1
|
Kim MJ, Rhim G. Blood Pressure Response to the Head-Up Tilt Test in Benign Paroxysmal Positional Vertigo. J Clin Med 2023; 12:7725. [PMID: 38137794 PMCID: PMC10744299 DOI: 10.3390/jcm12247725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The vestibular organ is involved in controlling blood pressure through vestibulosympathetic reflexes of the autonomic nervous system. This study aimed to investigate the effect of benign paroxysmal positional vertigo (BPPV) on blood pressure control by the autonomic nervous system by observing changes in blood pressure before and after BPPV treatment using the head-up tilt test (HUTT). A total of 278 patients who underwent the HUTT before and after treatment were included. The HUTT measured blood pressure repeatedly on the day of diagnosis and the day of complete recovery, and the results were analyzed using repeated measures analysis of variance. Regarding the difference in the systolic blood pressure of patients with BPPV, the blood pressure at 1, 2, and 3 min in the upright position after complete recovery was significantly lower than before treatment (p = 0.001, p = 0.001, and p = 0.012, respectively). Blood pressure at 1 and 2 min in the diastolic blood pressure of patients with BPPV in the upright position after complete recovery was significantly lower than before treatment (p = 0.001 and p = 0.034, respectively). This study shows that BPPV increases blood pressure during the initial response to standing in the HUTT.
Collapse
Affiliation(s)
- Moon-Jung Kim
- Department of Laboratory Medicine, Myongji Hospital, Hanyang University Medical Center, Goyang 10475, Republic of Korea;
| | - Guil Rhim
- Department of Otorhinolaryngology, One Otorhinolaryngology Clinic, Paju 10924, Republic of Korea
| |
Collapse
|
2
|
El Medany NM, Kolkaila EA, El Mehallawi TH, Lasheen RM. A study of otolith function in patients with orthostatic dizziness. Eur Arch Otorhinolaryngol 2023; 280:4803-4810. [PMID: 37106133 PMCID: PMC10562266 DOI: 10.1007/s00405-023-07985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Orthostatic dizziness (OD) is the dizziness that occurs when moving from a sitting or a supine to a standing position. It is typically thought to be connected to orthostatic hypotension (OH). The otolithic control of respiratory and cardiovascular system through vestibulosympathetic reflex has been the focus of considerable recent interest. This study aimed to evaluate the relationship between the orthostatic dizziness and otolith organ function. METHODS This study was carried on 50 adults aged from 18 to 50 years with normal peripheral hearing. Subjects were divided into two groups: controls (GI): 20 healthy adults and study group (GII): 30 patients who were complaining of OD. Patients were submitted to; blood pressure measurement in sitting and standing positions, combined vestibular-evoked myogenic potentials (VEMPs) and subjective visual vertical and horizontal tests (SVV) and (SVH). RESULTS The study group showed abnormal absent cVEMP, oVEMP. There were also statistically significant differences of P13 and N23 latencies and (P13N23) amplitudes between the two groups in the left ears. Both groups differed significantly in SVH values deviated to the left side. Study group were further subdivided into ten patients with OH and 20 patients with OD without OH. The both study subgroups showed abnormal absent cVEMP, oVEMP and abnormal SVH. OH patients showed statistically significant differences of cVEMP waves P13, N23 latencies in the left ears when compared with the control. CONCLUSIONS Otolith malfunction may be the cause of orthostatic dizziness (OD) in patients with and without orthostatic hypotension.
