1
|
Fan G, Jiang J, Long Y, Wang R, Liang F, Liu H, Xu J, Qiu X, Li Z. Generation of Two-Line Restorer Line with Low Chalkiness Using Knockout of Chalk5 through CRISPR/Cas9 Editing. BIOLOGY 2024; 13:617. [PMID: 39194555 DOI: 10.3390/biology13080617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Chalkiness is an important grain quality trait in rice. Chalk5, encoding a vacuolar H+-translocating pyrophosphatase, is a major gene affecting both the percentage of grains with chalkiness (PGWC) and chalkiness degree (DEC) in rice. Reducing its expression can decrease both PGEC and DEC. In this study, the first exon of Chalk5 was edited in the elite restorer line 9311 using the CRISPR/Cas9 system and two knockout mutants were obtained, one of which did not contain the exogenous Cas9 cassette. PGWC and DEC were both significantly reduced in both mutants, while the seed setting ratio (SSR) was also significantly decreased. Staggered sowing experiments showed that the chalkiness of the mutants was insensitive to temperature during the grain-filling stage, and the head milled rice rate (HMRR) could be improved even under high-temperature conditions. Finally, in the hybrid background, the mutants showed significantly reduced PGWC and DEC without changes in other agronomic traits. The results provide important germplasm and allele resources for breeding high-yield rice varieties with superior quality, especially for high-yield indica hybrid rice varieties with superior quality in high-temperature conditions.
Collapse
Affiliation(s)
- Gucheng Fan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Researches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Jiefeng Jiang
- Ningbo Academy of Agricultural Science, Ningbo 315101, China
| | - Yu Long
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Researches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Run Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Researches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Famao Liang
- Yichang Academy of Agricultural Sciences, Yichang 443004, China
| | - Haiyang Liu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Researches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Junying Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Researches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xianjin Qiu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Researches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhixin Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Researches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
2
|
Park JR, Kim EG, Jang YH, Kim KM. Utilization of the Winkler scale of plants using big data temperature presented by the Korea Meteorological Administration. FRONTIERS IN PLANT SCIENCE 2024; 14:1349606. [PMID: 38283972 PMCID: PMC10811219 DOI: 10.3389/fpls.2023.1349606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Introduction Rice is an important food source that can provide a stable supply of calories for most people around the world. However, owing to the recent rapid temperature rise, we are facing social issues related to the increase in the Winkler scale. In this study, a strategy for screening potential candidate genes related to the yield according to the Winkler scale is presented, and the possibility of using a candidate gene identified through sequence haplotype and homology analysis as a breeding source is suggested. Methods QTL for the Winkler scale was identified using a population of 120 double haploids derived from a cross between Cheongchoneg, Indica, and Nagdong, Japonica. Results and discussion A total of 79 candidate genes were detected in the identified QTL region, and OsHAq8 was finally screened. Through haplotype analysis, OsHAq8 was derived from the Indica group and orthologous to Graminae's activator of Hsp90 ATPase, suggesting that it is a candidate gene involved in yield according to temperature during the growing period. The expression level of OsHAq8 increased as the Winkler scale increased. The findings of this study can serve as a crucial indicator for predicting harvest time and grain quality while achieving a stable yield through marker selection and adaptation to climate change. Climate change occurs more frequently. In these situations, it is very important to predict harvest time and apply relevant candidate genes to breeding. The candidate genes presented in this study can be effectively applied to rice breeding in preparation for climate change.
