1
|
Khunsanit P, Plaimas K, Chadchawan S, Buaboocha T. Profiling of Key Hub Genes Using a Two-State Weighted Gene Co-Expression Network of 'Jao Khao' Rice under Soil Salinity Stress Based on Time-Series Transcriptome Data. Int J Mol Sci 2024; 25:11086. [PMID: 39456877 PMCID: PMC11508143 DOI: 10.3390/ijms252011086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
RNA-sequencing enables the comprehensive detection of gene expression levels at specific time points and facilitates the identification of stress-related genes through co-expression network analysis. Understanding the molecular mechanisms and identifying key genes associated with salt tolerance is crucial for developing rice varieties that can thrive in saline environments, particularly in regions affected by soil salinization. In this study, we conducted an RNA-sequencing-based time-course transcriptome analysis of 'Jao Khao', a salt-tolerant Thai rice variety, grown under normal or saline (160 mM NaCl) soil conditions. Leaf samples were collected at 0, 3, 6, 12, 24, and 48 h. In total, 36 RNA libraries were sequenced. 'Jao Khao' was found to be highly salt-tolerant, as indicated by the non-significant differences in relative water content, cell membrane stability, leaf greenness, and chlorophyll fluorescence over a 9-day period under saline conditions. Plant growth was slightly retarded during days 3-6 but recovered by day 9. Based on time-series transcriptome data, we conducted differential gene expression and weighted gene co-expression network analyses. Through centrality change from normal to salinity network, 111 key hub genes were identified among 1,950 highly variable genes. Enriched genes were involved in ATP-driven transport, light reactions and response to light, ATP synthesis and carbon fixation, disease resistance and proteinase inhibitor activity. These genes were upregulated early during salt stress and RT-qPCR showed that 'Jao Khao' exhibited an early upregulation trend of two important genes in energy metabolism: RuBisCo (LOC_Os10g21268) and ATP synthase (LOC_Os10g21264). Our findings highlight the importance of managing energy requirements in the initial phase of the plant salt-stress response. Therefore, manipulation of the energy metabolism should be the focus in plant resistance breeding and the genes identified in this work can serve as potentially effective candidates.
Collapse
Affiliation(s)
- Prasit Khunsanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitiporn Plaimas
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Huang G, Lu J, Yin X, Zhang L, Liu C, Zhang X, Lin H, Zuo J. QTL mapping and candidate gene mining of seed size and seed weight in castor plant (Ricinus communis L.). BMC PLANT BIOLOGY 2024; 24:885. [PMID: 39342119 PMCID: PMC11438104 DOI: 10.1186/s12870-024-05611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Castor (Ricinus communis L., 2n = 2x = 20) is an important industrial crop, due to its oil is very important to the global special chemical industry. Seed size and seed weight are fundamentally important in determining castor yield, while little is known about it. In this study, QTL analysis and candidate gene mining of castor seed size and seed weight were conducted with composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and marker enrichment strategy in 4 populations, i.e., populations F2, BC1, S1-1 and S1-2, derived from 2 accessions with significant phenotypic differences. RESULTS In the QTL primary mapping, 2 novel QTL clusters were detected in marker intervals RCM520-RCM76 and RCM915-RCM950. In order to verify their accuracy and to narrow their intervals, QTL remapping was carried out in populations F2 and BC1. Among them, 44 and 30 QTLs underlying seed size and seed weight were detected in F2 population using methods CIM and ICIM-ADD respectively, including 4-9 and 3-5 ones conferring each trait were identified with a phenotypic variation explained ranged from 37.92 to 115.81% and 32.86-45.98% respectively. The remapping results in BC1 population were consistent with those in F2 population. Importantly, 3 QTL clusters (i.e. QTL-cluster1, QTL-cluster2 and QTL-cluster3) were found in marker intervals RCM74-RCM76 (37.1 kb), RCM930-RCM950 (259.8 kb) and RCM918-RCM920 (172.9 kb) respectively; in addition, all of them were detected again, the former one was found in the S1-2 population, and the latter two were found simultaneously in the populations S1-1 and S1-2. Finally, 6 candidate genes (i.e. LOC8266555, LOC8281168, LOC8281151, LOC8259066, LOC8258591 and LOC8270077) were screened in the above QTL clusters, they were differentially expressed in multiple seed tissues of both parents, signifying the potential role in regulating seed size and seed weight. CONCLUSION The above results not only provide new insights into the genetic structure of seed size and seed weight in castor, but also lay the foundation for the functional identification of these candidate genes.
