1
|
Wang CS, Lin SY, Huang JH, Chang HY, Lew DK, Wang YH, Hwu KK, Huang YF. Identification of powdery mildew resistance quantitative trait loci in melon and development of resistant near-isogenic lines through marker-assisted backcrossing. BOTANICAL STUDIES 2024; 65:31. [PMID: 39495375 PMCID: PMC11534953 DOI: 10.1186/s40529-024-00435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/01/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Melon (Cucumis melo L.), an important cucurbit crop, faces production limitations due to powdery mildew (PM). Developing resistant varieties offers a sustainable, genetics-based alternative to chemical treatments. Therefore, identifying PM resistance quantitative trait loci (QTL) and creating trait-associated markers are essential for efficient melon PM resistance improvement through marker-assisted backcrossing (MABC). RESULTS Three F2 populations, A6, B2, and C4, were generated for QTL mapping of PM resistance. Major QTL were identified on chromosome 2 in A6, chromosome 5 in B2, and chromosomes 5 and 12 in C4. A series of TaqMan® assays targeting regions on chromosomes 2, 5, and 12 were developed and validated for foreground and recombinant selection, complemented by the double digest restriction-site associated DNA genotyping system to evaluate the recurrent parent genome recovery. Three MABC programs using resistant donor parents from A6 and C4 crossed with elite susceptible recurrent parents with green and orange fruit flesh were implemented. After two to three cycles of MABC, individual QTL was successfully introgressed into elite genetic backgrounds, giving six PM resistance lines in each green- and orange-fleshed background. PM inoculation on the twelve near-isogenic lines confirmed their resistance to PM. CONCLUSIONS We have identified major PM resistance QTL for melon on chromosomes 2, 5, and 12 and have introgressed individual QTL to elite genetic backgrounds using MABC in three and a half years. This study demonstrates the power of combining high-throughput genotyping with breeding efforts and showcases the efficiency of molecular breeding.
Collapse
Affiliation(s)
- Chun-San Wang
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City, 106319, Taiwan.
| | - Ssu-Yu Lin
- Crop Genetic Resources and Biotechnology Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, No. 189, Zhongzheng Rd., Wufeng Dist., Taichung City, 413008, Taiwan
| | - Jin-Hsing Huang
- Plant Pathology Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, No. 189, Zhongzheng Rd., Wufeng Dist., Taichung City, 413008, Taiwan
| | - Hsin-Yi Chang
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City, 106319, Taiwan
| | - Di-Kuan Lew
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City, 106319, Taiwan
| | - Yu-Hua Wang
- Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, No. 189, Zhongzheng Rd., Wufeng Dist., Taichung City, 413008, Taiwan
| | - Kae-Kang Hwu
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City, 106319, Taiwan
| | - Yung-Fen Huang
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City, 106319, Taiwan.