Collapse
Affiliation(s)
- Jae-Ryoung Park
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Gyeong Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Yoon-Hee Jang
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Yang W, Chen S, Hao Q, Zhu H, Tan Q, Lin S, Chen G, Li Z, Bu S, Liu Z, Liu G, Wang S, Zhang G. Pyramiding of Low Chalkiness QTLs Is an Effective Way to Reduce Rice Chalkiness. RICE (NEW YORK, N.Y.) 2024; 17:4. [PMID: 38185771 PMCID: PMC10772014 DOI: 10.1186/s12284-023-00680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
Rice chalkiness is a key limiting factor of high-quality rice. The breeding of low chalkiness varieties has always been a challenging task due to the complexity of chalkiness and its susceptibility to environmental factors. In previous studies, we identified six QTLs for the percentage of grain chalkiness (PGC), named qPGC5, qPGC6, qPGC8.1, qPGC8.2, qPGC9 and qPGC11, using single-segment substitution lines (SSSLs) with genetic background of Huajingxian 74 (HJX74). In this study, we utilized the six low chalkiness QTLs to develop 17 pyramiding lines with 2-4 QTLs. The results showed that the PGC decreased with the increase of QTLs in the pyramiding lines. The pyramiding lines with 4 QTLs significantly reduced the chalkiness of rice and reached the best quality level. Among the six QTLs, qPGC5 and qPGC6 showed greater additive effects and were classified as Group A, while the other four QTLs showed smaller additive effects and were classified as Group B. In pyramiding lines, although the presence of epistasis, additivity remained the main component of QTL effects. qPGC5 and qPGC6 showed stronger ability to reduce rice chalkiness, particularly in the environment of high temperature (HT) in the first cropping season (FCS). Our research demonstrates that by pyramiding low chalkiness QTLs, it is feasible to develop the high-quality rice varieties with low chalkiness at the best quality level even in the HT environment of FCS.
Collapse
Affiliation(s)
- Weifeng Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Songliang Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qingwen Hao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Haitao Zhu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Quanya Tan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaojun Lin
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guodong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhan Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Suhong Bu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zupei Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guifu Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
4
|
Wang Y, Liang X, Gong G, Zhang G, Zhao H, Zheng Z, Wang C, Zhu H, Huang J, Li Z, Bu S, Liu G, Wang S, Liu Z. qGLF5 from Oryza rufipogon Griff. improves kernel shape, plant architecture, and yield in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:225. [PMID: 37847396 DOI: 10.1007/s00122-023-04478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
KEY MESSAGE A novel QTL qGLF5 from Oryza rufipogon Griff. improves yield per plant and plant architecture in rice. Kernel size and plant architecture are critical agronomic traits that are key targets for improving crop yield. From the single-segment substitution lines of Oryza rufipogon Griff. in the indica cultivar Huajingxian74 (HJX74) background, we identified a novel quantitative trait locus (QTL), named qGLF5, which improves kernel shape, plant architecture, and yield per plant in rice. Compared with the control HJX74, the plant height, panicles per plant, panicle length, primary branches per panicle, secondary branches per panicle, and kernels per plant of the near-isogenic line-qGLF5 (NIL-qGLF5) are significantly increased. NIL-qGLF5 has long and narrow kernels by regulating cell number, cell length and width in the spikelet hulls. Yield per plant of NIL-qGLF5 is increased by 35.02% compared with that of HJX74. In addition, qGLF5 significantly improves yield per plant and plant architecture of NIL-gw5 and NIL-GW7. These results indicate that qGLF5 might be beneficial for improving plant architecture and kernel yield in rice breeding by molecular design.
Collapse
Affiliation(s)
- Yijun Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Xiaoya Liang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Gaoyang Gong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Hongyuan Zhao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Zhenwu Zheng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Chihang Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Haitao Zhu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Jinyan Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Zhan Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Suhong Bu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Guifu Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China.
| | - Zupei Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
5
|
Zhao H, Fu Y, Zhang G, Luo Y, Yang W, Liang X, Yin L, Zheng Z, Wang Y, Li Z, Zhu H, Huang J, Tan Q, Bu S, Liu G, Wang S, Liu Z. GS6.1 controls kernel size and plant architecture in rice. PLANTA 2023; 258:42. [PMID: 37432475 DOI: 10.1007/s00425-023-04201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
MAIN CONCLUSION A novel QTL GS6.1 increases yield per plant by controlling kernel size, plant architecture, and kernel filling in rice. Kernel size and plant architecture are critical agronomic traits that greatly influence kernel yield in rice. Using the single-segment substitution lines (SSSLs) with an indica cultivar Huajingxian74 as a recipient parent and American Jasmine as a donor parent, we identified a novel quantitative trait locus (QTL), named GS6.1. Near isogenic line-GS6.1 (NIL-GS6.1) produces long and narrow kernels by regulating cell length and width in the spikelet hulls, thus increasing the 1000-kernel weight. Compared with the control, the plant height, panicles per plant, panicle length, kernels per plant, secondary branches per panicle, and yield per plant of NIL-GS6.1 are increased. In addition, GS6.1 regulates the kernel filling rate. GS6.1 controls kernel size by modulating the transcription levels of part of EXPANSINs, kernel filling-related genes, and kernel size-related genes. These results indicate that GS6.1 might be beneficial for improving kernel yield and plant architecture in rice breeding by molecular design.