Collapse
Affiliation(s)
- Guanrong Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiannong Lu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xuegui Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Liuqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chaoyu Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxiao Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haihong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jinying Zuo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
3
|
Zeng X, Fan K, Shi Y, Chen R, Liu W, Wang X, Ye G, Lin W, Li Z. OsSPL11 positively regulates grain size by activating the expression of GW5L in rice. PLANT CELL REPORTS 2024; 43:228. [PMID: 39237771 DOI: 10.1007/s00299-024-03315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
KEY MESSAGE Rice OsSPL11 activates the expression of GW5L through binding to its promoter and positively regulates grain size. Grain size (GS) is an important determinant of grain weight and yield potential in cereal. Here, we report the functional analysis of OsSPL11 in grain length (GL), grain width (GW), and 1000-grain weight (TGW). OsSPL11 mutant plants, osspl11 lines, exhibited a decrease in GL, GW, and TGW, and OsSPL11-OE lines showed an increase in GL and TGW. Expression analysis revealed that OsSPL11 was located in the nucleus and highly expressed in spikelet hull and young development grains, consistent with its function in determining GS. Further analysis confirmed that OsSPL11 directly activates the expression of GW5L to regulate GS, meanwhile OsSPL11 expression is negatively regulated by OsGBP3. Taken together, our findings demonstrate that OsSPL11 could be a key regulator of affecting GS during the spikelet hull development and facilitate the process of improving grain yield by GS modification in rice.
Collapse
Affiliation(s)
- Xinhai Zeng
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Kai Fan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Yu Shi
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Rui Chen
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Wanyu Liu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Xin Wang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guixiang Ye
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Wenxiong Lin
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China
| | - Zhaowei Li
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 35002, Fujian, China.
| |
Collapse
|
4
|
Cui G, Li Y, Zheng L, Smith C, Bevan MW, Li Y. The peptidase DA1 cleaves and destabilizes WUSCHEL to control shoot apical meristem size. Nat Commun 2024; 15:4627. [PMID: 38821962 PMCID: PMC11143343 DOI: 10.1038/s41467-024-48361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024] Open
Abstract
Stem cells in plants and animals are the source of new tissues and organs. In plants, stem cells are maintained in the central zone (CZ) of multicellular meristems, and large shoot meristems with an increased stem cell population hold promise for enhancing yield. The mobile homeodomain transcription factor WUSCHEL (WUS) is a central regulator of stem cell function in plant shoot meristems. Despite its central importance, the factors that directly modulate WUS protein stability have been a long-standing question. Here, we show that the peptidase DA1 physically interacts with and cleaves the WUS protein, leading to its destabilization. Furthermore, our results reveal that cytokinin signaling represses the level of DA1 protein in the shoot apical meristem, thereby increasing the accumulation of WUS protein. Consistent with these observations, loss of DA1 function results in larger shoot apical meristems with an increased stem cell population and also influences cytokinin-induced enlargement of shoot apical meristem. Collectively, our findings uncover a previously unrecognized mechanism by which the repression of DA1 by cytokinin signaling stabilizes WUS, resulting in the enlarged shoot apical meristems with the increased stem cell number during plant growth and development.
Collapse
Affiliation(s)
- Guicai Cui
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Leiying Zheng
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | | | | | - Yunhai Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Mehtab-Singh, Tripathi RK, Bekele WA, Tinker NA, Singh J. Differential expression and global analysis of miR156/SQUAMOSA promoter binding-like proteins (SPL) module in oat. Sci Rep 2024; 14:9928. [PMID: 38688976 PMCID: PMC11061197 DOI: 10.1038/s41598-024-60739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
SQUAMOSA promoter binding-like proteins (SPLs) are important transcription factors that influence growth phase transition and reproduction in plants. SPLs are targeted by miR156 but the SPL/miR156 module is completely unknown in oat. We identified 28 oat SPL genes (AsSPLs) distributed across all 21 oat chromosomes except for 4C and 6D. The oat- SPL gene family represented six of eight SPL phylogenetic groups, with no AsSPLs in groups 3 and 7. A novel oat miR156 (AsmiR156) family with 21 precursors divided into 7 groups was characterized. A total of 16 AsSPLs were found to be targeted by AsmiR156. Intriguingly, AsSPL3s showed high transcript abundance during early inflorescence (GS-54), as compared to the lower abundance of AsmiR156, indicating their role in reproductive development. Unravelling the SPL/miR156 regulatory hub and alterations in expression patterns of AsSPLs could provide an essential toolbox for genetic improvement in the cultivated oat.
