1
|
Huang M, Liu Y, Bian Q, Zhao W, Zhao J, Liu Q. OsbHLH6, a basic helix-loop-helix transcription factor, confers arsenic tolerance and root-to-shoot translocation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2485-2499. [PMID: 39506610 DOI: 10.1111/tpj.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
Arsenic (As) is extremely toxic to plants, posing a serious concern for food safety. Identification of genes responsive to As is significative for figuring out this issue. Here, we identified a bHLH transcription factor OsbHLH6 that was involved in mediating the processes of As tolerance, uptake, and root-to-shoot translocation in rice. The expression of OsbHLH6 gene was strongly induced after 3 and 48 h of arsenite [As(III)] treatment. The OsbHLH6-overexpressed transgenic rice (OE-OsbHLH6) was sensitive to, while the knockout mutant of OsbHLH6 gene (Osbhlh6) was tolerant to As(III) stress by affecting the contents of reactive oxygen species (ROS) and non-protein thiols (NPT), etc. Knockout of OsbHLH6 gene increased significantly the As concentration in roots, but decreased extensively As accumulation in shoots, compared to that in OE-OsbHLH6 and WT plants. The transcripts of phytochelatins (PCs) synthetase encoding genes OsPCS1 and OsPCS2, as well as As(III) transporter encoding genes OsLsi1 and OsABCC1 were greatly abundant in Osbhlh6 mutants than in OE-OsbHLH6 and WT plants under As(III) stress. In contrast, the expression of OsLsi2 gene was extensively suppressed by As(III) in Osbhlh6 mutants. OsbHLH6 acted as a transcriptional activator to bind directly to the promoter and regulate the expression of OsPrx2 gene that encodes a peroxidase precursor. Moreover, overexpression of OsbHLH6 gene resulted in significant change of expression of amounts of abiotic stress-related genes, which might partially contribute to the As sensitivity of OE-OsbHLH6 plants. These findings may broaden our understanding of the molecular mechanism of OsbHLH6-mediated As response in rice and provide novel useful genes for rice As stress-resistant breeding.
Collapse
Affiliation(s)
- Menghan Huang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Yang Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Qianwen Bian
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Wenjing Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Juan Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| |
Collapse
|
2
|
Guo Y, Liu L, Shi X, Yu P, Zhang C, Liu Q. Overexpression of the RAV Transcription Factor OsAAT1 Confers Enhanced Arsenic Tolerance by Modulating Auxin Hemostasis in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24576-24586. [PMID: 39436822 DOI: 10.1021/acs.jafc.4c04334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Characterization of arsenic (As)-responsive genes is fundamental to solving the issue of As contamination in rice. Herein, we establish the involvement of an RAV transcription factor OsAAT1 (Arsenic Accumulation and Tolerance 1) in regulating As response in rice. The expression of OsAAT1 is significantly higher in roots and stems of rice seedlings and is clearly upregulated by higher concentrations of arsenite [As(III)]. Compared with wild-type (WT) plants, OsAAT1-overexpressed transgenic lines (OE-OsAAT1) exhibit tolerance, while OsAAT1-knockout mutants (Osaat1) are sensitive to As(III) stress. Notably, the application of exogenous 1-naphthylacetic acid (NAA) greatly enhances the As tolerance of WT and transgenic lines, with stronger effects on OE-OsAAT1. The change in OsAAT1 expression leads to the alteration of As and auxin accumulation in transgenic plants by regulating the expression of OsLsi1, OsLsi2, OsCRL4, and OsAUX1 genes. Moreover, overexpression of OsAAT1 accelerates ROS scavenging and phytochelatins (PCs) synthesis, especially with the addition of exogenous NAA. OsAAT1 localizes in the nucleus and works as a transcriptional suppressor. OsGH3-12, belonging to the auxin-responsive GH3 gene family, is the downstream target gene of OsAAT1, whose expression is extensively downregulated by As(III). These findings provide new insights into As response via auxin signaling pathway in rice.