Collapse
Affiliation(s)
- Hongyuan Zhao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Yu Fu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Yingqin Luo
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Weifeng Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Xiaoya Liang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Lin Yin
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Zhenwu Zheng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Yijun Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Zhan Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Haitao Zhu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Jinyan Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Quanya Tan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Suhong Bu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Guifu Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China.
| | - Zupei Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
6
|
Sun H, Yuan Z, Li F, Zhang Q, Peng T, Li J, Du Y. Mapping of qChalk1 controlling grain chalkiness in japonica rice. Mol Biol Rep 2023:10.1007/s11033-023-08537-8. [PMID: 37231212 DOI: 10.1007/s11033-023-08537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Rice grain chalkiness is an undesirable characteristic that affects grain quality. The aim of this study was to map QTLs controlling grain chalkiness in japonica rice. METHODS AND RESULTS In this study, two japonica rice cultivars with similar grain shapes but different grain chalkiness rates were crossed and the F2 and BC1F2 populations were subjected to QTL-seq analysis to map the QTLs controlling the grain chalkiness rate. QTL-seq analysis revealed SNP index differences on chromosome 1 in both of the segregating populations. Using polymorphic markers between the two parents, QTL mapping was conducted on 213 individual plants in the BC1F2 population. QTL mapping confined a QTL controlling grain chalkiness, qChalk1, to a 1.1 Mb genomic region on chromosome 1. qChalk1 explained 19.7% of the phenotypic variation. CONCLUSION A QTL controlling grain chalkiness qChalk1 was detected in both F2 and BC1F2 segregating populations by QTL-Seq and QTL mapping methods. This result would be helpful for further cloning of the genes controlling grain chalkiness in japonica rice.
Collapse
Affiliation(s)
- Hongzheng Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Zeke Yuan
- Henan Zhumadian Agricultural School, Zhumadian, 463000, People's Republic of China
| | - Fuhao Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Qianqian Zhang
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453004, People's Republic of China
| | - Ting Peng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Junzhou Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Yanxiu Du
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
7
|
Kumar R, Bahuguna RN, Tiwari M, Pal M, Chinnusamy V, Sreeman S, Muthurajan R, Krishna Jagadish SV. Walking through crossroads-rice responses to heat and biotic stress interactions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4065-4081. [PMID: 35713657 DOI: 10.1007/s00122-022-04131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Rice, the most important source of calories for humans is prone to severe yield loss due to changing climate including heat stress. Additionally, rice encounters biotic stresses in conjunction with heat stress, which exacerbates the adverse effects, and exponentially increase such losses. Several investigations have identified biotic and heat stress-related quantitative trait loci (QTLs) that may contribute to improved tolerance to these stresses. However, a significant knowledge gap exists in identifying the genomic regions imparting tolerance against combined biotic and heat stress. Hereby, we are presenting a conceptual meta-analysis identifying genomic regions that may be promising candidates for enhancing combined biotic and heat stress tolerance in rice. Fourteen common genomic regions were identified along chromosomes 1, 2, 3, 4, 6, 10 and 12, which harbored 1265 genes related to heat stress and defense responses in rice. Further, the meta expression analysis revealed 24 differentially expressed genes (DEGs) involved in calcium-mediated stress signaling including transcription factors Myb, bHLH, ROS signaling, molecular chaperones HSP110 and pathogenesis related proteins. Additionally, we also proposed a hypothetical model based on GO and MapMan analysis representing the pathways intersecting heat and biotic stresses. These DEGs can be potential candidate genes for improving tolerance to combined biotic and heat stress in rice. We present a framework highlighting plausible connecting links (QTLs/genes) between rice response to heat stress and different biotic factors associated with yield, that can be extended to other crops.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Rajeev N Bahuguna
- Center for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India
| | - Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sheshshayee Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - S V Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India.