Collapse
Affiliation(s)
- Mehtab-Singh
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Montreal, QC, H9X 3V9, Canada
| | - Rajiv K Tripathi
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Montreal, QC, H9X 3V9, Canada
| | - Wubishet A Bekele
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Nicholas A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Jaswinder Singh
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Montreal, QC, H9X 3V9, Canada.
| |
Collapse
|
6
|
Qing D, Chen W, Huang S, Li J, Pan Y, Zhou W, Liang Q, Yuan J, Gan D, Chen L, Chen L, Huang J, Zhou Y, Dai G, Deng G. Editing of rice (Oryza sativa L.) OsMKK3 gene using CRISPR/Cas9 decreases grain length by modulating the expression of photosystem components. Proteomics 2023; 23:e2200538. [PMID: 37376803 DOI: 10.1002/pmic.202200538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Grain size is one of the most important agronomic traits for grain yield determination in rice. To better understand the proteins that are regulated by the grain size regulatory gene OsMKK3, this gene was knocked out using the CRISPR/Cas9 system, and tandem mass tag (TMT) labeling combined with liquid chromatograph-tandem mass spectrometry analysis was performed to study the regulation of proteins in the panicle. Quantitative proteomic screening revealed a total of 106 differentially expressed proteins (DEPs) via comparison of the OsMKK3 mutant line to the wild-type YexiangB, including 15 and 91 up-regulated and down-regulated DEPs, respectively. Pathway analysis revealed that DEPs were enriched in metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and photosynthesis. Strong interactions were detected among seven down-regulated proteins related to photosystem components in the protein-protein interaction network, and photosynthetic rate was decreased in mutant plants. The results of the liquid chromatography-parallel reaction monitoring/mass spectromery analysis and western blot analysis were consistent with the results of the proteomic analysis, and the results of the quantitative reverse transcription polymerase chain reaction analysis revealed that the expression levels of most candidate genes were consistent with protein levels. Overall, OsMKK3 controls grain size by regulating the protein content in cells. Our findings provide new candidate genes that will aid the study of grain size regulatory mechanisms associated with the mitogen-activated protein kinase (MAPK) signaling pathway.
Collapse
Affiliation(s)
- Dongjin Qing
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Weiwei Chen
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Suosheng Huang
- Guangxi Academy of Agricultural Sciences, Plant Protection Research Institute, Nanning, China
| | - Jingcheng Li
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Yinghua Pan
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Weiyong Zhou
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Qiongyue Liang
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Jinghua Yuan
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Dongmei Gan
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Li Chen
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Lei Chen
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Juan Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Yan Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Gaoxing Dai
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| | - Guofu Deng
- Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Nanning, China
| |
Collapse
|
7
|
Hui S, Ke Y, Chen D, Wang L, Li Q, Yuan M. Rice microRNA156/529-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7/14/17 modules regulate defenses against bacteria. PLANT PHYSIOLOGY 2023; 192:2537-2553. [PMID: 36994827 PMCID: PMC10315298 DOI: 10.1093/plphys/kiad201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Rice (Oryza sativa L.) microRNA156/529-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7/14/17 (miR156/529-SPL7/14/17) modules have pleiotropic effects on many biological pathways. OsSPL7/14 can interact with DELLA protein SLENDER RICE1 (SLR1) to modulate gibberellin acid (GA) signal transduction against the bacterial pathogen Xanthomonas oryzae pv. oryzae. However, whether the miR156/529-OsSPL7/14/17 modules also regulate resistance against other pathogens is unclear. Notably, OsSPL7/14/17 functioning as transcriptional activators, their target genes, and the corresponding downstream signaling pathways remain largely unexplored. Here, we demonstrate that miR156/529 play negative roles in plant immunity and that miR156/529-regulated OsSPL7/14/17 confer broad-spectrum resistance against 2 devastating bacterial pathogens. Three OsSPL7/14/17 proteins directly bind to the promoters of rice Allene Oxide Synthase 2 (OsAOS2) and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1) and activate their transcription, regulating jasmonic acid (JA) accumulation and the salicylic acid (SA) signaling pathway, respectively. Overexpression of OsAOS2 or OsNPR1 impairs the susceptibility of the osspl7/14/17 triple mutant. Exogenous application of JA enhances resistance of the osspl7/14/17 triple mutant and the miR156 overexpressing plants. In addition, genetic evidence confirms that bacterial pathogen-activated miR156/529 negatively regulate pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, such as pattern recognition receptor Xa3/Xa26-initiated PTI. Our findings demonstrate that bacterial pathogens modulate miR156/529-OsSPL7/14/17 modules to suppress OsAOS2-catalyzed JA accumulation and the OsNPR1-promoted SA signaling pathway, facilitating pathogen infection. The uncovered miR156/529-OsSPL7/14/17-OsAOS2/OsNPR1 regulatory network provides a potential strategy to genetically improve rice disease resistance.