Collapse
Affiliation(s)
- Yao Guo
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Linlin Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Xinyu Shi
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Peiyao Yu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Chen Zhang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Qingpo Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| |
Collapse
|
3
|
Xiang Z, Zhang L, Long Y, Zhang M, Yao Y, Deng H, Quan C, Lu M, Cui B, Wang D. An ABA biosynthesis enzyme gene OsNCED4 regulates NaCl and cold stress tolerance in rice. Sci Rep 2024; 14:26711. [PMID: 39496751 PMCID: PMC11535211 DOI: 10.1038/s41598-024-78121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
Rice (Oryza sativa L.) is susceptible to various abiotic stresses, such as salt, cold, and drought. Therefore, there is an urgent need to explore the relevant genes that enhance tolerance to these stresses. In this study, we identified a gene, OsNCED4 (9-cis-epoxycarotenoid dioxygenase 4), which regulates tolerance to multiple abiotic stresses. OsNCED4 encodes a chloroplast-localized abscisic acid (ABA) biosynthetic enzyme. The expression of OsNCED4 gene was significantly induced by 150 mM NaCl and cold stress. Disruption of OsNCED4 by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9-mediated mutagenesis resulted in significant sensitivity to NaCl and cold stress. The salt and cold sensitivity of osnced4 mutant was due to the reduction of ABA content and the excessive accumulation of reactive oxygen species (ROS) under stress. Moreover, OsNCED4 also regulates drought stress tolerance of rice seedlings. Taken together, these results indicate that OsNCED4 is a new regulator for multiple abiotic stress tolerance in rice, and provided a potential target gene for enhancing multiple stress tolerance in the future.
Collapse
Affiliation(s)
- Zhipan Xiang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China.
| | - Lin Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingxia Long
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Mingze Zhang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Yuxian Yao
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Huali Deng
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Changbin Quan
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Minfeng Lu
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Baolu Cui
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Dengyan Wang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, China
| |
Collapse
|
4
|
Zhang Y, Du A, Tong L, Yan G, Lu L, Yin Y, Fu X, Yang H, Li H, Huang W, Cai D, Song Z, Zhang X, He Y, Tu S. Genome Resequencing for Autotetraploid Rice and Its Closest Relatives Reveals Abundant Variation and High Potential in Rice Breeding. Int J Mol Sci 2024; 25:9012. [PMID: 39201698 PMCID: PMC11354466 DOI: 10.3390/ijms25169012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Polyploid rice and its reverted diploid show rich phenotypic variation and strong heterosis, showing great breeding value. However, the genomic differences among tetraploids, counterpart common diploids, tetraploid-revertant diploids, and hybrid descendants are unclear. In this work, we bred a new excellent two-line hybrid rice variety, Y Liang You Duo Hui 14 (HTRM12), using Haitian tetraploid self-reverted diploid (HTRM2). Furthermore, we comparatively analyzed the important agronomic traits and genome-wide variations of those closest relatives, Haitian diploid (HT2), Haitian tetraploid (HT4), HTRM2, and HTRM12 in detail, based on multiple phenotypic investigations, genome resequencing, and bioinformatics analysis. The results of agronomic traits analysis and genome-wide variation analysis of single nucleotide polymorphism (SNP), insertion-deletion (InDel), and copy number variation (CNV) show that HT4 and HTRM2 had abundant phenotypic and genomic variations compared to HT2. HTRM2 can inherit important traits and variations from HT4. This implies that tetraploid self-reverted diploid has high potential in creating excellent breeding materials and in breeding breakthrough hybrid rice varieties. Our study verifies the feasibility that polyploid rice could be used as a mutation carrier for creating variations and provides genomic information, new breeding materials, and a new way of application for tetraploid rice breeding.
Collapse
Affiliation(s)
- Yachun Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Anping Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
| | - Liqi Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Gui Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Longxiang Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanni Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Xingyue Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixin Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
| | - Detian Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Zhaojian Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (L.T.); (G.Y.); (Y.Y.); (D.C.); (Z.S.); (X.Z.)
