1
|
Haruda A, Evin A, Steinheimer F, Schafberg R. Evolution under intensive industrial breeding: skull size and shape comparison between historic and modern pig lineages. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241039. [PMID: 39911888 PMCID: PMC11793964 DOI: 10.1098/rsos.241039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/07/2025]
Abstract
Domestication and subsequent human-induced selection has enhanced profound changes in animal morphology. On modern domestic pigs, those transformations encompass not only overall increases in body size but also modifications in skull morphology. While skull morphological differences between modern domestic pigs and wild boar are relatively well-documented, less understood is the variation and underlying mechanisms associated with intensive breeding. In this study, we investigated the rate and direction of phenotypic change of skull morphology using a unique dataset that includes two lineages of German domestic pig that were subjected to similar intensive industrial selection pressures throughout the twentieth century, alongside contemporaneous populations of German wild boar. Size and shape variation of 135 specimens was quantified through geometric morphometrics, with 82 three-dimensional landmarks. We find expected differences in skull shape between wild and domestic pigs, but also convergence between the two domestic lineages through the century of directed breeding, despite population segregation. Our results suggest that cranial morphologies have rapidly responded to selection pressure that is independent of genetic isolation. This also suggests that pig morphotypes quickly reflect human agency and impact upon domestic animal phenotypes, revealing a pathway to investigate early human breeding activity in ancient and historical contexts.
Collapse
Affiliation(s)
- A. Haruda
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Research Laboratory for Archaeology and the History of Art, University of Oxford, 1 South Parks Rd, OxfordOX1 3TG, UK
| | - A. Evin
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - F. Steinheimer
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - R. Schafberg
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Bolarin A, Berndtson J, Tejerina F, Cobos S, Pomarino C, D'Alessio F, Blackburn H, Kaeoket K. Boar semen cryopreservation: State of the art, and international trade vision. Anim Reprod Sci 2024; 269:107496. [PMID: 38763787 DOI: 10.1016/j.anireprosci.2024.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Biosecurity is a major concern in the global pig production. The separation in time of semen collection, processing and insemination in the pig farm is a few days for chilled semen but it can be indefinite when using cryopreserved semen. Field fertility results of boar cryopreserved semen are close to chilled semen, which makes it a valuable resource for the establishment of semen genebanks, long-distance semen trade, and the implementation of other technologies such as the sex-sorted semen. But cryopreserved semen is far from being routine in pig farms. The most recent research efforts to facilitate its implementation include the use of additives before freezing, or in the thawing extender. Long-term preserved semen trade is a biosecurity challenge. To harmonize international trade of germplasm, the World Organization of Animal Health (WOAH) established a regulatory framework for all member countries. The present paper aims to review the latest advances of boar semen cryopreservation with special focus on the benefits of its inclusion as a routine tool in the pig industry. We also review recently reported field fertility results of cryopreserved semen, its international trade compared to chilled semen, and the regulatory framework involved. Boar cryopreserved semen is a valuable tool to control biosecurity risk, implement other technologies, and facilitate international trade. Research already demonstrated good field fertility results, but it still represents less than 0.1 % of the international trade. As boar cryopreserved semen gets closer to implementation, the correspondent authorities are reviewing the trade rules.