Collapse
Affiliation(s)
- Shugang Hui
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Li Y, Wang W, Hu C, Yang S, Ma C, Wu J, Wang Y, Xu Z, Li L, Huang Z, Zhu J, Jia X, Ye X, Yang Z, Sun Y, Liu H, Chen R. Ectopic Expression of a Maize Gene ZmDUF1645 in Rice Increases Grain Length and Yield, but Reduces Drought Stress Tolerance. Int J Mol Sci 2023; 24:9794. [PMID: 37372942 DOI: 10.3390/ijms24129794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
As the human population grows rapidly, food shortages will become an even greater problem; therefore, increasing crop yield has become a focus of rice breeding programs. The maize gene, ZmDUF1645, encoding a putative member of the DUF1645 protein family with an unknown function, was transformed into rice. Phenotypic analysis showed that enhanced ZmDUF1645 expression significantly altered various traits in transgenic rice plants, including increased grain length, width, weight, and number per panicle, resulting in a significant increase in yield, but a decrease in rice tolerance to drought stress. qRT-PCR results showed that the expression of the related genes regulating meristem activity, such as MPKA, CDKA, a novel crop grain filling gene (GIF1), and GS3, was significantly changed in the ZmDUF1645-overexpression lines. Subcellular colocalization showed that ZmDUF1645 was primarily localized on cell membrane systems. Based on these findings, we speculate that ZmDUF1645, like the OsSGL gene in the same protein family, may regulate grain size and affect yield through the cytokinin signaling pathway. This research provides further knowledge and understanding of the unknown functions of the DUF1645 protein family and may serve as a reference for biological breeding engineering to increase maize crop yield.
Collapse
Affiliation(s)
- Yaqi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Changqiong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Songjin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Chuan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Jiacheng Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yuwei Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Lihua Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengjian Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiyuang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Rongjun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Hong Y, Zhang M, Xu R. Genetic Localization and Homologous Genes Mining for Barley Grain Size. Int J Mol Sci 2023; 24:ijms24054932. [PMID: 36902360 PMCID: PMC10003025 DOI: 10.3390/ijms24054932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Grain size is an important agronomic trait determining barley yield and quality. An increasing number of QTLs (quantitative trait loci) for grain size have been reported due to the improvement in genome sequencing and mapping. Elucidating the molecular mechanisms underpinning barley grain size is vital for producing elite cultivars and accelerating breeding processes. In this review, we summarize the achievements in the molecular mapping of barley grain size over the past two decades, highlighting the results of QTL linkage analysis and genome-wide association studies. We discuss the QTL hotspots and predict candidate genes in detail. Moreover, reported homologs that determine the seed size clustered into several signaling pathways in model plants are also listed, providing the theoretical basis for mining genetic resources and regulatory networks of barley grain size.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
10
|
Wu X, Zhang S, Yu Z, Sun L, Liang S, Zheng X, Qi X, Ren H. Molecular cloning and functional analysis of Chinese bayberry MrSPL4 that enhances growth and flowering in transgenic tobacco. FRONTIERS IN PLANT SCIENCE 2023; 14:1127228. [PMID: 36818844 PMCID: PMC9929451 DOI: 10.3389/fpls.2023.1127228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Chinese bayberry (Myrica rubra) is an important tree in South China, with its fruit being of nutritional and high economic value. In this study, early ripening (ZJ), medium ripening (BQ) and late ripening (DK) varieties were used as test materials. Young leaves of ZJ, BQ and DK in the floral bud morphological differentiation periods were selected for transcriptome sequencing to excavate earliness related genes. A total of 4,538 differentially expressed genes were detected. Based on clustering analysis and comparisons with genes reportedly related to flowering in Arabidopsis thaliana, 25 homologous genes were identified. Of these, one gene named MrSPL4 was determined, with its expression down-regulated in DK but up-regulated in ZJ and BQ. MrSPL4 contained SBP domain and the target site of miR156, and its total and CDS length were 1,664 bp and 555 bp respectively. The overexpression vector of MrSPL4 (35S::35S::MrSPL4-pCambia2301-KY) was further constructed and successfully transfected into tobacco to obtain MrSPL4-positive plants. Based on the results of qRT-PCR, the relative expression of MrSPL4 was up regulated by 3,862.0-5,938.4 times. Additionally, the height of MrSPL4-positive plants was also significantly higher than that of wild-type (WT), with the bud stage occurring 12 days earlier. Altogether, this study identified an important gene -MrSPL4 in Chinese bayberry, which enhanced growth and flowering, which provided important theoretical basis for early-mature breeding of Chinese bayberry.