| | - Shengbin Tu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; (Y.Z.); (A.D.); (L.L.); (X.F.); (H.Y.); (H.L.); (W.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ruan B, Wu H, Jiang Y, Qiu J, Chen F, Zhang Y, Qiao Y, Tang M, Ma Y, Qian Q, Wu L, Yu Y. SPL50 Regulates Cell Death and Resistance to Magnaporthe Oryzae in Rice. RICE (NEW YORK, N.Y.) 2024; 17:51. [PMID: 39136883 PMCID: PMC11322501 DOI: 10.1186/s12284-024-00731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND The identification of spotted leaf 50 (spl50), a novel lesion mimic mutant (LMM) in rice, provides critical insights into the mechanisms underlying programmed cell death (PCD) and innate immunity in plants. RESULTS Based on ethyl methane sulfonate (EMS)-induced mutagenesis, the spl50 mutant mimics hypersensitive responses in the absence of pathogen by displaying spontaneous necrotic lesions after the tillering phase. SPL50, an ARM repeat protein essential for controlling reactive oxygen species (ROS) metabolism and boosting resistance to blast disease, was identified by map-based cloning techniques. This work also demonstrates the detrimental effects of spl50 on photosynthetic efficiency and chloroplast development. The crucial significance of SPL50 in cellular signaling and stress response is shown by its localization to the cytoplasm and constitutive expression in various plant tissues. In light of growing concerns regarding global food security, this study highlights the pivotal role of SPL50 in regulating programmed cell death (PCD) and enhancing the immune response in plants, contributing to strategies for improving crop disease resistance. CONCLUSIONS The novel identification of the SPL50 gene in rice, encoding an ARM repeat protein, reveals its pivotal role in regulating PCD and innate immune responses independently of pathogen attack.
Collapse
Affiliation(s)
- Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Hui Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, National Rice Research Institute, Hangzhou, Zhejiang, 310006, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu Qiao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingyue Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yingying Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, National Rice Research Institute, Hangzhou, Zhejiang, 310006, China.
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
6
|
Nie F, Wang M, Liu L, Ma X, Zhao J. Genome-Wide Identification and Bioinformatics Analysis of the FK506 Binding Protein Family in Rice. Genes (Basel) 2024; 15:902. [PMID: 39062681 PMCID: PMC11276075 DOI: 10.3390/genes15070902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The FK506 Binding Protein (FKBP), ubiquitously present across diverse species, is characterized by its evolutionarily conserved FK506 binding domain (FKBd). In plants, evidence suggests that this gene family plays integral roles in regulating growth, development, and responses to environmental stresses. Notably, research on the identification and functionality of FKBP genes in rice remains limited. Therefore, this study utilized bioinformatic tools to identify 30 FKBP-encoding genes in rice. It provides a detailed analysis of their chromosomal locations, evolutionary relationships with the Arabidopsis thaliana FKBP family, and gene structures. Further analysis of the promoter elements of these rice FKBP genes revealed a high presence of stress-responsive elements. Quantitative PCR assays under drought and heat stress conditions demonstrated that genes OsFKBP15-2, OsFKBP15-3, OsFKBP16-3, OsFKBP18, and OsFKBP42b are inducible by these adverse conditions. These findings suggest a significant role for the rice FKBP gene family in stress adaptation. This research establishes a critical foundation for deeper explorations of the functional roles of the OsFKBP genes in rice.
Collapse
Affiliation(s)
| | | | | | | | - Juan Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (F.N.); (M.W.)
| |
Collapse
|
7
|
Zhou M, Li Y, Cheng Z, Zheng X, Cai C, Wang H, Lu K, Zhu C, Ding Y. Important Factors Controlling Gibberellin Homeostasis in Plant Height Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15895-15907. [PMID: 37862148 DOI: 10.1021/acs.jafc.3c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Plant height is an important agronomic trait that is closely associated with crop yield and quality. Gibberellins (GAs), a class of highly efficient plant growth regulators, play key roles in regulating plant height. Increasing reports indicate that transcriptional regulation is a major point of regulation of the GA pathways. Although substantial knowledge has been gained regarding GA biosynthetic and signaling pathways, important factors contributing to the regulatory mechanisms homeostatically controlling GA levels remain to be elucidated. Here, we provide an overview of current knowledge regarding the regulatory network involving transcription factors, noncoding RNAs, and histone modifications involved in GA pathways. We also discuss the mechanisms of interaction between GAs and other hormones in plant height development. Finally, future directions for applying knowledge of the GA hormone in crop breeding are described.