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
8
|
Chandran AKN, Sandhu J, Irvin L, Paul P, Dhatt BK, Hussain W, Gao T, Staswick P, Yu H, Morota G, Walia H. Rice Chalky Grain 5 regulates natural variation for grain quality under heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1026472. [PMID: 36304400 PMCID: PMC9593041 DOI: 10.3389/fpls.2022.1026472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Heat stress occurring during rice (Oryza sativa) grain development reduces grain quality, which often manifests as increased grain chalkiness. Although the impact of heat stress on grain yield is well-studied, the genetic basis of rice grain quality under heat stress is less explored as quantifying grain quality is less tractable than grain yield. To address this, we used an image-based colorimetric assay (Red, R; and Green, G) for genome-wide association analysis to identify genetic loci underlying the phenotypic variation in rice grains exposed to heat stress. We found the R to G pixel ratio (RG) derived from mature grain images to be effective in distinguishing chalky grains from translucent grains derived from control (28/24°C) and heat stressed (36/32°C) plants. Our analysis yielded a novel gene, rice Chalky Grain 5 (OsCG5) that regulates natural variation for grain chalkiness under heat stress. OsCG5 encodes a grain-specific, expressed protein of unknown function. Accessions with lower transcript abundance of OsCG5 exhibit higher chalkiness, which correlates with higher RG values under stress. These findings are supported by increased chalkiness of OsCG5 knock-out (KO) mutants relative to wildtype (WT) under heat stress. Grains from plants overexpressing OsCG5 are less chalky than KOs but comparable to WT under heat stress. Compared to WT and OE, KO mutants exhibit greater heat sensitivity for grain size and weight relative to controls. Collectively, these results show that the natural variation at OsCG5 may contribute towards rice grain quality under heat stress.
Collapse
Affiliation(s)
| | - Jaspreet Sandhu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Larissa Irvin
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Puneet Paul
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Balpreet K. Dhatt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Waseem Hussain
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Banos, Philippines
| | - Tian Gao
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hongfeng Yu
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
9
|
Aslam K, Naveed SA, Sabar M, Shabir G, Shah SM, Khan AR, Shah MM, Fiaz S, Xu J, Arif M. Identification of QTLs for rice grain size and weight by high-throughput SNP markers in the IR64 x Sadri population. Front Genet 2022; 13:955347. [PMID: 36061203 PMCID: PMC9437704 DOI: 10.3389/fgene.2022.955347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Grain appearance is one of the most important attributes of rice. It is determined by grain size, shape, and weight, which in turn influences the rice yield and market value. In this study, QTLs for grain length, grain width, grain length/width ratio, and grain weight were mapped using the high-throughput indica/indica SNP platforms. The population of the mega indica variety IR64 and the high-quality aromatic variety Sadri from Iran was phenotyped. Based on this phenotypic data, plants of 94 F2:3 families including both parents were selected. A linkage map analysis of 210 SNP markers identified 14 QTLs controlling the grain length, grain width, length/width ratio, and 1,000 grain weight. Among these 14, one important region containing the QTLs for all the four studies’ traits was mapped on chromosome 8. It was derived from Sadri for the decreased length/width ratio and increased grain weight. This study demonstrated the speed and efficiency in using multiplex SNP genotyping for QTL analysis. Moreover, this study identified four novel QTLs (qGL8, qTGW8, qLWR8, and qGW8) sharing the same position on chromosome 8 which were linked with grain quality characteristics between one indica and one aromatic variety. It will enable more precise marker-assisted selection for grain weight, shape, and size. Further in-depth studies are required to dissect this region of interest and identify the related gene(s).