Collapse
Affiliation(s)
- Xiangqi Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Shuwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Li Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Senmiao Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiliang Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xingjiang Qi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Biotechnology Research Institute, Xianghu Laboratory, Hangzhou, China
| | - Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Qing D, Zhou Y, Pan Y, Yang X, Li J, Zhou W, Liang H, Chen W, Chen L, Lu C, Dai G, Deng G. TMT-based quantitative proteomic analysis of indica rice cultivars reveals that novel components of the signaling pathways might play a role in grain length regulation. J Proteomics 2023; 270:104745. [PMID: 36220543 DOI: 10.1016/j.jprot.2022.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Grain length is one of the most important rice grain appearance components. To better understand the protein regulated by grain length in indica rice, the tandem mass tag (TMT) labeling combined with LC-MS/MS analysis was used for quantitative identification of differentially regulated proteins by comparing six long-grain cultivars (MeiB, LongfengB, YexiangB, FengtianB, WantaiB, and DingxiangB) to the short-grain cultivar BoB, respectively. A total of 6622 proteins were detected for quantitative analysis by comparing protein content of six long-grain cultivars to the short-grain cultivar, and 715 proteins were significantly regulated, consisting of 336 uniquely over-accumulated proteins and 355 uniquely down-accumulated proteins. KEGG pathway analysis revealed that most of accumulated proteins are involved in metabolic pathways, biosynthesis of secondary metabolites and phenylpropanoid biosynthesis. Four down-accumulated proteins maybe involved in the signaling pathways for grain length regulation. LC-PRM/MS quantitative analysis was used to analyze 10 differentially expressed proteins. The results were almost consistent with the TMT quantitative analysis. qRT-PCR analysis results showed that the transcription level was not always parallel to the protein content. This study identified many novel grain length accumulated proteins through the quantitative proteomics approach, providing candidate genes for further study of grain size regulatory mechanisms. SIGNIFICANCE: Rice grain length is one of the most important characteristics influencing appearance and yield. Six long-grain cultivars (MeiB, LongfengB, YexiangB, FengtianB, WantaiB, and DingxiangB obtained in Guangxi province of China from the 2000s to 2020s) and one short-grain cultivar (BoB obtained in Guangxi province of China in 1980s) were used for comparative analyses. Totally, 715 differentially expressed proteins (DEPs) were identified using TMT-base proteomic analysis. The numbers of DEPs increased as the grain length increased. 4 DEPs may be related to rice's signaling pathways for grain size regulation. A total of 85 DEPs regulated in at least four long-grain cultivars compared with the short-grain cultivar BoB, and 7 proteins were over-accumulated, and 3 proteins were down-accumulated in six long-grain cultivars. These findings provide valuable information to better understand the mechanisms of protein regulation by grain length in rice.
Collapse
Affiliation(s)
- Dongjin Qing
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning 530006, China; Key Laboratory of Guangxi Colleges, Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, China
| | - Xinghai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, China
| | - Jingcheng Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, China
| | - Lei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, China
| | - Chunju Lu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, China.
