsutum L.) Genotypes at the Seedling Stage. Int J Mol Sci 2020; 21:ijms21145095. [PMID: 32707667 PMCID: PMC7404027 DOI: 10.3390/ijms21145095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Young cotyledons of cotton seedlings are most susceptible to chilling stress. To gain insight into the potential mechanism of cold tolerance of young cotton cotyledons, we conducted physiological and comparative transcriptome analysis of two varieties with contrasting phenotypes. The evaluation of chilling injury of young cotyledons among 74 cotton varieties revealed that H559 was the most tolerant and YM21 was the most sensitive. The physiological analysis found that the ROS scavenging ability was lower, and cell membrane damage was more severe in the cotyledons of YM21 than that of H559 under chilling stress. RNA-seq analysis identified a total of 44,998 expressed genes and 19,982 differentially expressed genes (DEGs) in young cotyledons of the two varieties under chilling stress. Weighted gene coexpression network analysis (WGCNA) of all DEGs revealed four significant modules with close correlation with specific samples. The GO-term enrichment analysis found that lots of genes in H559-specific modules were involved in plant resistance to abiotic stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that pathways such as plant hormone signal transduction, MAPK signaling, and plant–pathogen interaction were related to chilling stress response. A total of 574 transcription factors and 936 hub genes in these modules were identified. Twenty hub genes were selected for qRT-PCR verification, revealing the reliability and accuracy of transcriptome data. These findings will lay a foundation for future research on the molecular mechanism of cold tolerance in cotyledons of cotton.
Collapse
|
18
|
Kong W, Zhang C, Qiang Y, Zhong H, Zhao G, Li Y. Integrated RNA-Seq Analysis and Meta-QTLs Mapping Provide Insights into Cold Stress Response in Rice Seedling Roots. Int J Mol Sci 2020; 21:ijms21134615. [PMID: 32610550 PMCID: PMC7369714 DOI: 10.3390/ijms21134615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Rice (Oryza sativa L.) is a widely cultivated food crop around the world, especially in Asia. However, rice seedlings often suffer from cold stress, which affects their growth and yield. Here, RNA-seq analysis and Meta-QTLs mapping were performed to understand the molecular mechanisms underlying cold tolerance in the roots of 14-day-old seedlings of rice (RPY geng, cold-tolerant genotype). A total of 4779 of the differentially expressed genes (DEGs) were identified, including 2457 up-regulated and 2322 down-regulated DEGs. The GO, COG, KEEG, and Mapman enrichment results of DEGs revealed that DEGs are mainly involved in carbohydrate transport and metabolism, signal transduction mechanisms (plant hormone signal transduction), biosynthesis, transport and catabolism of secondary metabolites (phenylpropanoid biosynthesis), defense mechanisms, and large enzyme families mechanisms. Notably, the AP2/ERF-ERF, NAC, WRKY, MYB, C2H2, and bHLH transcription factors participated in rice’s cold–stress response and tolerance. On the other hand, we mapped the identified DEGs to 44 published cold–stress-related genes and 41 cold-tolerant Meta-QTLs regions. Of them, 12 DEGs were the published cold–stress-related genes and 418 DEGs fell into the cold-tolerant Meta-QTLs regions. In this study, the identified DEGs and the putative molecular regulatory network can provide insights for understanding the mechanism of cold stress tolerance in rice. In addition, DEGs in KEGG term-enriched terms or cold-tolerant Meta-QTLs will help to secure key candidate genes for further functional studies on the molecular mechanism of cold stress response in rice.
Collapse
|