Collapse
Affiliation(s)
- Nada Medhat El Medany
- Audio-Vestibular Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Enaas Ahmad Kolkaila
- Audio-Vestibular Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Reham Mamdouh Lasheen
- Audio-Vestibular Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Audiovestibular Unit, Department of Otolaryngology/Head and Neck Surgery, Tanta University Hospital, El-Geish Street, Tanta, 31511 El-Gharbia Egypt
| |
Collapse
|
3
|
Benelli A, Neri F, Cinti A, Pasqualetti P, Romanella SM, Giannotta A, De Monte D, Mandalà M, Smeralda C, Prattichizzo D, Santarnecchi E, Rossi S. Frequency-Dependent Reduction of Cybersickness in Virtual Reality by Transcranial Oscillatory Stimulation of the Vestibular Cortex. Neurotherapeutics 2023; 20:1796-1807. [PMID: 37721646 PMCID: PMC10684476 DOI: 10.1007/s13311-023-01437-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/19/2023] Open
Abstract
Virtual reality (VR) applications are pervasive of everyday life, as in working, medical, and entertainment scenarios. There is yet no solution to cybersickness (CS), a disabling vestibular syndrome with nausea, dizziness, and general discomfort that most of VR users undergo, which results from an integration mismatch among visual, proprioceptive, and vestibular information. In a double-blind, controlled trial, we propose an innovative treatment for CS, consisting of online oscillatory imperceptible neuromodulation with transcranial alternating current stimulation (tACS) at 10 Hz, biophysically modelled to reach the vestibular cortex bilaterally. tACS significantly reduced CS nausea in 37 healthy subjects during a VR rollercoaster experience. The effect was frequency-dependent and placebo-insensitive. Subjective benefits were paralleled by galvanic skin response modulation in 25 subjects, addressing neurovegetative activity. Besides confirming the role of transcranially delivered oscillations in physiologically tuning the vestibular system function (and dysfunction), results open a new way to facilitate the use of VR in different scenarios and possibly to help treating also other vestibular dysfunctions.
Collapse
Affiliation(s)
- Alberto Benelli
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Francesco Neri
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Siena, Italy
| | - Alessandra Cinti
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Sara M Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandro Giannotta
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - David De Monte
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Marco Mandalà
- Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Siena, Italy
- Otolaryngology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carmelo Smeralda
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Domenico Prattichizzo
- Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Siena, Italy
- Siena Robotics and Systems (SiRS) Lab, Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
- Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Siena, Italy.
| |
Collapse
|
4
|
Sakakibara S, Abdellatef SA, Yamamoto S, Kamimura M, Nakanishi J. Photoactivatable surfaces resolve the impact of gravity vector on collective cell migratory characteristics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2206525. [PMID: 37151805 PMCID: PMC10158565 DOI: 10.1080/14686996.2023.2206525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite considerable interest in the impact of space travel on human health, the influence of the gravity vector on collective cell migration remains unclear. This is primarily because of the difficulty in inducing collective migration, where cell clusters appear in an inverted position against gravity, without cellular damage. In this study, photoactivatable surfaces were used to overcome this challenge. Photoactivatable surfaces enable the formation of geometry-controlled cellular clusters and the remote induction of cellular migration via photoirradiation, thereby maintaining the cells in the inverted position. Substrate inversion preserved the circularity of cellular clusters compared to cells in the normal upright position, with less leader cell appearance. Furthermore, the inversion of cells against the gravity vector resulted in the remodeling of the cytoskeletal system via the strengthening of external actin bundles. Within the 3D cluster architecture, enhanced accumulation of active myosin was observed in the upper cell-cell junction, with a flattened apical surface. Depending on the gravity vector, attenuating actomyosin activity correlates with an increase in the number of leader cells, indicating the importance of cell contractility in collective migration phenotypes and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Shinya Sakakibara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Shimaa A. Abdellatef
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- CONTACT Shimaa A. Abdellatef
| | - Shota Yamamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Masao Kamimura
- Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Jun Nakanishi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Graduate school of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Jun Nakanishi Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba305-0044, Japan
| |
Collapse
|
5
|
Isasi E, Isasi ME, van Loon JJWA. The application of artificial gravity in medicine and space. Front Physiol 2022; 13:952723. [PMID: 36105282 PMCID: PMC9465481 DOI: 10.3389/fphys.2022.952723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Gravity plays a crucial role in physiology. The lack of gravity, like in long duration spaceflight missions, cause pathologies in e.g., the musculoskeletal system, cardiovascular deconditioning, immune system deprivation or brain abnormalities, to just mention a few. The application of artificial gravity through short-arm human centrifugation (SAHC) has been studied as a possible countermeasure to treat spaceflight deconditioning. However, hypergravity protocols applied by using SAHC have also been used to treat different, ground-based pathologies. Such gravitational therapies have been applied in Uruguay for more than four decades now. The aim of this overview is to summarize the most important findings about the effects of gravitational therapy in different, mainly vascular based pathologies according to the experience in the Gravitational Therapy Center and to discuss the current research in the field of hypergravity applications in medicine but also as multisystem countermeasure for near weightlessness pathologies. New insight is needed on the use of hypergravity in medicine and space research and application.