| |
Collapse
|
2
|
Khunsanit P, Jitsamai N, Thongsima N, Chadchawan S, Pongpanich M, Henry IM, Comai L, Suriya-Arunroj D, Budjun I, Buaboocha T. QTL-Seq identified a genomic region on chromosome 1 for soil-salinity tolerance in F 2 progeny of Thai salt-tolerant rice donor line "Jao Khao". FRONTIERS IN PLANT SCIENCE 2024; 15:1424689. [PMID: 39258300 PMCID: PMC11385611 DOI: 10.3389/fpls.2024.1424689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
Introduction Owing to advances in high-throughput genome sequencing, QTL-Seq mapping of salt tolerance traits is a major platform for identifying soil-salinity tolerance QTLs to accelerate marker-assisted selection for salt-tolerant rice varieties. We performed QTL-BSA-Seq in the seedling stage of rice from a genetic cross of the extreme salt-sensitive variety, IR29, and "Jao Khao" (JK), a Thai salt-tolerant variety. Methods A total of 462 F2 progeny grown in soil and treated with 160 mM NaCl were used as the QTL mapping population. Two high- and low-bulk sets, based on cell membrane stability (CMS) and tiller number at the recovery stage (TN), were equally sampled. The genomes of each pool were sequenced, and statistical significance of QTL was calculated using QTLseq and G prime (G') analysis, which is based on calculating the allele frequency differences or Δ(SNP index). Results Both methods detected the overlapping interval region, wherein CMS-bulk was mapped at two loci in the 38.41-38.85 Mb region with 336 SNPs on chromosome 1 (qCMS1) and the 26.13-26.80 Mb region with 1,011 SNPs on chromosome 3 (qCMS3); the Δ(SNP index) peaks were -0.2709 and 0.3127, respectively. TN-bulk was mapped at only one locus in the overlapping 38.26-38.95 Mb region on chromosome 1 with 575 SNPs (qTN1) and a Δ(SNP index) peak of -0.3544. These identified QTLs in two different genetic backgrounds of segregating populations derived from JK were validated. The results confirmed the colocalization of the qCMS1 and qTN1 traits on chromosome 1. Based on the CMS trait, qCMS1/qTN1 stably expressed 6%-18% of the phenotypic variance in the two validation populations, while qCMS1/qTN1 accounted for 16%-20% of the phenotypic variance in one validation population based on the TN trait. Conclusion The findings confirm that the CMS and TN traits are tightly linked to the long arm of chromosome 1 rather than to chromosome 3. The validated qCMS-TN1 QTL can be used for gene/QTL pyramiding in marker-assisted selection to expedite breeding for salt resistance in rice at the seedling stage.
Collapse
Affiliation(s)
- Prasit Khunsanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Navarit Jitsamai
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nattana Thongsima
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Monnat Pongpanich
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, United States
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, United States
| | | | - Itsarapong Budjun
- Rice Department, Ministry of Agriculture and Cooperation, Bangkok, Thailand
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Dipta B, Sood S, Mangal V, Bhardwaj V, Thakur AK, Kumar V, Singh B. KASP: a high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance. Mol Biol Rep 2024; 51:508. [PMID: 38622474 DOI: 10.1007/s11033-024-09455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
Advances in plant molecular breeding have resulted in the development of new varieties with superior traits, thus improving the crop germplasm. Breeders can screen a large number of accessions without rigorous and time-consuming phenotyping by marker-assisted selection (MAS). Molecular markers are one of the most imperative tools in plant breeding programmes for MAS to develop new cultivars possessing multiple superior traits. Single nucleotide polymorphisms (SNPs) are ideal for MAS due to their low cost, low genotyping error rates, and reproducibility. Kompetitive Allele Specific PCR (KASP) is a globally recognized technology for SNP genotyping. KASP is an allele-specific oligo extension-based PCR assay that uses fluorescence resonance energy transfer (FRET) to detect genetic variations such as SNPs and insertions/deletions (InDels) at a specific locus. Additionally, KASP allows greater flexibility in assay design, which leads to a higher success rate and the capability to genotype a large population. Its versatility and ease of use make it a valuable tool in various fields, including genetics, agriculture, and medical research. KASP has been extensively used in various plant-breeding applications, such as the identification of germplasm resources, quality control (QC) analysis, allele mining, linkage mapping, quantitative trait locus (QTL) mapping, genetic map construction, trait-specific marker development, and MAS. This review provides an overview of the KASP assay and emphasizes its validation in crop improvement related to various biotic and abiotic stress tolerance and quality traits.
Collapse
Affiliation(s)
- Bhawna Dipta
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India.