Collapse
Affiliation(s)
| | | | - F Tejerina
- Ministry of Agriculture, Fisheries and Food. General Sub-directorate of Livestock Inputs, Madrid, Spain
| | - S Cobos
- Ministry of Agriculture, Fisheries and Food. General Sub-directorate of Health Agreements and Border Control, Madrid, Spain
| | - C Pomarino
- Ministry of Agriculture, Fisheries and Food. General Sub-directorate of Animal Health and Hygiene and Traceability, Madrid, Spain
| | - F D'Alessio
- World Organization for Animal Health (OIE), Paris, France
| | - H Blackburn
- USDA-ARS, National Animal Germplasm Program, Fort Collins, CO, United States
| | - K Kaeoket
- Semen Laboratory, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon-Pathom 73170, Thailand
| |
Collapse
|
3
|
Banos G, Talenti A, Chatziplis D, Sánchez-Molano E. Genomic analysis of the rare British Lop pig and identification of distinctive genomic markers. PLoS One 2022; 17:e0271053. [PMID: 35960784 PMCID: PMC9374264 DOI: 10.1371/journal.pone.0271053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Concentration of production on a few commercial pig breeds has led to the marginalization of many native, numerically small breeds, increasing their risk of endangerment. In the UK, one such rare breed is the British Lop, a lop-eared breed, of similar origin to the Welsh breed. The objective of the present study was to address the genomic status of the British Lop and its relationship with other breeds and identify a small set of genomic markers that uniquely characterize and distinguish British Lop animals. Results have shown that the British Lop is a relatively distinct population with reduced genomic diversity and effective size consistent with its status as a rare breed. Furthermore, we demonstrated the genetic closeness of the British Lop to phenotypically similar breeds such as Landrace and Welsh as well Large White, Middle White and Pietrain. Finally, a set of 75 Single Nucleotide Polymorphisms distributed across multiple chromosomes were identified and validated as markers that can consistently distinguish British Lops from other closely related breeds. Results may inform breeding and management strategies aiming to enhance diversity as well as the development of a breed purity test.
Collapse
Affiliation(s)
- Georgios Banos
- Scotland’s Rural College (SRUC), Department of Animal and Veterinary Sciences, The Roslin Institute Building, Edinburgh, United Kingdom
| | - Andrea Talenti
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
| | - Dimitrios Chatziplis
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- Laboratory of Agrobiotechnology and Inspection of Agricultural Products, Department of Agriculture, International Hellenic University, Sindos, Greece
| | - Enrique Sánchez-Molano
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Oldenbroek JK, Windig JJ. Opportunities of Genomics for the Use of Semen Cryo-Conserved in Gene Banks. Front Genet 2022; 13:907411. [PMID: 35938018 PMCID: PMC9350965 DOI: 10.3389/fgene.2022.907411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Shortly after the introduction of cryo-conserved semen in the main farm animal species, gene banks were founded. Safeguarding farm animal genetic diversity for future use was and is the main objective. A sampling of sires was based on their pedigree and phenotypic information. Nowadays, DNA information from cryo-conserved sires and from animals in the living populations has become available. The combination of their DNA information can be used to realize three opportunities: 1) to make the gene bank a more complete archive of genetic diversity, 2) to determine the history of the genetic diversity from the living populations, and 3) to improve the performance and genetic diversity of living populations. These three opportunities for the use of gene bank sires in the genomic era are outlined in this study, and relevant recent literature is summarized to illustrate the great value of a gene bank as an archive of genetic diversity.
Collapse
|
5
|
Selection and Drift: A Comparison between Historic and Recent Dutch Friesian Cattle and Recent Holstein Friesian Using WGS Data. Animals (Basel) 2022; 12:ani12030329. [PMID: 35158654 PMCID: PMC8833835 DOI: 10.3390/ani12030329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Over the last century, genetic diversity in the cattle species has been affected by the replacement of many local, dual-purpose breeds with a few specialized, high-output dairy breeds. This replacement caused a sharp decline in the population size of local breeds. In the Netherlands, the local Dutch Friesian breed has gradually been replaced by the Holstein Friesian. This resulted in a rapid decrease in numbers of the Dutch Friesian breed with an associated risk of loss of genetic diversity due to drift. The objective of this study is to investigate genomewide genetic diversity between a group of historic and recent Dutch Friesian bulls and a group of recently used Holstein Friesian bulls. Our findings showed that a large amount of diversity is shared between the three groups, but each of them has some unique genetic identity (12% of the single nucleotide polymorphism were group-specific). The genetic diversity of the Dutch Friesians reduced over time, but this did not lead to higher inbreeding levels—especially, inbreeding due to recent ancestors has not increased. Genetically, the recent Dutch Friesians were slightly more different from Holstein Friesians than the historic Dutch Friesians. Our results also highlighted the presence of several genomic regions that differentiated between the groups. Abstract Over the last century, genetic diversity in many cattle breeds has been affected by the replacement of traditional local breeds with just a few milk-producing breeds. In the Netherlands, the local Dutch Friesian breed (DF) has gradually been replaced by the Holstein Friesian breed (HF). The objective of this study is to investigate genomewide genetic diversity between a group of historically and recently used DF bulls and a group of recently used HF bulls. Genetic material of 12 historic (hDF), 12 recent DF bulls (rDF), and 12 recent HF bulls (rHF) in the Netherlands was sequenced. Based on the genomic information, different parameters—e.g., allele frequencies, inbreeding coefficient, and runs of homozygosity (ROH)—were calculated. Our findings showed that a large amount of diversity is shared between the three groups, but each of them has a unique genetic identity (12% of the single nucleotide polymorphisms were group-specific). The rDF is slightly more diverged from rHF than hDF. The inbreeding coefficient based on runs of homozygosity (Froh) was higher for rDF (0.24) than for hDF (0.17) or rHF (0.13). Our results also displayed the presence of several genomic regions that differentiated between the groups. In addition, thirteen, forty-five, and six ROH islands were identified in hDF, rDF, and rHF, respectively. The genetic diversity of the DF breed reduced over time, but this did not lead to higher inbreeding levels—especially, inbreeding due to recent ancestors was not increased.