Collapse
Affiliation(s)
- Eugenia Isasi
- Centro de Terapia Gravitacional, Montevideo, Uruguay
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Maria E. Isasi
- Centro de Terapia Gravitacional, Montevideo, Uruguay
- *Correspondence: Jack J. W. A. van Loon, ; Maria E. Isasi,
| | - Jack J. W. A. van Loon
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam UMC location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, Netherlands
- Life Support and Physical Sciences Section (TEC-MMG), European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
- *Correspondence: Jack J. W. A. van Loon, ; Maria E. Isasi,
| |
Collapse
|
6
|
Bogle JM, Benarroch E, Sandroni P. Vestibular-autonomic interactions: beyond orthostatic dizziness. Curr Opin Neurol 2022; 35:126-134. [PMID: 34839339 DOI: 10.1097/wco.0000000000001013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize the current literature describing vestibular-autonomic interactions and to describe their putative role in various disorders' clinical presentations, including orthostatic dizziness and motion sensitivity. RECENT FINDINGS The vestibular-autonomic reflexes have long been described as they relate to cardiovascular and respiratory function. Although orthostatic dizziness may be in part related to impaired vestibulo-sympathetic reflex (orthostatic hypotension), there are various conditions that may present similarly. A recent clinical classification aims to improve identification of individuals with hemodynamic orthostatic dizziness so that appropriate recommendations and management can be efficiently addressed. Researchers continue to improve understanding of the underlying vestibular-autonomic reflexes with recent studies noting the insular cortex as a cortical site for vestibular sensation and autonomic integration and modulation. Work has further expanded our understanding of the clinical presentation of abnormal vestibular-autonomic interactions that may occur in various conditions, such as aging, peripheral vestibular hypofunction, traumatic brain injury, and motion sensitivity. SUMMARY The vestibular-autonomic reflexes affect various sympathetic and parasympathetic functions. Understanding these relationships will provide improved identification of underlying etiology and drive improved patient management.
Collapse
Affiliation(s)
- Jamie M Bogle
- Mayo Clinic Arizona, Department of Otolaryngology - Head and Neck Surgery, Division of Audiology, Scottsdale, AZ, USA
| | | | - Paola Sandroni
- Mayo Clinic Arizona, Department of Neurology, Division of Autonomic Disorders, Scottsdale, AZ, USA
| |
Collapse
|
7
|
Ohira T, Ino Y, Kimura Y, Nakai Y, Kimura A, Kurata Y, Kagawa H, Kimura M, Egashira K, Matsuda C, Ohira Y, Furukawa S, Hirano H. Effects of microgravity exposure and fructo-oligosaccharide ingestion on the proteome of soleus and extensor digitorum longus muscles in developing mice. NPJ Microgravity 2021; 7:34. [PMID: 34535681 PMCID: PMC8448765 DOI: 10.1038/s41526-021-00164-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Short-chain fatty acids produced by the gut bacterial fermentation of non-digestible carbohydrates, e.g., fructo-oligosaccharide (FOS), contribute to the maintenance of skeletal muscle mass and oxidative metabolic capacity. We evaluated the effect of FOS ingestion on protein expression of soleus (Sol) and extensor digitorum longus muscles in mice exposed to microgravity (μ-g). Twelve 9-week-old male C57BL/6J mice were raised individually on the International Space Station under μ-g or artificial 1-g and fed a diet with or without FOS (n = 3/group). Regardless of FOS ingestion, the absolute wet weights of both muscles tended to decrease, and the fiber phenotype in Sol muscles shifted toward fast-twitch type following μ-g exposure. However, FOS ingestion tended to mitigate the μ-g-exposure-related decrease in oxidative metabolism and enhance glutathione redox detoxification in Sol muscles. These results indicate that FOS ingestion mildly suppresses metabolic changes and oxidative stress in antigravity Sol muscles during spaceflight.