Collapse
Affiliation(s)
- Mei Zhou
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yakun Li
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhuowei Cheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xinyu Zheng
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chong Cai
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Huizhen Wang
- Huangshan Institute of Product Quality Inspection, Huangshan 242700, China
| | - Kaixing Lu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo 315000, China
| | - Cheng Zhu
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yanfei Ding
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
8
|
Chandra T, Jaiswal S, Iquebal MA, Singh R, Gautam RK, Rai A, Kumar D. Revitalizing miRNAs mediated agronomical advantageous traits improvement in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107933. [PMID: 37549574 DOI: 10.1016/j.plaphy.2023.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
One of the key enigmas in conventional and modern crop improvement programmes is how to introduce beneficial traits without any penalty impairment. Rice (Oryza sativa L.), among the essential staple food crops grown and utilized worldwide, needs to improve genotypes in multifaceted ways. With the global view to feed ten billion under the climatic perturbation, only a potent functional master regulator can withstand with hope for the next green revolution and food security. miRNAs are such, miniature, fine tuners for crop improvement and provide a value addition in emerging technologies, namely large-scale genotyping, phenotyping, genome editing, marker-assisted selection, and genomic selection, to make rice production feasible. There has been surplus research output generated since the last decade on miRNAs in rice, however, recent functional knowledge is limited to reaping the benefits for conventional and modern improvements in rice to avoid ambiguity and redundancy in the generated data. Here, we present the latest functional understanding of miRNAs in rice. In addition, their biogenesis, intra- and inter-kingdom signaling and communication, implication of amiRNAs, and consequences upon integration with CRISPR-Cas9. Further, highlights refer to the application of miRNAs for rice agronomical trait improvements, broadly classified into three functional domains. The majority of functionally established miRNAs are responsible for growth and development, followed by biotic and abiotic stresses. Tabular cataloguing reveals and highlights two multifaceted modules that were extensively studied. These belong to miRNA families 156 and 396, orchestrate multifarious aspects of advantageous agronomical traits. Moreover, updated and exhaustive functional aspects of different supplemental miRNA modules that would strengthen rice improvement are also being discussed.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - R K Gautam
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India; Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
9
|
Zhou Y, Zhao C, Du T, Li A, Qin Z, Zhang L, Dong S, Wang Q, Hou F. Overexpression of 9- cis-Epoxycarotenoid Dioxygenase Gene, IbNCED1, Negatively Regulates Plant Height in Transgenic Sweet Potato. Int J Mol Sci 2023; 24:10421. [PMID: 37445599 DOI: 10.3390/ijms241310421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Plant height is one of the key agronomic traits for improving the yield of sweet potato. Phytohormones, especially gibberellins (GAs), are crucial to regulate plant height. The enzyme 9-cis-epoxycarotenoid dioxygenase (NCED) is the key enzyme for abscisic acid (ABA) biosynthesis signalling in higher plants. However, its role in regulating plant height has not been reported to date. Here, we cloned a new NCED gene, IbNCED1, from the sweet potato cultivar Jishu26. This gene encoded the 587-amino acid polypeptide containing an NCED superfamily domain. The expression level of IbNCED1 was highest in the stem and the old tissues in the in vitro-grown and field-grown Jishu26, respectively. The expression of IbNCED1 was induced by ABA and GA3. Overexpression of IbNCED1 promoted the accumulation of ABA and inhibited the content of active GA3 and plant height and affected the expression levels of genes involved in the GA metabolic pathway. Exogenous application of GA3 could rescue the dwarf phenotype. In conclusion, we suggest that IbNCED1 regulates plant height and development by controlling the ABA and GA signalling pathways in transgenic sweet potato.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chunling Zhao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Taifeng Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shunxu Dong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
