1
|
Li W, Zhou Y, Zhang H, Hu M, Lu P, Qu C. Study on peanut protein oxidation and metabolomics/proteomics analysis of peanut response under hypoxic/re-aeration storage. Food Chem X 2024; 21:101173. [PMID: 38370304 PMCID: PMC10869743 DOI: 10.1016/j.fochx.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
To better understand the effect of oxygen levels in the storage environment on peanut protein oxidation and explore the mechanism, the functional properties and the oxidation degree of peanut proteins extracted from peanuts under conventional storage (CS), nitrogen modified atmosphere storage (NS, hypoxic) and re-aeration storage (RS) were investigated. Metabolomics and proteomics were employed to analyze peanut's response to hypoxic/re-aeration storage environment. The results showed that NS retarded the decline of the functional properties and the oxidation of peanut proteins, while the process were accelerated after re-aeration. That was the result of the metabolic changes of peanuts under different storage environments. The omics results presented the decreased (NS)/increased (RS) levels of the antioxidant-related proteins acetaldehyde dehydrogenase and glutathione S-transferase, and the inhibition (NS)/activation (RS) of metabolic pathways such as the TCA cycle and the pentose phosphate pathway. This study provided a reference for the re-aeration storage of other agricultural products.
Collapse
Affiliation(s)
- Wenhao Li
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yuhao Zhou
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Huayang Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Hu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Peng Lu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Chenling Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
2
|
Liu X, Gao Y, Li R, Zhang X, Dong G, Zhou J, Zhou Y, Yang Z, Huang J, Dai Q, Yao Y. Transcriptomic analysis of salt-tolerant and sensitive high-yield japonica rice (Oryza sativa L.) reveals complicated salt-tolerant mechanisms. PHYSIOLOGIA PLANTARUM 2024; 176:e14275. [PMID: 38566267 DOI: 10.1111/ppl.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Developing and cultivating rice varieties is a potent strategy for reclaiming salinity-affected soils for rice production. Nevertheless, the molecular mechanisms conferring salt tolerance, especially in conventional high-yield japonica rice varieties, remain obscure. In this study, Zhendao 23309 (ZD23309) exhibited significantly less grain yield reduction under a salt stress gradient than the control variety Wuyunjing 30 (WYJ30). High positive correlations between grain yield and dry matter accumulation at the jointing, heading and maturity stages indicated that early salt tolerance performance is a crucial hallmark for yield formation. After a mild salt stress (85 mM NaCl) of young seedlings, RNA sequencing (RNA-seq) of shoot and root separately identified a total of 1952 and 3647 differentially expressed genes (DEGs) in ZD23309, and 2114 and 2711 DEGs in WYJ30, respectively. Gene ontology (GO) analysis revealed numerous DEGs in ZD23309 that play pivotal roles in strengthening salt tolerance, encompassing the response to stimulus (GO:0050896) in shoots and nucleoside binding (GO:0001882) in roots. Additionally, distinct expression patterns were observed in a fraction of genes in the two rice varieties under salt stress, corroborating the efficacy of previously reported salt tolerance genes. Our research not only offers fresh insights into the differences in salt stress tolerance among conventional high-yield rice varieties but also unveils the intricate nature of salt tolerance mechanisms. These findings lay a solid groundwork for deciphering the mechanisms underlying salt tolerance.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingbo Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongkai Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoxiang Zhang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Guichun Dong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Juan Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianye Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qigen Dai
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Domingo C, San Segundo B. Rice Thematic Special Issue: Beneficial Plant-Microbe Interactions in Rice. RICE (NEW YORK, N.Y.) 2023; 16:50. [PMID: 37921908 PMCID: PMC10624776 DOI: 10.1186/s12284-023-00659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 11/05/2023]
Affiliation(s)
- Concha Domingo
- Departamento del Arroz and Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra Moncada-Náquera km 10.7, 46113, Moncada, Valencia, Spain.