Collapse
Affiliation(s)
- Takashi Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan. .,Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi Osaka-Sayama, Osaka, Japan. .,Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan. .,Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan.
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yusuke Nakai
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Ayuko Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Yoichi Kurata
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Hiroyuki Kagawa
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Mitsuo Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Kenji Egashira
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Chie Matsuda
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Yoshinobu Ohira
- Research Center for Space and Medical Sciences and Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
8
|
Kim G, Kim KS. Hypergravity-induced malfunction was moderated by the regulation of NMDA receptors in the vestibular nucleus. Sci Rep 2021; 11:17420. [PMID: 34465851 PMCID: PMC8408201 DOI: 10.1038/s41598-021-97050-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022] Open
Abstract
Gravity alteration is one of the critical environmental factors in the space, causing various abnormal behaviors related with the malfunctioned vestibular system. Due to the high plastic responses in the central vestibular system, the behavioral failures were resolved in a short period of time (in approx. 72 h). However, the plastic neurotransmission underlying the functional recovery is still elusive. To understand the neurotransmitter-induced plasticity under hypergravity, the extracellular single neuronal recording and the immunohistochemistry were conducted in the vestibular nucleus (VN). The animals were grouped as control, 24-h, 72-h, and 15-day exposing to 4G-hypergravity, and each group had two subgroups based on the origins of neuronal responses, such as canal and otolith. The averaged firing rates in VN showed no significant difference in the subgroups (canal-related: p > 0.105, otolith-related: p > 0.138). Meanwhile, the number of NMDAr was significantly changed by the exposing duration to hypergravity. The NMDAr decreased in 24 h (p = 1.048 × 10–9), and it was retrieved in 72 h and 15 days (p < 4.245 × 10–5). Apparently, the reduction and the retrieval in the number of NMDAr were synchronized with the generation and recovery of the abnormal behaviors. Thus, the plasticity to resolve the hypergravity-induced malfunctional behaviors was conducted by regulating the number of NMDAr.
Collapse
Affiliation(s)
- Gyutae Kim
- Research Institute for Aerospace Medicine, Inha University, Incheon, Korea.
| | - Kyu-Sung Kim
- Research Institute for Aerospace Medicine, Inha University, Incheon, Korea.,Department of Otolaryngology Head and Neck Surgery, Inha University Hospital, Incheon, Korea
| |
Collapse
|
9
|
Study of mouse behavior in different gravity environments. Sci Rep 2021; 11:2665. [PMID: 33514775 PMCID: PMC7846607 DOI: 10.1038/s41598-021-82013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022] Open
Abstract
Many experiments have analyzed the effect of the space environment on various organisms. However, except for the group-rearing of mice in space, there has been little information on the behavior of organisms in response to gravity changes. In this study, we developed a simple Active Inactive Separation (AIS) method to extract activity and inactivity in videos obtained from the habitat cage unit of a space experiment. This method yields an activity ratio as a ratio of ‘activity’ within the whole. Adaptation to different gravitational conditions from 1g to hypergravity (HG) and from microgravity (MG) to artificial 1g (AG) was analyzed based on the amount of activity to calculate the activity ratio and the active interval. The result for the activity ratios for the ground control experiment using AIS were close to previous studies, so the effectiveness of this method was indicated. In the case of changes in gravity from 1g to HG, the ratio was low at the start of centrifugation, recovered sharply in the first week, and entered a stable period in another week. The trend in the AG and HG was the same; adapting to different gravity environments takes time.