Collapse
|
6
|
Dai Y, Kavita U, Lampen MH, Gielen S, Banks G, Levesque PC, Kozhich A, Pillutla RC, Zhang YJ, Jawa V, Adam LP. Prevalence of pre-existing neutralizing antibodies against AAV serotypes 1, 2, 5, 6, 8, and 9 in sera of different pig strains. Hum Gene Ther 2021; 33:451-459. [PMID: 34913759 DOI: 10.1089/hum.2021.213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pre-existing neutralizing antibodies (NAb) to adeno-associated virus (AAV) may diminish the efficacy of AAV-based therapies depending on the titer. To support gene therapy studies in pigs, the seroprevalence of NAb to AAV 1, 2, 5, 6, 8, and 9 serotypes were assessed in the sera of 3 different strains of pigs consisting of 60 Norsvin Topigs-20 strain, 22 Gottingen minipigs, and 40 Yucatan minipigs. Cell-based NAb assays were developed for various AAV serotypes. The sera were tested for NAb in a Lec-2 cell line for AAV9 vector and in a COS-7 cell line for the other AAV serotypes. In the 60 Topigs-20 strain aged 2 to 4 years old, 100% were positive for AAV2 NAb, 45 % positive for AAV6 NAb, and ~20% positive for each of AAV1, 5, 8, and 9 NAb. These data showed that approximately 80% of Norsvin Topigs-20 pigs evaluated were seronegative for pre-existing NAb to the AAV1, 5, 8, and 9 serotypes, respectively. In 22 Gottingen minipigs at 5-6 months of age, serum AAV-serotype specific NAb co-existed with that of various other AAV serotypes at 32 to 46 % between two serotypes. These results suggested that coexisting NAb resulted either from multiple AAV serotype co-infection or from one (or more) serotypes that can cross-react with other AAV serotypes in some minipigs. Among the 40 Yucatan minipigs, 20 of the minipigs were less than 3 months old and were all negative for NAb against AAV5, 8 and 9, and only one of these 20 pigs was positive to AAV1 and 6. We further determined the titers in those positive pigs and found most Gottingen minipigs had low titer at 1:20, whereas some of Topigs-20 pigs had titers between 1:80 to 1: 320, and some of Yucatan pigs had titers between 1: 160 to 1: 640. These results suggested that the majority of the pigs in the three strains would be amenable to gene therapy study using AAV1, AAV5, AAV8, and AAV9 and that prescreening on circulating AAV antibodies could be helpful before inclusion of pigs into studies.