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-National Research Centre on Seed Spices, Tabiji, Ajmer, Rajasthan, 305206, India
| | - Ajay Kumar Thakur
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
4
|
Tiwari K, Tiwari S, Kumar N, Sinha S, Krishnamurthy SL, Singh R, Kalia S, Singh NK, Rai V. QTLs and Genes for Salt Stress Tolerance: A Journey from Seed to Seed Continued. PLANTS (BASEL, SWITZERLAND) 2024; 13:1099. [PMID: 38674508 PMCID: PMC11054697 DOI: 10.3390/plants13081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/28/2024]
Abstract
Rice (Oryza sativa L.) is a crucial crop contributing to global food security; however, its production is susceptible to salinity, a significant abiotic stressor that negatively impacts plant germination, vigour, and yield, degrading crop production. Due to the presence of exchangeable sodium ions (Na+), the affected plants sustain two-way damage resulting in initial osmotic stress and subsequent ion toxicity in the plants, which alters the cell's ionic homeostasis and physiological status. To adapt to salt stress, plants sense and transfer osmotic and ionic signals into their respective cells, which results in alterations of their cellular properties. No specific Na+ sensor or receptor has been identified in plants for salt stress other than the SOS pathway. Increasing productivity under salt-affected soils necessitates conventional breeding supplemented with biotechnological interventions. However, knowledge of the genetic basis of salinity stress tolerance in the breeding pool is somewhat limited because of the complicated architecture of salinity stress tolerance, which needs to be expanded to create salt-tolerant variants with better adaptability. A comprehensive study that emphasizes the QTLs, genes and governing mechanisms for salt stress tolerance is discussed in the present study for future research in crop improvement.
Collapse
Affiliation(s)
- Keshav Tiwari
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sushma Tiwari
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Nivesh Kumar
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Shikha Sinha
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | | | - Renu Singh
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, New Delhi 110003, India
| | - Nagendra Kumar Singh
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Vandna Rai
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| |
Collapse
|
5
|
Trotti J, Trapani I, Gulino F, Aceto M, Minio M, Gerotto C, Mica E, Valè G, Barbato R, Pagliano C. Physiological Responses to Salt Stress at the Seedling Stage in Wild ( Oryza rufipogon Griff.) and Cultivated ( Oryza sativa L.) Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:369. [PMID: 38337902 PMCID: PMC10857172 DOI: 10.3390/plants13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Domesticated rice Oryza sativa L. is a major staple food worldwide, and the cereal most sensitive to salinity. It originated from the wild ancestor Oryza rufipogon Griff., which was reported to possess superior salinity tolerance. Here, we examined the morpho-physiological responses to salinity stress (80 mM NaCl for 7 days) in seedlings of an O. rufipogon accession and two Italian O. sativa genotypes, Baldo (mildly tolerant) and Vialone Nano (sensitive). Under salt treatment, O. rufipogon showed the highest percentage of plants with no to moderate stress symptoms, displaying an unchanged shoot/root biomass ratio, the highest Na+ accumulation in roots, the lowest root and leaf Na+/K+ ratio, and highest leaf relative water content, leading to a better preservation of the plant architecture, ion homeostasis, and water status. Moreover, O. rufipogon preserved the overall leaf carbon to nitrogen balance and photosynthetic apparatus integrity. Conversely, Vialone Nano showed the lowest percentage of plants surviving after treatment, and displayed a higher reduction in the growth of shoots rather than roots, with leaves compromised in water and ionic balance, negatively affecting the photosynthetic performance (lowest performance index by JIP-test) and apparatus integrity. Baldo showed intermediate salt tolerance. Being O. rufipogon interfertile with O. sativa, it resulted a good candidate for pre-breeding towards salt-tolerant lines.
Collapse
Affiliation(s)
- Jacopo Trotti
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Isabella Trapani
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | - Federica Gulino
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Maurizio Aceto
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Miles Minio
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (M.M.); (C.G.)
| | - Caterina Gerotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy; (M.M.); (C.G.)
| | - Erica Mica
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Giampiero Valè
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Roberto Barbato
- Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy; (J.T.); (F.G.); (M.A.); (E.M.); (G.V.); (R.B.)
| | - Cristina Pagliano
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale Teresa Michel 5, 15121 Alessandria, Italy
| |
Collapse
|