Collapse
Affiliation(s)
- Kashif Aslam
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Institute of Molecular Biology and Biotechnology, BZ University, Multan, Pakistan
- *Correspondence: Kashif Aslam, ; Jianlong Xu,
| | - Shahzad Amir Naveed
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | | | - Ghulam Shabir
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Shahid Masood Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Musaddiq Shah
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Jianlong Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Kashif Aslam, ; Jianlong Xu,
| | - Muhammad Arif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
10
|
Yang W, Hao Q, Liang J, Tan Q, Luan X, Lin S, Zhu H, Bu S, Liu Z, Liu G, Wang S, Zhang G. Fine Mapping of Two Major Quantitative Trait Loci for Rice Chalkiness With High Temperature-Enhanced Additive Effects. FRONTIERS IN PLANT SCIENCE 2022; 13:957863. [PMID: 35845647 PMCID: PMC9280674 DOI: 10.3389/fpls.2022.957863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 05/31/2023]
Abstract
Chalkiness is a crucial determinant of rice quality. During seed filling period, high temperature usually increases grain chalkiness, resulting in poor grain quality. Rice chalkiness was controlled by quantitative trait loci (QTLs) and influenced by environmental conditions. In this study, we identified two single-segment substitution lines (SSSLs) 22-05 and 15-06 with significantly lower percentage of grain chalkiness (PGC) than recipient Huajingxian 74 (HJX74) over 6 cropping seasons. Two major QTLs for chalkiness, qPGC5 and qPGC6, were located by substitution mapping of SSSLs 22-05 and 15-06, respectively. qPGC5 was located in the 876.5 kb interval of chromosome 5 and qPGC6 was located in the 269.1 kb interval of chromosome 6. Interestingly, the PGC of HJX74 was significantly different between the two cropping seasons per year, with 25.8% in the first cropping season (FCS) and 16.6% in the second cropping season (SCS), while the PGC of SSSLs 22-05 and 15-06 did not significantly differ between FCS and SCS. The additive effects of qPGC5 and qPGC6 on chalkiness in the SSSLs were significantly greater in FCS than in SCS. These results showed that qPGC5 and qPGC6 had major effects on chalkiness and the SSSL alleles were more effective in reducing chalkiness under high temperature condition in FCS. The fine-mapping of the two QTLs will facilitate the cloning of genes for chalkiness and provide new genetic resources to develop new cultivars with low chalkiness even under high temperature condition.
Collapse
Affiliation(s)
- Weifeng Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qingwen Hao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayan Liang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Quanya Tan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xin Luan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Shaojun Lin
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Haitao Zhu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Suhong Bu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zupei Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guifu Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
11
|
Zhao D, Zhang C, Li Q, Liu Q. Genetic control of grain appearance quality in rice. Biotechnol Adv 2022; 60:108014. [PMID: 35777622 DOI: 10.1016/j.biotechadv.2022.108014] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 02/08/2023]
Abstract
Grain appearance, one of the key determinants of rice quality, reflects the ability to attract consumers, and is characterized by four major properties: grain shape, chalkiness, transparency, and color. Mining of valuable genes, genetic mechanisms, and breeding cultivars with improved grain appearance are essential research areas in rice biology. However, grain appearance is a complex and comprehensive trait, making it challenging to understand the molecular details, and therefore, achieve precise improvement. This review highlights the current findings of grain appearance control, including a detailed description of the key genes involved in the formation of grain appearance, and the major environmental factors affecting chalkiness. We also discuss the integration of current knowledge on valuable genes to enable accurate breeding strategies for generation of rice grains with superior appearance quality.
Collapse
Affiliation(s)
- Dongsheng Zhao
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
12
|
Tan Q, Bu S, Chen G, Yan Z, Chang Z, Zhu H, Yang W, Zhan P, Lin S, Xiong L, Chen S, Liu G, Liu Z, Wang S, Zhang G. Reconstruction of the High Stigma Exsertion Rate Trait in Rice by Pyramiding Multiple QTLs. FRONTIERS IN PLANT SCIENCE 2022; 13:921700. [PMID: 35747883 PMCID: PMC9209754 DOI: 10.3389/fpls.2022.921700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 05/25/2023]
Abstract
Asian cultivated rice is a self-pollinating crop, which has already lost some traits of natural outcrossing in the process of domestication. However, male sterility lines (MSLs) need to have a strong outcrossing ability to produce hybrid seeds by outcrossing with restorer lines of male parents in hybrid rice seed production. Stigma exsertion rate (SER) is a trait related to outcrossing ability. Reconstruction of the high-SER trait is essential in the MSL breeding of rice. In previous studies, we detected eighteen quantitative trait loci (QTLs) for SER from Oryza sativa, Oryza glaberrima, and Oryza glumaepatula using single-segment substitution lines (SSSLs) in the genetic background of Huajingxian 74 (HJX74). In this study, eleven of the QTLs were used to develop pyramiding lines. A total of 29 pyramiding lines with 2-6 QTLs were developed from 10 SSSLs carrying QTLs for SER in the HJX74 genetic background. The results showed that the SER increased with increasing QTLs in the pyramiding lines. The SER in the lines with 5-6 QTLs was as high as wild rice with strong outcrossing ability. The epistasis of additive by additive interaction between QTLs in the pyramiding lines was less-than-additive or negative effect. One QTL, qSER3a-sat, showed minor-effect epistasis and increased higher SER than other QTLs in pyramiding lines. The detection of epistasis of QTLs on SER uncovered the genetic architecture of SER, which provides a basis for using these QTLs to improve SER levels in MSL breeding. The reconstruction of the high-SER trait will help to develop the MSLs with strong outcrossing ability in rice.