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, China.
| |
Collapse
|
12
|
Zhang C, Gong R, Zhong H, Dai C, Zhang R, Dong J, Li Y, Liu S, Hu J. Integrated multi-locus genome-wide association studies and transcriptome analysis for seed yield and yield-related traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1153000. [PMID: 37123841 PMCID: PMC10140536 DOI: 10.3389/fpls.2023.1153000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Rapeseed (Brassica napus L.), the third largest oil crop, is an important source of vegetable oil and biofuel for the world. Although the breeding and yield has been improved, rapeseed still has the lowest yield compared with other major crops. Thus, increasing rapeseed yield is essential for the high demand of vegetable oil and high-quality protein for live stocks. Silique number per plant (SN), seed per pod (SP), and 1000-seed weight (SW) are the three important factors for seed yield in rapeseed. Some yield-related traits, including plant height (PH), flowering time (FT), primary branch number (BN) and silique number per inflorescence (SI) also affect the yield per plant (YP). Using six multi-locus genome-wide association study (ML-GWAS) approaches, a total of 908 yield-related quantitative trait nucleotides (QTNs) were identified in a panel consisting of 403 rapeseed core accessions based on whole-genome sequencing. Integration of ML-GWAS with transcriptome analysis, 79 candidate genes, including BnaA09g39790D (RNA helicase), BnaA09g39950D (Lipase) and BnaC09g25980D (SWEET7), were further identified and twelve genes were validated by qRT-PCRs to affect the SW or SP in rapeseed. The distribution of superior alleles from nineteen stable QTNs in 20 elite rapeseed accessions suggested that the high-yielding accessions contained more superior alleles. These results would contribute to a further understanding of the genetic basis of yield-related traits and could be used for crop improvement in B. napus.
Collapse
Affiliation(s)
- Cuiping Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ruolin Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chunyan Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ru Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Jungang Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shuai Liu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii at Manoa, Honolulu, HI, United States
- *Correspondence: Jihong Hu, ; Shuai Liu,
| | - Jihong Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Jihong Hu, ; Shuai Liu,
| |
Collapse
|
13
|
Yao W, Li C, Fu H, Yang M, Wu H, Ding Y, Li L, Lin S. Genome-Wide Analysis of SQUAMOSA-Promoter-Binding Protein-like Family in Flowering Pleioblastus pygmaeus. Int J Mol Sci 2022; 23:ijms232214035. [PMID: 36430513 PMCID: PMC9695801 DOI: 10.3390/ijms232214035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
SQUAMOSA Promoter-Binding Protein-Like (SPL) family is well-known for playing an important role in plant growth and development, specifically in the reproductive process. Bamboo plants have special reproductive characteristics with a prolonged vegetative phase and uncertain flowering time. However, the underlying functions of SPL genes in reproductive growth are undisclosed in bamboo plants. In the study, a total of 28 SPLs were screened from an ornamental dwarf bamboo species, Pleioblastus pygmaeus. Phylogenetic analysis indicates that 183 SPLs from eight plant species can be classified into nine subfamilies, and the 28 PpSPLs are distributed among eight subfamilies. Homologous analysis shows that as many as 32 pairs of homologous genes were found between P. pygmaeus and rice, and 83 pairs were found between P. pygmaeus and Moso bamboo, whose Ka/Ks values are all <1. MiRNA target prediction reveals that 13 out of the 28 PpSPLs have recognition sites complementary to miRNA156. To screen the SPLs involved in the reproductive growth of bamboo plants, the mRNA abundance of the 28 PpSPLs was profiled in the different tissues of flowering P. pygmaeus and non-flowering plants by RNA-Seq. Moreover, the relative expression level of eight PpSPLs is significantly higher in flowering P. pygmaeus than that in non-flowering plants, which was also validated by RT-qPCR. Combined with phylogenetic analysis and homologous analysis, the eight significant, differentially expressed PpSPLs were identified to be associated with the reproductive process and flower organ development. Among them, there are four potential miRNA156-targeting PpSPLs involved in the flowering process. Of significant interest in the study is the identification of 28 SPLs and the exploration of four key flowering-related SPLs from P. pygmaeus, which provides a theoretic basis for revealing the underlying functions of SPLs in the reproductive growth of bamboo plants.