Collapse
Affiliation(s)
- Yanshan Dai
- Bristol Myers Squibb Co, 480678, Lawrenceville, New Jersey, United States;
| | - Uma Kavita
- Bristol Myers Squibb Co, 480678, Lawrenceville, New Jersey, United States;
| | | | - Sander Gielen
- uniQure NV, 107496, Amsterdam, North Holland, Netherlands;
| | - Glen Banks
- Bristol Myers Squibb Co, 480678, Lawrenceville, New Jersey, United States;
| | - Paul C Levesque
- Bristol Myers Squibb Co, 480678, Lawrenceville, New Jersey, United States;
| | - Alexander Kozhich
- Bristol Myers Squibb Co, 480678, Lawrenceville, New Jersey, United States;
| | - Renuka C Pillutla
- Bristol Myers Squibb Co, 480678, Lawrenceville, New Jersey, United States;
| | - Yan J Zhang
- Bristol Myers Squibb Co, 480678, Lawrenceville, New Jersey, United States;
| | - Vibha Jawa
- Bristol Myers Squibb Co, 480678, Lawrenceville, New Jersey, United States;
| | - Leonard P Adam
- Bristol Myers Squibb Co, 480678, Lawrenceville, New Jersey, United States;
| |
Collapse
|
7
|
Analysis of Homozygous-by-Descent (HBD) Segments for Purebred and Crossbred Pigs in Russia. Life (Basel) 2021; 11:life11080861. [PMID: 34440604 PMCID: PMC8400874 DOI: 10.3390/life11080861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
Intensive selection raises the efficiency of pig farming considerably, but it also promotes the accumulation of homozygosity, which can lead to an increase in inbreeding and the accumulation of deleterious variation. The analysis of segments homozygous-by-descent (HBD) and non-HBD segments in purebred and crossbred pigs is of great interest. Research was carried out on 657 pigs, of which there were Large White (LW, n = 280), Landrace (LR, n = 218) and F1 female (♂LR × ♀LW) (F1, n = 159). Genotyping was performed using the GeneSeek® GGP Porcine HD Genomic Profiler v1 (Illumina Inc., USA). To identify HBD segments and estimate autozygosity (inbreeding coefficient), we used the multiple HBD classes model. LW pigs exhibited 50,420 HBD segments, an average of 180 per animal; LR pigs exhibited 33,586 HBD segments, an average of 154 per animal; F1 pigs exhibited 21,068 HBD segments, an average of 132 per animal. The longest HBD segments in LW were presented in SSC1, SSC13 and SSC15; in LR, in SSC1; and in F1, in SSC15. In these segments, 3898 SNPs localized in 1252 genes were identified. These areas overlap with 441 QTLs (SSC1—238 QTLs; SSC13—101 QTLs; and SSC15—102 QTLs), including 174 QTLs for meat and carcass traits (84 QTLs—fatness), 127 QTLs for reproduction traits (100 QTLs—litter traits), 101 for production traits (69 QTLs—growth and 30 QTLs—feed intake), 21 QTLs for exterior traits (9 QTLs—conformation) and 18 QTLs for health traits (13 QTLs—blood parameters). Thirty SNPs were missense variants. Whilst estimating the potential for deleterious variation, six SNPs localized in the NEDD4, SEC11C, DCP1A, CCT8, PKP4 and TENM3 genes were identified, which may show deleterious variation. A high frequency of potential deleterious variation was noted for LR in DCP1A, and for LW in TENM3 and PKP4. In all cases, the genotype frequencies in F1 were intermediate between LR and LW. The findings presented in our work show the promise of genome scanning for HBD as a strategy for studying population history, identifying genomic regions and genes associated with important economic traits, as well as deleterious variation.
Collapse
|
8
|
A comparative analysis of SLA-DRB1 genetic diversity in Colombian (creoles and commercial line) and worldwide swine populations. Sci Rep 2021; 11:4340. [PMID: 33619347 PMCID: PMC7900169 DOI: 10.1038/s41598-021-83637-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Analysing pig class II mayor histocompatibility complex (MHC) molecules is mainly related to antigen presentation. Identifying frequently-occurring alleles in pig populations is an important aspect to be considered when developing peptide-based vaccines. Colombian creole pig populations have had to adapt to local conditions since entering Colombia; a recent census has shown low amounts of pigs which is why they are considered protected by the Colombian government. Commercial hybrids are more attractive regarding production. This research has been aimed at describing the allele distribution of Colombian pigs from diverse genetic backgrounds and comparing Colombian SLA-DRB1 locus diversity to that of internationally reported populations. Twenty SLA-DRB1 alleles were identified in the six populations analysed here using sequence-based typing. The amount of alleles ranged from six (Manta and Casco Mula) to nine (San Pedreño). Only one allele (01:02) having > 5% frequency was shared by all three commercial line populations. Allele 02:01:01 was shared by five populations (around > 5% frequency). Global FST indicated that pig populations were clearly structured, as 20.6% of total allele frequency variation was explained by differences between populations (FST = 0.206). This study’s results confirmed that the greatest diversity occurred in wild boars, thereby contrasting with low diversity in domestic pig populations.