Collapse
Affiliation(s)
- Quanya Tan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Suhong Bu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Guodong Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhenguang Yan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zengyuan Chang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Haitao Zhu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Weifeng Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Penglin Zhan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shaojun Lin
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Liang Xiong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Songliang Chen
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Guifu Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zupei Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Zhang B, Ma L, Wu B, Xing Y, Qiu X. Introgression Lines: Valuable Resources for Functional Genomics Research and Breeding in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:863789. [PMID: 35557720 PMCID: PMC9087921 DOI: 10.3389/fpls.2022.863789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 05/14/2023]
Abstract
The narrow base of genetic diversity of modern rice varieties is mainly attributed to the overuse of the common backbone parents that leads to the lack of varied favorable alleles in the process of breeding new varieties. Introgression lines (ILs) developed by a backcross strategy combined with marker-assisted selection (MAS) are powerful prebreeding tools for broadening the genetic base of existing cultivars. They have high power for mapping quantitative trait loci (QTLs) either with major or minor effects, and are used for precisely evaluating the genetic effects of QTLs and detecting the gene-by-gene or gene-by-environment interactions due to their low genetic background noise. ILs developed from multiple donors in a fixed background can be used as an IL platform to identify the best alleles or allele combinations for breeding by design. In the present paper, we reviewed the recent achievements from ILs in rice functional genomics research and breeding, including the genetic dissection of complex traits, identification of elite alleles and background-independent and epistatic QTLs, analysis of genetic interaction, and genetic improvement of single and multiple target traits. We also discussed how to develop ILs for further identification of new elite alleles, and how to utilize IL platforms for rice genetic improvement.
Collapse
Affiliation(s)
- Bo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Xianjin Qiu
- College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
14
|
Zhang G. The Next Generation of Rice: Inter-Subspecific Indica- Japonica Hybrid Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:857896. [PMID: 35422822 PMCID: PMC9002350 DOI: 10.3389/fpls.2022.857896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 05/31/2023]
Abstract
Rice (Oryza sativa) is an important food crop and has two subspecies, indica and japonica. Since the last century, four generations of rice varieties have been applied to rice production. Semi-dwarf rice, intra-subspecific hybrid rice, and inter-subspecific introgression rice were developed successively by genetic modification based on the first generation of tall rice. Each generation of rice has greater yield potential than the previous generation. Due to the stronger heterosis of indica-japonica hybrids, utilization of the inter-subspecific heterosis has long been of interest. However, indica-japonica hybrid sterility hinders the utilization of heterosis. In the past decades, indica-japonica hybrid sterility has been well understood. It is found that indica-japonica hybrid sterility is mainly controlled by six loci, S5, Sa, Sb, Sc, Sd, and Se. The indica-japonica hybrid sterility can be overcome by developing indica-compatible japonica lines (ICJLs) or wide-compatible indica lines (WCILs) using genes at the loci. With the understanding of the genetic and molecular basis of indica-japonica hybrid sterility and the development of molecular breeding technology, the development of indica-japonica hybrid rice has become possible. Recently, great progress has been made in breeding indica-japonica hybrid rice. Therefore, the indica-japonica hybrid rice will be the next generation of rice. It is expected that the indica-japonica hybrid rice will be widely applied in rice production in the near future.
Collapse
Affiliation(s)
- Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|