Collapse
Affiliation(s)
- Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Chuanzhe Li
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Jiangsu Academy of Agricultural Sciences, Huaian 223001, China
| | - Huajun Fu
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Meng Yang
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Hongyu Wu
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (L.L.); (S.L.)
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (L.L.); (S.L.)
| |
Collapse
|
14
|
Chun Y, Kumar A, Li X. Genetic and molecular pathways controlling rice inflorescence architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:1010138. [PMID: 36247571 PMCID: PMC9554555 DOI: 10.3389/fpls.2022.1010138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Rice inflorescence is one of the major organs in determining grain yield. The genetic and molecular regulation on rice inflorescence architecture has been well investigated over the past years. In the present review, we described genes regulating rice inflorescence architecture based on their roles in meristem activity maintenance, meristem identity conversion and branch elongation. We also introduced the emerging regulatory pathways of phytohormones involved in rice inflorescence development. These studies show the intricacies and challenges of manipulating inflorescence architecture for rice yield improvement.
Collapse
Affiliation(s)
- Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ashmit Kumar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fisheries and Forestry, Fiji National University, Nausori, Fiji
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Du Y, Liu L, Zhang X, Li F, Kong F, Zhang J, Li J, Peng T, Sun H, Zhao Q. Regulation of OsPIL15 on rice quality. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:39. [PMID: 37313503 PMCID: PMC10248670 DOI: 10.1007/s11032-022-01311-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The phytochrome-interacting factor-like gene OsPIL15 negatively regulates grain size and 1000-grain weight, but its regulatory effect on rice quality traits is unknown. Here, knock-down, knock-out, and over-expression of OsPIL15 transgenic rice lines were used to investigate the effects of OsPIL15 on rice yield and quality traits. The results showed that knock-down or knock-out of OsPIL15 increased grain length and width, chalkiness, amylose content, glutenin and globulin content, and total protein content but reduced amylopectin content, total starch content, prolamin and albumin content, and gel consistency. Over-expression of OsPIL15 showed the opposite results, except for the reduction of prolamin content. Although OsPIL15 changed the grain size and weight, it had no effect on grain length/width ratio, brown rice rate, and milled rice rate. KEGG pathway enrichment analysis of differentially expressed genes between transgenic lines and wild type showed that OsPIL15 mainly regulated genes related to ribosome, metabolic pathways, and biosynthesis of secondary metabolites. Gene expression analysis showed that RNAi transgenic lines decreased OsCIN2 and OsSUS1 expression and increased OsGBSSI, OsSSI, OsAPGL2, and OsAPGL3 expression level, while over-expression of OsPIL15 increased OsCIN2, OsSUS1, OsSUS6, and OsSSI and decreased OsSSIIa, OsSSIIc, and OsAPGL2 expression level. These results revealed that OsPIL15 plays an important role in rice grain development. In addition to grain shape, OsPIL15 also regulates chalkiness, starch content, protein content, and gel consistency. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01311-x.
Collapse
Affiliation(s)
- Yanxiu Du
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Lingzhi Liu
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xiaohua Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Fei Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Fanshu Kong
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Jing Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Junzhou Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Ting Peng
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Hongzheng Sun
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Quanzhi Zhao
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
16
|
Li P, Chen YH, Lu J, Zhang CQ, Liu QQ, Li QF. Genes and Their Molecular Functions Determining Seed Structure, Components, and Quality of Rice. RICE (NEW YORK, N.Y.) 2022; 15:18. [PMID: 35303197 PMCID: PMC8933604 DOI: 10.1186/s12284-022-00562-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
With the improvement of people's living standards and rice trade worldwide, the demand for high-quality rice is increasing. Therefore, breeding high quality rice is critical to meet the market demand. However, progress in improving rice grain quality lags far behind that of rice yield. This might be because of the complexity of rice grain quality research, and the lack of consensus definition and evaluation standards for high quality rice. In general, the main components of rice grain quality are milling quality (MQ), appearance quality (AQ), eating and cooking quality (ECQ), and nutritional quality (NQ). Importantly, all these quality traits are determined directly or indirectly by the structure and composition of the rice seeds. Structurally, rice seeds mainly comprise the spikelet hull, seed coat, aleurone layer, embryo, and endosperm. Among them, the size of spikelet hull is the key determinant of rice grain size, which usually affects rice AQ, MQ, and ECQ. The endosperm, mainly composed of starch and protein, is the major edible part of the rice seed. Therefore, the content, constitution, and physicochemical properties of starch and protein are crucial for multiple rice grain quality traits. Moreover, the other substances, such as lipids, minerals, vitamins, and phytochemicals, included in different parts of the rice seed, also contribute significantly to rice grain quality, especially the NQ. Rice seed growth and development are precisely controlled by many genes; therefore, cloning and dissecting these quality-related genes will enhance our knowledge of rice grain quality and will assist with the breeding of high quality rice. This review focuses on summarizing the recent progress on cloning key genes and their functions in regulating rice seed structure and composition, and their corresponding contributions to rice grain quality. This information will facilitate and advance future high quality rice breeding programs.