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), C/de la Vall Moronta, CRAG Building, 08193, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
4
|
Degon Z, Dixon S, Rahmatallah Y, Galloway M, Gulutzo S, Price H, Cook J, Glazko G, Mukherjee A. Azospirillum brasilense improves rice growth under salt stress by regulating the expression of key genes involved in salt stress response, abscisic acid signaling, and nutrient transport, among others. FRONTIERS IN AGRONOMY 2023; 5:1216503. [PMID: 38223701 PMCID: PMC10785826 DOI: 10.3389/fagro.2023.1216503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Major food crops, such as rice and maize, display severe yield losses (30-50%) under salt stress. Furthermore, problems associated with soil salinity are anticipated to worsen due to climate change. Therefore, it is necessary to implement sustainable agricultural strategies, such as exploiting beneficial plant-microbe associations, for increased crop yields. Plants can develop associations with beneficial microbes, including arbuscular mycorrhiza and plant growth-promoting bacteria (PGPB). PGPB improve plant growth via multiple mechanisms, including protection against biotic and abiotic stresses. Azospirillum brasilense, one of the most studied PGPB, can mitigate salt stress in different crops. However, little is known about the molecular mechanisms by which A. brasilense mitigates salt stress. This study shows that total and root plant mass is improved in A. brasilense-inoculated rice plants compared to the uninoculated plants grown under high salt concentrations (100 mM and 200 mM NaCl). We observed this growth improvement at seven- and fourteen days post-treatment (dpt). Next, we used transcriptomic approaches and identified differentially expressed genes (DEGs) in rice roots when exposed to three treatments: 1) A. brasilense, 2) salt (200 mM NaCl), and 3) A. brasilense and salt (200 mM NaCl), at seven dpt. We identified 786 DEGs in the A. brasilense-treated plants, 4061 DEGs in the salt-stressed plants, and 1387 DEGs in the salt-stressed A. brasilense-treated plants. In the A. brasilense-treated plants, we identified DEGs involved in defense, hormone, and nutrient transport, among others. In the salt-stressed plants, we identified DEGs involved in abscisic acid and jasmonic acid signaling, antioxidant enzymes, sodium and potassium transport, and calcium signaling, among others. In the salt-stressed A. brasilense-treated plants, we identified some genes involved in salt stress response and tolerance (e.g., abscisic acid and jasmonic acid signaling, antioxidant enzymes, calcium signaling), and sodium and potassium transport differentially expressed, among others. We also identified some A. brasilense-specific plant DEGs, such as nitrate transporters and defense genes. Furthermore, our results suggest genes involved in auxin and ethylene signaling are likely to play an important role during these interactions. Overall, our transcriptomic data indicate that A. brasilense improves rice growth under salt stress by regulating the expression of key genes involved in defense and stress response, abscisic acid and jasmonic acid signaling, and ion and nutrient transport, among others. Our findings will provide essential insights into salt stress mitigation in rice by A. brasilense.
Collapse
Affiliation(s)
- Zachariah Degon
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Seth Dixon
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mary Galloway
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Sophia Gulutzo
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Hunter Price
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - John Cook
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, AR, United States
| |
Collapse
|
5
|
Chinachanta K, Shutsrirung A, Santasup C, Pathom-Aree W, Luu DT, Herrmann L, Lesueur D, Prom-u-thai C. Rhizoactinobacteria Enhance Growth and Antioxidant Activity in Thai Jasmine Rice ( Oryza sativa) KDML105 Seedlings under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3441. [PMID: 37836181 PMCID: PMC10574518 DOI: 10.3390/plants12193441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Salinity is one of the most devastating abiotic stresses hampering the growth and production of rice. Nine indole-3-acetic acid (IAA)-producing salt-tolerant plant-growth-promoting rhizobacteria (ST-PGPR) were inoculated into Thai jasmine rice (Oryza sativa L.) variety Khao Dawk Mali 105 (KDML105) seedlings grown under different concentrations of NaCl (0, 50, 100, and 150 mM). The ST-PGPR strains significantly promoted the growth parameters, chlorophyll content, nutrient uptake (N, P, K, Ca, and Mg), antioxidant activity, and proline accumulation in the seedlings under both normal and saline conditions compared to the respective controls. The K+/Na+ ratio of the inoculated seedlings was much higher than that of the controls, indicating greater salt tolerance. The most salt-tolerant and IAA-producing strain, Sinomonas sp. ORF15-23, yielded the highest values for all the parameters, particularly at 50 mM NaCl. The percentage increases in these parameters relative to the controls ranged from >90% to 306%. Therefore, Sinomonas sp. ORF15-23 was considered a promising ST-PGPR to be developed as a bioinoculant for enhancing the growth, salt tolerance, and aroma of KDML105 rice in salt-affected areas. Environmentally friendly technologies such as ST-PGPR bioinoculants could also support the sustainability of KDML105 geographical indication (GI) products. However, the efficiency of Sinomonas sp. ORF15-23 should be evaluated under field conditions for its effect on rice nutrient uptake and growth, including the 2AP level.
Collapse
Affiliation(s)
- Kawiporn Chinachanta
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Arawan Shutsrirung
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
| | - Choochad Santasup
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
| | - Wasu Pathom-Aree
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center of Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Doan Trung Luu
- IPSiM, CNRS, INRAE, Institute Agro, University of Montpellier, 34060 Montpellier, France;
| | - Laetitia Herrmann
- Alliance of Bioversity International and Centre International of Tropical Agriculture (CIAT), Asia Hub, Common Microbial Biotechnology Platform (CMBP), Hanoi 10000, Vietnam; (L.H.); (D.L.)