Collapse
|
9
|
Moscarelli A, Sardina MT, Cassandro M, Ciani E, Pilla F, Senczuk G, Portolano B, Mastrangelo S. Genome-wide assessment of diversity and differentiation between original and modern Brown cattle populations. Anim Genet 2020; 52:21-31. [PMID: 33174276 DOI: 10.1111/age.13019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Identifying genomic regions involved in the differences between breeds can provide information on genes that are under the influence of both artificial and natural selection. The aim of this study was to assess the genetic diversity and differentiation among four different Brown cattle populations (two original vs. two modern populations) and to characterize the distribution of runs of homozygosity (ROH) islands using the Illumina Bovine SNP50 BeadChip genotyping data. After quality control, 34 735 SNPs and 106 animals were retained for the analyses. Larger heterogeneity was highlighted for the original populations. Patterns of genetic differentiation, multidimensional scaling, and the neighboring joining tree distinguished the modern from the original populations. The FST -outlier identified several genes putatively involved in the genetic differentiation between the two groups, such as stature and growth, behavior, and adaptability to local environments. The ROH islands within both the original and the modern populations overlapped with QTL associated with relevant traits. In modern Brown (Brown Swiss and Italian Brown), ROH islands harbored candidate genes associated with milk production traits, in evident agreement with the artificial selection conducted to improve this trait in these populations. In original Brown (Original Braunvieh and Braunvieh), we identified candidate genes related with fat deposition, confirming that breeding strategies for the original Brown populations aimed to produce dual-purpose animals. Our study highlighted the presence of several genomic regions that vary between Brown populations, in line with their different breeding histories.
Collapse
Affiliation(s)
- A Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - M T Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - M Cassandro
- Dipartimento di Agronomia Animali Alimenti Risorse naturali e Ambiente, University of Padova, Legnaro, 35020, Italy
| | - E Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari, Bari, 70124, Italy
| | - F Pilla
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, 86100, Italy
| | - G Senczuk
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, 86100, Italy
| | - B Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - S Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| |
Collapse
|
10
|
Getmantseva L, Bakoev S, Bakoev N, Karpushkina T, Kostyunina O. Mitochondrial DNA Diversity in Large White Pigs in Russia. Animals (Basel) 2020; 10:E1365. [PMID: 32781729 PMCID: PMC7460241 DOI: 10.3390/ani10081365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
The Large White pig is the most commonly raised commercial pig breed in the world. The aim of this work was to investigate D-loop mtDNA in Large White pigs (n = 402) of various selections bred in the Russian Federation from 2000 to 2019. The general sample consisted of three groups: Old (n = 78) (Russian selection, 2000-2010); Imp (n = 123) (imported to Russia in 2008-2014); New (n = 201) (2015-2019). The synthesized score (Fz) was calculated by analyzing the main PCA (principal component analysis components). An affiliation to Asian or European haplogroups was determined according to the NCBI (National Center for Biotechnology Information). In the study, we defined 46 polymorphic sites and 42 haplotypes. Significant distinctions between groups Old, Imp and New in frequencies of haplotypes and haplogroups were established. The distribution of Asian and European haplotypes in the groups was Old: 50%/50%, Imp: 43%/57%, New: 75%/25%, respectively. The variety of haplotypes and haplogroups in the pigs of the group New is related to the farms in which they breed. Haplotype frequencies significantly differ between the clusters Old_Center, Old_Siberia and Old_South. This study will provide information on the genetic diversity of Large White breed pigs. The results will be useful for the conservation and sustainable use of these resources.
Collapse
Affiliation(s)
- Lyubov Getmantseva
- Federal Science Center for Animal Husbandry Named after Academy Member L.K. Ernst, Dubrovitsy 142132, Russia; (S.B.); (N.B.); (T.K.); (O.K.)
| | | | | | | | | |
Collapse
|