Collapse
|
10
|
Rutter L, Barker R, Bezdan D, Cope H, Costes SV, Degoricija L, Fisch KM, Gabitto MI, Gebre S, Giacomello S, Gilroy S, Green SJ, Mason CE, Reinsch SS, Szewczyk NJ, Taylor DM, Galazka JM, Herranz R, Muratani M. A New Era for Space Life Science: International Standards for Space Omics Processing. PATTERNS (NEW YORK, N.Y.) 2020; 1:100148. [PMID: 33336201 PMCID: PMC7733874 DOI: 10.1016/j.patter.2020.100148] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Space agencies have announced plans for human missions to the Moon to prepare for Mars. However, the space environment presents stressors that include radiation, microgravity, and isolation. Understanding how these factors affect biology is crucial for safe and effective crewed space exploration. There is a need to develop countermeasures, to adapt plants and microbes for nutrient sources and bioregenerative life support, and to limit pathogen infection. Scientists across the world are conducting space omics experiments on model organisms and, more recently, on humans. Optimal extraction of actionable scientific discoveries from these precious datasets will only occur at the collective level with improved standardization. To address this shortcoming, we established ISSOP (International Standards for Space Omics Processing), an international consortium of scientists who aim to enhance standard guidelines between space biologists at a global level. Here we introduce our consortium and share past lessons learned and future challenges related to spaceflight omics.
Collapse
Affiliation(s)
- Lindsay Rutter
- Transborder Medical Research Center and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Daniela Bezdan
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, Tubingen, Germany
| | - Henry Cope
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Sylvain V. Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Kathleen M. Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mariano I. Gabitto
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA
| | - Samrawit Gebre
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Stefan J. Green
- Genome Research Core, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sigrid S. Reinsch
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Nathaniel J. Szewczyk
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH 45701, USA
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan M. Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Masafumi Muratani
- Transborder Medical Research Center and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
11
|
Yuan M, Liu H, Zhou S, Zhou X, Huang YE, Hou F, Jiang W. Integrative Analysis of Regulatory Module Reveals Associations of Microgravity with Dysfunctions of Multi-body Systems and Tumorigenesis. Int J Mol Sci 2020; 21:ijms21207585. [PMID: 33066530 PMCID: PMC7589633 DOI: 10.3390/ijms21207585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/07/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022] Open
Abstract
Previous studies have demonstrated that microgravity could lead to health risks. The investigation of the molecular mechanisms from the aspect of systems biology has not been performed yet. Here, we integratively analyzed transcriptional and post-transcriptional regulations based on gene and miRNA expression profiles in human peripheral blood lymphocytes cultured in modeled microgravity. Two hundred and thirty dysregulated TF-miRNA (transcription factor and microRNA) feed-forward loops (FFLs) were identified in microgravity. The immune, cardiovascular, endocrine, nervous and skeletal system subnetworks were constructed according to the functions of dysregulated FFLs. Taking the skeletal system as an example, most of genes and miRNAs in the subnetwork were involved in bone loss. In addition, several drugs have been predicted to have potential to reduce bone loss, such as traditional Chinese medicines Emodin and Ginsenoside Rh2. Furthermore, we investigated the relationships between microgravity and 20 cancer types, and found that most of cancers might be promoted by microgravity. For example, rectum adenocarcinoma (READ) might be induced by microgravity through reducing antigen presentation and suppressing IgA-antibody-secreting cells' migration. Collectively, TF-miRNA FFL might provide a novel mechanism to elucidate the changes induced by microgravity, serve as drug targets to relieve microgravity effects, and give new insights to explore the relationships between microgravity and cancers.
Collapse
|