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC 3125, Australia
| | - Didier Lesueur
- Alliance of Bioversity International and Centre International of Tropical Agriculture (CIAT), Asia Hub, Common Microbial Biotechnology Platform (CMBP), Hanoi 10000, Vietnam; (L.H.); (D.L.)
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Melbourne, VIC 3125, Australia
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR Eco&Sols, Hanoi 10000, Vietnam
- Eco & Sols, CIRAD, INRAE, Institut de Recherche pour le Développement (IRD), Montpellier SupAgro, Université de Montpellier (UMR), 34060 Montpellier, France
- Chinese Academy of Tropical Agricultural Sciences, Rubber Research Institute, Haikou 571101, China
| | - Chanakan Prom-u-thai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.C.); (A.S.); (C.S.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Aizaz M, Khan I, Lubna, Asaf S, Bilal S, Jan R, Khan AL, Kim KM, AL-Harrasi A. Enhanced Physiological and Biochemical Performance of Mung Bean and Maize under Saline and Heavy Metal Stress through Application of Endophytic Fungal Strain SL3 and Exogenous IAA. Cells 2023; 12:1960. [PMID: 37566039 PMCID: PMC10417269 DOI: 10.3390/cells12151960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Modern irrigation practices and industrial pollution can contribute to the simultaneous occurrence of salinity and heavy metal contamination in large areas of the world, resulting in significant negative effects on crop productivity and sustainability. This study aimed to investigate the growth-promoting potentials of an important endophytic fungal strain SL3 and to compare its potential with exogenous IAA (indole-3-acetic acid) in the context of salt and heavy metal stress. The strain was assessed for plant growth-promoting traits such as the production of indole-3-acetic acid, gibberellins (GA), and siderophore. We selected two important crops, mung bean and maize, and examined various physiological and biochemical characteristics under 300 mM NaCl and 2.5 mM Pb stress conditions, with and without the application of IAA and SL3. This study's results demonstrated that both IAA and SL3 positively impacted the growth and development of plants under normal and stressed conditions. In NaCl and Pb-induced stress conditions, the growth of mung bean and maize plants was significantly reduced. However, the application of IAA and SL3 helped to alleviate stress, leading to a significant increase in shoot/root length and weight compared to IAA and SL3 non-treated plants. The results revealed that photosynthetic pigments, accumulation of catalase (CAT), phenolic contents, polyphenol oxidase, and flavanols are higher in the IAA and SL3-treated plants than in the non-inoculated plants. This study's findings revealed that applying the SL3 fungal strain positively influenced various physiological and biochemical processes in tested plant species under normal and stress conditions of NaCl and Pb. These findings also suggested that SL3 could be a potential replacement for widely used IAA to promote plant growth by improving photosynthetic efficiency, reducing oxidative stress, and enhancing metabolic activities in plants, including mung and maize. Moreover, this study highlights that SL3 has synergistic effects with IAA in enhancing resilience to salt and heavy stress and offers a promising avenue for future agricultural applications in salt and heavy metal-affected regions.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Ibrahim Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA;
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Ahmed AL-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (M.A.); (I.K.); (L.); (S.A.)
| |
Collapse
|
7
|
Barona-Gómez F, Chevrette MG, Hoskisson PA. On the evolution of natural product biosynthesis. Adv Microb Physiol 2023; 83:309-349. [PMID: 37507161 DOI: 10.1016/bs.ampbs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Natural products are the raw material for drug discovery programmes. Bioactive natural products are used extensively in medicine and agriculture and have found utility as antibiotics, immunosuppressives, anti-cancer drugs and anthelminthics. Remarkably, the natural role and what mechanisms drive evolution of these molecules is relatively poorly understood. The exponential increase in genome and chemical data in recent years, coupled with technical advances in bioinformatics and genetics have enabled progress to be made in understanding the evolution of biosynthetic gene clusters and the products of their enzymatic machinery. Here we discuss the diversity of natural products, incorporating the mechanisms that govern evolution of metabolic pathways and how this can be applied to biosynthetic gene clusters. We build on the nomenclature of natural products in terms of primary, integrated, secondary and specialised metabolism and place this within an ecology-evolutionary-developmental biology framework. This eco-evo-devo framework we believe will help to clarify the nature and use of the term specialised metabolites in the future.
Collapse
Affiliation(s)
| | - Marc G Chevrette
- Department of Microbiology and Cell Sciences, University of Florida, Museum Drive, Gainesville, FL, United States; University of Florida Genetics Institute, University of Florida, Mowry Road, Gainesville, FL, United States
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, United Kingdom.
| |
Collapse
|