Collapse
Affiliation(s)
- Pei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
17
|
Ji K, Song Q, Yu X, Tan C, Wang L, Chen L, Xiang X, Gong W, Yuan D. Hormone analysis and candidate genes identification associated with seed size in Camellia oleifera. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211138. [PMID: 35360359 PMCID: PMC8965419 DOI: 10.1098/rsos.211138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/02/2022] [Indexed: 05/02/2023]
Abstract
Camellia oleifera is an important woody oil species in China. Its seed oil has been widely used as a cooking oil. Seed size is a crucial factor influencing the yield of seed oil. In this study, the horizontal diameter, vertical diameter and volume of C. oleifera seeds showed a rapid growth tendency from 235 days after pollination (DAP) to 258 DAP but had a slight increase at seed maturity. During seed development, the expression of genes related to cell proliferation and expansion differ greatly. Auxin plays an important role in C. oleifera seeds; YUC4 and IAA17 were significantly downregulated. Weighted gene co-expression network analysis screened 21 hub transcription factors for C. oleifera seed horizontal diameter, vertical diameter and volume. Among them, SPL4 was significantly decreased and associated with all these three traits, while ABI4 and YAB1 were significantly increased and associated with horizontal diameter of C. oleifera seeds. Additionally, KLU significantly decreased (2040-fold). Collectively, our data advances the knowledge of factors related to seed size and provides a theoretical basis for improving the yield of C. oleifera seeds.
Collapse
Affiliation(s)
- Ke Ji
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Qiling Song
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Xinran Yu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Chuanbo Tan
- Hunan Great Sanxiang Camellia Oil Co., Ltd, Hengyang, Hunan 421000, People's Republic of China
| | - Linkai Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Le Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Xiaofeng Xiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Wenfang Gong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education and the Key Laboratory of Non-Wood Forest Products of Forestry Ministry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People's Republic of China
| |
Collapse
|
18
|
Li L, Shi F, Wang G, Guan Y, Zhang Y, Chen M, Chang J, Yang G, He G, Wang Y, Li Y. Conservation and Divergence of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE ( SPL) Gene Family between Wheat and Rice. Int J Mol Sci 2022; 23:2099. [PMID: 35216210 PMCID: PMC8874652 DOI: 10.3390/ijms23042099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family affects plant architecture, panicle structure, and grain development, representing key genes for crop improvements. The objective of the present study is to utilize the well characterized SPLs' functions in rice to facilitate the functional genomics of TaSPL genes. To achieve these goals, we combined several approaches, including genome-wide analysis of TaSPLs, comparative genomic analysis, expression profiling, and functional study of TaSPL3 in rice. We established the orthologous relationships of 56 TaSPL genes with the corresponding OsSPLs, laying a foundation for the comparison of known SPL functions between wheat and rice. Some TaSPLs exhibited different spatial-temporal expression patterns when compared to their rice orthologs, thus implicating functional divergence. TaSPL2/6/8/10 were identified to respond to different abiotic stresses through the combination of RNA-seq and qPCR expression analysis. Additionally, ectopic expression of TaSPL3 in rice promotes heading dates, affects leaf and stem development, and leads to smaller panicles and decreased yields per panicle. In conclusion, our work provides useful information toward cataloging of the functions of TaSPLs, emphasized the conservation and divergence between TaSPLs and OsSPLs, and identified the important SPL genes for wheat improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (F.S.); (G.W.); (Y.G.); (Y.Z.); (M.C.); (J.C.); (G.Y.) ; (G.H.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.L.); (F.S.); (G.W.); (Y.G.); (Y.Z.); (M.C.); (J.C.); (G.Y.) ; (G.H.)
| |
Collapse
|