10
|
Qu Q, Liu N, Su Q, Liu X, Jia H, Liu Y, Sun M, Cao Z, Dong J. MicroRNAs involved in the trans-kingdom gene regulation in the interaction of maize kernels and Fusarium verticillioides. Int J Biol Macromol 2023:125046. [PMID: 37245767 DOI: 10.1016/j.ijbiomac.2023.125046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Maize ear rot is a widespread disease and the main pathogen is Fusarium verticillioides. Plant microRNAs (miRNAs) have great effects on disease resistance and it has been reported that maize miRNA participates in defense responses in maize ear rot. However, the trans-kingdom regulation of miRNAs between maize and F. verticillioides remains uncharacterized. In this study, the relationship between miRNA-like RNAs (milRNAs) of F. verticillioides and pathogenicity was investigated, followed by sRNA analysis and degradome sequencing of miRNA profiles and the target genes of maize and F. verticillioides after inoculation. It was found that the milRNA biogenesis positively regulated the pathogenicity of F. verticillioides by knocking out the gene FvDicer2-encoded Dicer-like protein in F. verticillioides. Following inoculation with F. verticillioides, 284 known and 6571 novel miRNAs were obtained in maize, including 28 miRNAs differentially expressed at multiple time points. The target genes of maize differentially expressed miRNAs in F. verticillioides mediated multiple pathways, including autophagy and MAPK signaling pathway. Fifty-one novel F. verticillioides milRNAs were predicted to target 333 genes in maize involved in MAPK signaling pathways, plant hormone signaling transduction and plant-pathogen interaction pathways. Additionally, the miR528b-5p in maize targeted the mRNA of FvTTP which encoded a twice transmembrane protein in F. verticillioides. The FvTTP-knockout mutants displayed decreased pathogenicity and reduced synthesis of fumonisins. Thus, by interfering with the translation of FvTTP, the miR528b-5p inhibited F. verticillioides infection. These findings suggested a novel function of miR528 in resisting F. verticillioides infection. The miRNAs identified in this research and their putative target genes can be used to further elucidate the trans-kingdom functions of microRNAs in plant pathogen interaction.
Collapse
Affiliation(s)
- Qing Qu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Ning Liu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Qianfu Su
- Jilin Academy of Agricultural Sciences, Jilin 130033, China
| | - Xinfang Liu
- Corn Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Hui Jia
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Yuwei Liu
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China
| | - Manli Sun
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China
| | - Zhiyan Cao
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China.
| | - Jingao Dong
- Plant Pathogenic Mycotoxin and Molecular Plant Pathology Laboratory, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agriculture University, Baoding 071001, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding 071001, China.
| |
Collapse
|
11
|
Zhao J, Meng X, Zhang Z, Wang M, Nie F, Liu Q. OsLPR5 Encoding Ferroxidase Positively Regulates the Tolerance to Salt Stress in Rice. Int J Mol Sci 2023; 24:ijms24098115. [PMID: 37175822 PMCID: PMC10179522 DOI: 10.3390/ijms24098115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Salinity is a major abiotic stress that harms rice growth and productivity. Low phosphate roots (LPRs) play a central role in Pi deficiency-mediated inhibition of primary root growth and have ferroxidase activity. However, the function of LPRs in salt stress response and tolerance in plants remains largely unknown. Here, we reported that the OsLPR5 was induced by NaCl stress and positively regulates the tolerance to salt stress in rice. Under NaCl stress, overexpression of OsLPR5 led to increased ferroxidase activity, more green leaves, higher levels of chlorophyll and lower MDA contents compared with the WT. In addition, OsLPR5 could promote the accumulation of cell osmotic adjustment substances and promote ROS-scavenging enzyme activities. Conversely, the mutant lpr5 had a lower ferroxidase activity and suffered severe damage under salt stress. Moreover, knock out of OsLPR5 caused excessive Na+ levels and Na+/K+ ratios. Taken together, our results exemplify a new molecular link between ferroxidase and salt stress tolerance in rice.
Collapse
Affiliation(s)
- Juan Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xin Meng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhaonian Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Mei Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fanhao Nie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
12
|
Mahto A, Yadav A, P V A, Parida SK, Tyagi AK, Agarwal P. Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biol 2023; 21:91. [PMID: 37076907 PMCID: PMC10116700 DOI: 10.1186/s12915-023-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR). Rice seed development involves five stages (S1-S5). Comparative transcriptome and miRNome atlases, substantiated with morphological and cytological studies, from S1-S5 stages and flag leaf have been analyzed to identify GS proponents. RESULTS Histology shows prolonged endosperm development and cell enlargement in LGR. Stand-alone and comparative RNAseq analyses manifest S3 (5-10 days after pollination) stage as crucial for GS enhancement, coherently with cell cycle, endoreduplication, and programmed cell death participating genes. Seed storage protein and carbohydrate accumulation, cytologically and by RNAseq, is shown to be delayed in LGR. Fourteen transcription factor families influence GS. Pathway genes for four phytohormones display opposite patterns of higher expression. A total of 186 genes generated from the transcriptome analyses are located within GS trait-related QTLs deciphered by a cross between SN and LGR. Fourteen miRNA families express specifically in SN or LGR seeds. Eight miRNA-target modules display contrasting expressions amongst SN and LGR, while 26 (SN) and 43 (LGR) modules are differentially expressed in all stages. CONCLUSIONS Integration of all analyses concludes in a "Domino effect" model for GS regulation highlighting chronology and fruition of each event. This study delineates the essence of GS regulation, providing scope for future exploits. The rice grain development database (RGDD) ( www.nipgr.ac.in/RGDD/index.php ; https://doi.org/10.5281/zenodo.7762870 ) has been developed for easy access of data generated in this paper.
Collapse
Affiliation(s)
- Arunima Mahto
- National Institute of Plant Genome Research, New Delhi, India
| | - Antima Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Aswathi P V
- National Institute of Plant Genome Research, New Delhi, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
13
|
Othman SMIS, Mustaffa AF, Che-Othman MH, Samad AFA, Goh HH, Zainal Z, Ismail I. Overview of Repressive miRNA Regulation by Short Tandem Target Mimic (STTM): Applications and Impact on Plant Biology. PLANTS (BASEL, SWITZERLAND) 2023; 12:669. [PMID: 36771753 PMCID: PMC9918958 DOI: 10.3390/plants12030669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The application of miRNA mimic technology for silencing mature miRNA began in 2007. This technique originated from the discovery of the INDUCED BY PHOSPHATE STARVATION 1 (IPS1) gene, which was found to be a competitive mimic that prevents the cleavage of the targeted mRNA by miRNA inhibition at the post-transcriptional level. To date, various studies have been conducted to understand the molecular mimic mechanism and to improve the efficiency of this technology. As a result, several mimic tools have been developed: target mimicry (TM), short tandem target mimic (STTM), and molecular sponges (SPs). STTM is the most-developed tool due to its stability and effectiveness in decoying miRNA. This review discusses the application of STTM technology on the loss-of-function studies of miRNA and members from diverse plant species. A modified STTM approach for studying the function of miRNA with spatial-temporal expression under the control of specific promoters is further explored. STTM technology will enhance our understanding of the miRNA activity in plant-tissue-specific development and stress responses for applications in improving plant traits via miRNA regulation.
Collapse
Affiliation(s)
- Syed Muhammad Iqbal Syed Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Arif Faisal Mustaffa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. Hafiz Che-Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Abdul Fatah A. Samad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Johor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Zamri Zainal
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Ismanizan Ismail
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
14
|
Castro-Camba R, Sánchez C, Vidal N, Vielba JM. Plant Development and Crop Yield: The Role of Gibberellins. PLANTS (BASEL, SWITZERLAND) 2022; 11:2650. [PMID: 36235516 PMCID: PMC9571322 DOI: 10.3390/plants11192650] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/12/2023]
Abstract
Gibberellins have been classically related to a few key developmental processes, thus being essential for the accurate unfolding of plant genetic programs. After more than a century of research, over one hundred different gibberellins have been described. There is a continuously increasing interest in gibberellins research because of their relevant role in the so-called "Green Revolution", as well as their current and possible applications in crop improvement. The functions attributed to gibberellins have been traditionally restricted to the regulation of plant stature, seed germination, and flowering. Nonetheless, research in the last years has shown that these functions extend to many other relevant processes. In this review, the current knowledge on gibberellins homeostasis and mode of action is briefly outlined, while specific attention is focused on the many different responses in which gibberellins take part. Thus, those genes and proteins identified as being involved in the regulation of gibberellin responses in model and non-model species are highlighted. The present review aims to provide a comprehensive picture of the state-of-the-art perception of gibberellins molecular biology and its effects on plant development. This picture might be helpful to enhance our current understanding of gibberellins biology and provide the know-how for the development of more accurate research and breeding programs.
Collapse
Affiliation(s)
| | | | | | - Jesús Mª Vielba
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| |
Collapse
|